
 

 

 

Defaultable Derivative Pricing Model 

 

 

 

Tim Xiao 

 

 

ABSTRACT 

This article presents a comprehensive framework for valuing financial instruments subject to credit 

risk. In particular, we focus on the impact of default dependence on asset pricing, as correlated default risk 

is one of the most pervasive threats in financial markets. We bring the concept of comvariance into the area 

of credit risk modeling to capture the statistical relationship among three or more random variables. 

Furthermore, we define a new statistics, comrelation, as a scaled version of comvariance. Accounting for 

default correlations and comrelations becomes important in determining CDS premia, especially during the 

credit crisis. We find that the default comvariance/comrelation has substantial effects on the asset pricing 

and risk management, which have never been documented. 
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1 Introduction 

A broad range of financial instruments bear credit risk. Credit risk may be unilateral, bilateral, or 

multilateral. Some instruments such as, loans, bonds, etc, by nature contain only unilateral credit risk 

because only the default risk of one party appears to be relevant, whereas some other instruments, such as, 

over the counter (OTC) derivatives, securities financing transactions (SFT), and credit derivatives, bear 

bilateral or multilateral credit risk because two or more parties are susceptible to default risk.  

There are two primary types of models that attempt to describe default processes in the literature: 

structural models and reduced-form (or intensity) models. Many practitioners in the credit trading arena 

have tended to gravitate toward the reduced-from models given their mathematical tractability. They can 

be made consistent with the risk-neutral probabilities of default backed out from corporate bond prices or 

credit default swap (CDS) spreads/premia.  

Central to the reduced-form models is the assumption that multiple defaults are independent 

conditional on the state of the economy. In reality, however, the default of one party might affect the default 

probabilities of other parties. Collin-Dufresne et al. (2003) and Zhang and Jorion (2007) find that a major 

credit event at one firm is associated with significant increases in the credit spreads of other firms. Giesecke 

(2004), Das et al. (2006), and Lando and Nielsen (2010) find that a defaulting firm can weaken the firms in 

its network of business links. These findings have important implications for the management of credit risk 

portfolios, where default relationships need to be explicitly modeled. 

The main drawback of the conditionally independent assumption or the reduced-form models is 

that the range of default correlations that can be achieved is typically too low when compared with empirical 

default correlations (see Das et al. (2007)). The responses to correct this weakness can be generally 

classified into two categories: endogenous default relationship approaches and exogenous default 

relationship approaches.  

The endogenous approaches include the contagion (or infectious) models and frailty models. The 

frailty models (see Duffie et al. (2009), Koopman et al. (2011), etc) describe default clustering based on 

some unobservable explanatory variables. In variations of contagion or infectious type models (see Davis 



 2 

and Lo (2001), Jarrow and Yu (2001), etc.), the assumption of conditional independence is relaxed and 

default intensities are made to depend on default events of other entities. Contagion and frailty models fill 

an important gap but at the cost of analytic tractability. They can be especially difficult to implement for 

large portfolios. 

The exogenous approaches (see Li (2000), Laurent and Gregory (2005), Hull and White (2004), 

Brigo et al. (2011), etc) attempt to link marginal default probability distributions to the joint default 

probability distribution through some external functions. Due to their simplicity in use, the exogenous 

approaches become very popular in practice. 

Collateralization is one of the most important and widespread credit risk mitigation techniques used 

in derivatives transactions. According the ISDA (2012), 71% of all OTC derivatives transactions are subject 

to collateral agreements. The use of collateral in the financial markets has increased sharply over the past 

decade, yet the research on collateralized valuation is relatively sparse. Previous studies seem to turn away 

from direct and detailed modeling of collateralization (see Fuijii and Takahahsi (2012)). For example, 

Johannes and Sundaresan (2007), and Fuijii and Takahahsi (2012) characterize collateralization via a cost-

of-collateral instantaneous rate (or stochastic dividend or convenience yield). Piterbarg (2010) regards 

collateral as a regular asset in a portfolio and uses the replication approach to price collateralized contracts. 

 

2 Pricing Financial Instruments Subject to Bilateral Credit Risk 

In the reduced-form approach, the stopping (or default) time i  of firm i is modeled as a Cox arrival 

process (also known as a doubly stochastic Poisson process) whose first jump occurs at default and is 

defined by, 

 it

sii HdsZsht = 0
),(:inf          (1) 

where )(thi  or ),( ti Zth  denotes the stochastic hazard rate or arrival intensity dependent on an exogenous 

common state 
tZ , and iH  is a unit exponential random variable independent of 

tZ . 



 3 

It is well-known that the survival probability from time t to s in this framework is defined by 






−== 

s

t
itii duuhZtsPstp )(exp),|(:),(       (2a) 

 The default probability for the period (t, s) in this framework is given by 






−−=−== 

s

t
iitii duuhstpZtsPstq )(exp1),(1),|(:),(          (2b) 

There is ample evidence that corporate defaults are correlated. The default of a firm’s counterparty 

might affect its own default probability. Thus, default correlation/dependence arises due to the counterparty 

relations.  

Two counterparties are denoted as A and B. The binomial default rule considers only two possible 

states: default or survival. Therefore, the default indicator jY  for party j (j=A, B) follows a Bernoulli 

distribution, which takes value 1 with default probability jq , and value 0 with survival probability jp , i.e., 

jj pYP == }0{  and jj qYP == }1{ . The marginal default distributions can be determined by the reduced-

form models. The joint distributions of a multivariate Bernoulli variable can be easily obtained via the 

marginal distributions by introducing extra correlations. 

Consider a pair of random variables ( AY , BY ) that has a bivariate Bernoulli distribution. The joint 

probability representations are given by 

ABBABA ppYYPp +==== )0,0(:00      (3a) 

ABBABA qpYYPp −==== )1,0(:01      (3b) 

ABBABA pqYYPp −==== )0,1(:10      (3c) 

ABBABA qqYYPp +==== )1,1(:11      (3d) 

where  
jj qYE =)( ,

jjj qp=2 , and   BBAAABBAABBBAAAB pqpqqYqYE  ==−−= ))((:  where AB  

denotes the default correlation coefficient, and  
AB  denotes the default covariance. 

A critical ingredient of the pricing of a bilateral defaultable instrument is the default settlement 

rules. There are two rules in the market. The one-way payment rule was specified by the early International 
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Swap Dealers Association (ISDA) master agreement. The non-defaulting party is not obligated to 

compensate the defaulting party if the remaining market value of the instrument is positive for the defaulting 

party. The two-way payment rule is based on current ISDA documentation. The non-defaulting party will 

pay the full market value of the instrument to the defaulting party if the contract has positive value to the 

defaulting party. 

1.1   Risky valuation without collateralization 

Consider a defaultable instrument that promises to pay a TX  from party B to party A at maturity 

date T, and nothing before date T. The payoff TX  may be positive or negative, i.e. the instrument may be 

either an asset or a liability to each party. All calculations are from the perspective of party A. 

We divide the time period (t, T) into n very small time intervals ( t ) and use the approximation 

( ) yy +1exp  provided that y is very small. The survival and the default probabilities for the period (t, 

tt + ) are given by 

( ) tthtthtttptp −−=+= )(1)(exp),(:)(ˆ     (4a) 

( ) tthtthtttqtq −−=+= )()(exp1),(:)(ˆ     (4b) 

Suppose that the value of the instrument at time tt + is )( ttV +  that can be an asset or a liability. 

There are a total of four ( 42 2 = ) possible states shown in Table 1. 

The risky value of the instrument at time t is the discounted expectation of all the payoffs and is 

given by 

( )


( )   ( ) tt

t

t

FF

F

F

)()(exp)()(1)(1)(exp

)()()()()()()()(1

)()()()()()()()(1)(exp)(

0)(0)(

111001000)(

111001000)(

ttVttgEttVttltltrE

ttVtpttpttpttp

ttVtpttpttpttpttrEtV

AttVBttV

ABAAttV

ABBBttV

+−=+++−

+++++

++++−=

++

+

+





    (5a) 

where 

)(1)(1)()( 0)(0)( tltltrtg AttVBttV ++ ++=         (5b) 

( ) ( ) ( ) )()()()()()(1)()(1)()(1)( ththttttthtthttl BAABABBBABBBB  +−−−−+−=   (5c) 
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( ) ( ) ( ) )()()()()()(1)()(1)()(1)( ththttttthtthttl BAABABAABAAAA  +−−−−+−=   (5d) 

where Y  is an indicator function that is equal to one if Y is true and zero otherwise,  tE F•  is the 

expectation conditional on the tF , )(tr  is the risk-free short rate, and 
i  is the recovery rate. 

 The pricing equation above keeps terms of order t . All higher order terms of t  are omitted. 

Similarly, we have 

( ) ttttVtttgEttV +++−=+ F)2()(exp)(        (6) 

Note that ( )ttg − )(exp  is ttF + -measurable. By definition, an ttF + -measurable random 

variable is a random variable whose value is known at time tt + . Based on the taking out what is known 

and tower properties of conditional expectation, we have 

( )  ( ) ( )  

( ) ti

tttt

ttVttitgE

ttVtttgEttgEttVttgEtV

F

FFF

)2())(exp

)2()(exp)(exp)()(exp)(

1

0
++−=

++−−=+−=

 =

+

 (7) 

By recursively deriving from t forward over T where TXTV =)(  and taking the limit as t  

approaches zero, we obtain 

 












−==  tT

T

ttT XduugEXTtGEtV FF )(exp),()(                      (8) 

We may think of ),( TtG  as the bilateral risk-adjusted discount factor and )(ug  as the bilateral risk-

adjusted short rate. Equation (8) has a general form that applies in a particular situation where we assume 

that parties A and B have independent default risks, i.e. 0=AB  and 0=AB . Thus, we have: 

 












−==  tT

T

ttT XduugEXTtGEtV FF )(exp),()(                   (9a) 

where  

)(1)(1)()( 0)(0)( ululurug AuVBuV  ++=        (9b) 

( ) ( ) )()(1)()(1)( uhuuhuul ABBBB  −+−=           (9c) 

( ) ( ) )()(1)()(1)( uhuuhuul BAAAA  −+−=           (9d) 
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Equation (9) is the same as equation (2.5’) in Duffie and Huang (1996). 

In theory, a default may happen at any time, i.e., a risky contract is continuously defaultable. This 

Continuous Time Risky Valuation Model is accurate but sometimes complex and expensive. For simplicity, 

people sometimes prefer the Discrete Time Risky Valuation Model that assumes that a default may only 

happen at some discrete times. A natural selection is to assume that a default may occur only on the payment 

dates. Fortunately, the level of accuracy for this discrete approximation is well inside the typical bid-ask 

spread for most applications (see O’Kane and Turnbull (2003)). From now on, we will focus on the discrete 

setting only, but many of the points we make are equally applicable to the continuous setting. 

 If we assume that a default may occur only on the payment date, the risky value of the instrument 

in a discrete-time setting is given by 




( )  ( )tt

t

t
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    (10a) 

where 

( ))()()(1),(),(),()(

),(),()(),(),()(),(),(),(

TTTTtTtqTtqT

TtqTtpTTtpTtqTTtpTtpTtk

ABBBABABAB

ABBABBABB





+−−++

++=
        (10b) 

( ))()()(1),(),(),()(

),(),()(),(),()(),(),(),(

TTTTtTtqTtqT

TtqTtpTTtpTtqTTtpTtpTtk

ABAAABABAB

BAABAAABA





+−−++

++=
        (10c) 

where ),( tD denotes the stochastic risk-free discount factor at t for the maturity T given by 





−=  duurTtD

T

t
)(exp),(      (10d) 

We may think of ),( TtK as the risk-adjusted discount factor, and ),( TtkA
 and ),( TtkB

 as the 

adjustment factors. Equation (10) tells us that the bilateral risky price of a single-payment instrument can 

be expressed as the present value of the payoff discounted by a risk-adjusted discount factor that has a 

switching-type dependence on the sign of the payoff. 
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Equation (10) can be easily extended from one-period to multiple-periods. Suppose that a 

defaultable instrument has m cash flows. Let the m cash flows be represented as 1X ,…, mX  with payment 

dates 1T ,…, mT . Each cash flow may be positive or negative. We have the following proposition. 

Proposition 1: The  risky value of the multiple-payment instrument is given by 

( )  =

−

= +=
m

i ti

i

j jj XTTKEtV
1

1

0 1),()( F          (11a) 

where 0
Tt =  and 

( )),(1),(1),(),( 10))((10))((11 1111 ++++++ ++++
+= jjATVXjjBTVXjjjj TTkTTkTTDTTK

jjjj
      (11b) 

where ),( 1+jjA TTk and ),( 1+jjB TTk  are defined in Equation (10). 

Proof: See the Appendix. 

From Proposition 1, we can see that the intermediate values are vital to determine the final price. 

For a payment interval, the current risky value has a dependence on the future risky value. Only on the final 

payment date mT , the value of the instrument and the maximum amount of information needed to determine 

the risk-adjusted discount factor are revealed.  

1.2   Risky valuation with collateralization 

Collateralization is the most important and widely used technique in practice to mitigate credit risk. 

The posting of collateral is regulated by the Credit Support Annex (CSA) that specifies a variety of terms 

including the threshold, the independent amount, and the minimum transfer amount (MTA), etc. The 

threshold is the unsecured credit exposure that a party is willing to bear. The minimum transfer amount is 

the smallest amount of collateral that can be transferred. The independent amount plays the same role as 

the initial margin (or haircuts). 

The collateral amount posted at time t is given by 



 −

=
otherwise

tHtViftHtV
tC

0

)()()()(
)(         (12) 
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where )(tH is the collateral threshold. In particular, 0)( =tH corresponds to full-collateralization1; 0H  

represents partial/under-collateralization; and 0H  is associated with over-collateralization. Full 

collateralization becomes increasingly popular at the transaction level. In this paper, we focus on full 

collateralization only, i.e., )()( tVtC = . 

The main role of collateral should be viewed as an improved recovery in the event of a counterparty 

default. According to Bankruptcy law, if there has been no default, the collateral is returned to the collateral 

giver by the collateral taker. If a default occurs, the collateral taker possesses the collateral. In other words, 

collateral does not affect the survival payment; instead, it takes effect on the default payment only. 

The value of the collateralized instrument at time t is the discounted expectation of all the payoffs 

and is given by 

( ) 
  ( )  )(),(1)(),(),(

)(),()(),()(),()(),(),()(

0000

11100100

tVutpEuVutputDE

uCutpuCutpuCutpuVutputDEtV

tt

t

FF

F

−+=

+++=
   (13a) 

or 

  ( )tt FF ),(/)(),(),()( 0000 stpEsVstpstDEtV =         (13b) 

If we assume that default probabilities are uncorrelated with interest rates and payoffs2, we have 

 tF)(),()( sVstDEtV =      (14) 

 Equation (14) is the formula for the risk-free valuation. Thus, we have the following proposition. 

Proposition 2: If a bilateral risky instrument is fully collateralized, the risky value of the instrument is equal 

to the risk-free value, as shown in equation (14). 

 
1 There are three types of collateralization: Full-collateralization is a process where the posting of collateral 

is equal to the current MTM value. Partial/under-collateralization is a process where the posting of collateral 

is less than the current MTM value. Over-collateralization is a process where the posting of collateral is 

greater than the current MTM value. 

2 Moody’s Investor’s Service (2000) presents statistics that suggest that the correlations between interest 

rates, default probabilities, and recovery rates are very small and provides a reasonable comfort level for 

the uncorrelated assumption. 
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 Since an IRS is a typical bilateral risky contract, Proposition 2 squares with the results of Johannes 

and Sundaresan (2007), and is also consistent with the current market practice in which market participants 

commonly assume fully collateralized swaps are risk-free and it is common to build models of swap rates 

assuming that swaps are free of counterparty risk. 

1.3   Numerical results 

We first assume that i) counterparties A and B have independent default risks; ii) the hazard rates 

are deterministic; and iii) both parties have a constant recovery of 60%. We use the LMM to evolve the 

interest rates and then price the risky IRS according to Proposition 1. The risky swap rates are computed 

and shown in Table 3. 

From Table 3, we derive the following conclusions: First, a fixed-rate payer with lower credit 

quality (higher credit risk) pays a higher fixed rate. Second, a credit spread of about 100 basis points 

translates into a swap spread of about 1.3 basis points. Finally, the credit impact on swap rates is 

approximately linear within the range of normally encountered credit quality. This confirms the findings of 

Duffie and Huang (1996). Intuitively, a risk-free floating-rate payer demands a higher fixed rate if the fixed-

rate payer has a lower credit score. 

We next present some new results. Assume that party A has an ‘A+300bps’ credit quality, i.e., a 

‘300 basis points’ parallel shift in the A-rated credit spreads, and party B has an ‘A’ credit quality. The 

risky swap rate with asymmetric credit qualities is calculated as 0.03436. 

Assume 5.0=AB . The effect of the default correlation AB  on swap rate is shown in Figure 1. We 

can draw the following conclusions from the results: First, the counterparty default correlation and the swap 

rates have a negative relation, i.e., a negative sensitivity of swap rates to changes in counterparty default 

correlation is obtained. Second, the graph suggests an almost linear relationship between the swap rates and 

the default correlation. Finally, the impact of the default correlation is modest (e.g., in the range of [-2, 2] 

basis points). 
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Bilateral credit risk modeling is probably the simplest example involving default dependency, but 

it shows several essential features for modeling correlated credit risk, which will help the reader better 

understand the increasingly complex cases in the following section. 

 

2 Pricing Financial Instruments Subject to Multilateral Credit Risk 

The interest in the financial industry for the modeling and pricing of multilateral defaultable 

instruments arises mainly in two respects: in the management of credit risk at a portfolio level and in the 

valuation of credit derivatives. Central to the pricing and risk management of credit derivatives and credit 

risk portfolios is the issue of default relationships.  

Let us discuss the three-party case first. A CDS is a good example of a trilateral defaultable 

instrument where the three parties are counterparties A, B and reference entity C. In a standard CDS contract 

one party purchases credit protection from another party, to cover the loss of the face value of a reference 

entity following a credit event. The protection buyer makes periodic payments to the seller until the maturity 

date or until a credit event occurs. A credit event usually requires a final accrual payment by the buyer and 

a loss protection payment by the protection seller. The protection payment is equal to the difference between 

par and the price of the cheapest to deliver (CTD) asset of the reference entity on the face value of the 

protection. 

The default indicator jY  for firm j (j = A or B or C) follows a Bernoulli distribution, which takes 

value 1 with default probability jq , and value 0 with survival probability jp . The joint probability 

representations of a trivariate Bernoulli distribution (see Teugels (1990)) are given by 

ABCBCAACBABCCBACBA ppppppYYYPp  −+++===== )0,0,0(:000   (15a) 

ABCBCAACBABCCBACBA qppppqYYYPp  ++−−===== )0,0,1(:100   (15b) 

ABCBCAACBABCCBACBA pqppqpYYYPp  +−+−===== )0,1,0(:010   (15c) 

ABCBCAACBABCCBACBA ppqqppYYYPp  +−−+===== )1,0,0(:001   (15d) 
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ABCBCAACBABCCBACBA qqppqqYYYPp  −−−+===== )0,1,1(:110   (15e) 

ABCBCAACBABCCBACBA qpqqpqYYYPp  −−+−===== )1,0,1(:101   (15f) 

ABCBCAACBABCCBACBA pqqqqpYYYPp  −+−−===== )1,1,0(:011   (15g) 

ABCBCAACBABCCBACBA qqqqqqYYYPp  ++++===== )1,1,1(:111   (15h) 

where 

( )))()((: CCBBAAABC qYqYqYE −−−=      (15i) 

Equation (15) tells us that the joint probability distribution of three defaultable parties depends not 

only on the bivariate statistical relationships of all pair-wise combinations (e.g., 
ij ) but also on the 

trivariate statistical relationship (e.g., 
ABC ). 

ABC  was first defined by Deardorff (1982) as comvariance, 

who use it to correlate three random variables that are the value of commodity net imports/exports, factor 

intensity, and factor abundance in international trading. 

We introduce the concept of comvariance into credit risk modeling arena to exploit any statistical 

relationship among multiple random variables. Furthermore, we define a new statistic, comrelation, as a 

scaled version of comvariance (just like correlation is a scaled version of covariance) as follows: 

Definition 1: For three random variables AX , BX , and CX , let A , B , and 
C  denote the means of AX

, BX , and CX . The comrelation of AX , BX , and CX  is defined by 

 

3 333

))()((

CCBBAA

CCBBAA
ABC

XEXEXE

XXXE






−−−

−−−
=         (16) 

 According to the Holder inequality, we have 

( ) 3
333

))()(())()(( CCBBAACCBBAACCBBAA XEXEXEXXXEXXXE  −−−−−−−−−  (17) 

Obviously, the comrelation is in the range of [-1, 1]. Given the comrelation, Equation (15i) can be 

rewritten as 

( )

3 222222

3 333

)()()(

))()((:

CCCCBBBBAAAAABC

CCBBAAABCCCBBAAABC

qpqpqpqpqpqp

qYEqYEqYEqXqYqYE

+++=

−−−=−−−=




     (18) 
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where 
jj qYE =)(  and )( 22

3

jjjjjj qpqpqYE +=− ,  j=A, B, or C. 

If we have a series of n measurements of AX , BX , and CX  written as Aix , Bix and Cix  where i = 

1,2,…,n,  the sample comrelation coefficient can be obtained as: 

3
1

3

1

3

1

3

1
))()((





===

=

−−−

−−−
=

n

i CCi

n

i BBi

n

i AAi

n

i CCiBBiAAi

ABC

xxx

xxx




    (19) 

 More generally, we define the comrelation in the context of n random variables as 

Definition 2: For n random variables  1X , 2X ,…, nX , let i  denote the mean of iX  where i=1,..,n. The 

comrelation of 1X , 2X ,…, nX   is defined as 

 

n n

nn

nn

nn
n

XEXEXE

XXXE






−−−

−−−
=

2211

2211
...12

)())((
        (20) 

The correlation is just a specific case of the comrelation where n = 2. Again, the comrelation n...12  

is in the range of [-1, 1] according to the Holder inequality. 

2.1  Risky valuation without collateralization 

Let valuation date be t. Suppose that a CDS has m scheduled payments. Let each payment be 

represented as ),( 1 iii TTsNX −−=   with payment dates 1T ,…, mT  where i=1,,,,m, ),( 1 ii TT −  denotes the 

accrual factor for period ),( 1 ii TT −
, N denotes the notional/principal, and s denotes the CDS premium. Party 

A pays the premium/fee to party B if reference entity C does not default. In return, party B agrees to pay the 

protection amount to party A if reference entity C defaults before the maturity. We have the following 

proposition. 

Proposition 3: The  value of the multiple-payment CDS is given by 
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where 0Tt =  and 

( ) ( ) ),(1),(1),( 10)(10)(1 1111 +++++ ++++
+= jjAXTVjjBXTVjj TTTTTTO

jjjj
         (21b) 
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where ( )( )),()(1),( 111 +++ −−= jjjCjj TTTNTTR  , 2/),(),( 1 TTsNTT Sjj  =+
, and ),( 1+−= jji TTsNX  . 

Proof: See the Appendix. 

We may think of ),( TtO  as the risk-adjusted discount factor for the premium and ),( Tt  as the 

risk-adjusted discount factor for the default payment. Proposition 3 says that the pricing process of a 

multiple-payment instrument has a backward nature since there is no way of knowing which risk-adjusted 

discounting rate should be used without knowledge of the future value. Only on the maturity date, the value 

of an instrument and the decision strategy are clear. Therefore, the evaluation must be done in a backward 

fashion, working from the final payment date towards the present. This type of valuation process is referred 

to as backward induction.  

Proposition 3 provides a general form for pricing a CDS. Applying it to a particular situation in 

which we assume that counterparties A and B are default-free, i.e., 1=jp ,  0=jq , 0=kl , and 0=ABC , 

where j=A or B and  k, l=A, B, or C, we derive the following corollary. 
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Corollary 1: If counterparties A and B are default-free, the value of the multiple-payment CDS is given by 
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where ),(),(),( 111 iiCiiii TTpTTDTTO −−− = ; ),(),(),( 111 iiCiiii TTqTTDTT −−− = . 

The proof of this corollary becomes straightforward according to Proposition 3 by setting kl =0, 

0=AB , 0=ABC , 1=jp , 0=jq , 
−

= +=
1

0 1),(),(
i

g ggiC TTpTtp , and 
−

= +=
1

0 1),(),(
i

g ggi TTDTtD .  

If we further assume that the discount factor and the default probability of the reference entity are 

uncorrelated and the recovery rate 
C  is constant, we have 

Corollary 2: Assume that i) counterparties A and B are default-free, ii) the discount factor and the default 

probability of the reference entity are uncorrelated; iii) the recovery rate 
C  is constant; the value of the 

multiple-payment CDS is given by 

( )( )  = −= −−− −−−=
m

i iiici
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where  tii TtDETtP F),(),( =  denotes the bond price,  tF),(),( icic TtpETtp = , ),(1),( icic TtpTtq −= , 

),(),(),(),( 111 iiiii TtpTtpTTqTtp −= −−− . 

This corollary is easily proved according to Corollary 1 by setting      ttt YEXEXYE FFF =  when 

X and Y are uncorrelated. Corollary 2 is the formula for pricing CDS in the market. 

 Our methodology can be extended to the cases where the number of parties 4n . A generating 

function for the (probability) joint distribution (see details in Teugels (1990)) of n-variate Bernoulli can be 

expressed as 
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where   denotes the Kronecker product;  )()( n
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2.2  Risky valuation with collateralization 

We assume that a CDS is fully collateralized, i.e., the posting of collateral is equal to the amount 

of the current MTM value: )()( tVtC = . For a discrete one-period (t, u) economy, there are several possible 

states at time u: i) A, B, and C survive with probability 000p . The instrument value is equal to the market 

value )(uV ; ii) A and B survive, but C defaults with probability 001p . The instrument value is the default 

payment )(uR ; iii) For the remaining cases, either or both counterparties A and B default. The instrument 

value is the future value of the collateral ),(/)( utDtV  (Here we consider the time value of money only). 

The value of the collateralized instrument at time t is the discounted expectation of all the payoffs and is 

given by 


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or 
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If we assume that ( )),(),(),( ututputp ABBA +  and ( ))(),()(),(),( uRutquVutputD CC +  are 

uncorrelated, we have 

),(/),()()( ututtVtV ABABC
F +=          (26a) 

where  

  tF)(),()(),(),()( uRutquVutputDEtV CC
F +=       (26b) 

  tF),(),(),(),( ututputpEut ABBAAB  +=       (26c) 

( )( )  tF)()(),(),(),(),(),(),(),( uRuVutututpututputDEut ABCBCAACBABC −−+=     (26d) 

The first term )(tV F  in equation (26) is the counterparty-risk-free value of the CDS and the second 

term is the exposure left over under full collateralization, which can be substantial.  
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Proposition 4: If a CDS is fully collateralized, the risky value of the CDS is NOT equal to the counterparty-

risk-free value, as shown in equation (26). 

Proposition 4 or equation (26) provides a theoretical explanation for the failure of full 

collateralization in the CDS market. It tells us that under full collateralization the risky value is in general 

not equal to the counterparty-risk-free value except in one of the following situations: i) the market value 

is equal to the default payment, i.e., )()( uRuV = ; ii) firms A, B, and C have independent credit risks, i.e., 

ij =0  and 0=ABC ; or iii) ABCBCAACB pp  =+ . 

2.3  Numerical results 

Since the payoffs of a CDS are mainly determined by credit events, we need to characterize the 

evolution of the hazard rates. Here we choose the Cox-Ingersoll-Ross (CIR) model. The CIR process has 

been widely used in the literature of credit risk and is given by 

tttt dWhdthbadh +−= )(      (27) 

where a denotes the mean reversion speed, b denotes the long-term mean, and   denotes the volatility. 

 The calibrated parameters are shown in table 4. We assume that interest rates are deterministic and 

select the regression-based Monte-Carlo simulation (see Longstaff and Schwartz (2001)) to perform risky 

valuation.  

We first assume that counterparties A, B, and reference entity C have independent default risks, i.e., 

0===== ABCABBCACAB  , and examine the following cases: i) B is risk-free and A is risky; and ii) 

A is risk-free and B is risky. We simulate the hazard rates using the CIR model and then determine the 

appropriate discount factors according to Proposition 3. Finally we calculate the prices via the regression-

based Monte-Carlo method. The results are shown in Table 5 and 6. 

From table 5 and 6, we find that a credit spread of about 100 basis points maps into a CDS premium 

of about 0.4 basis points for counterparty A and about -0.7 basis points for counterparty B. The credit impact 

on the CDS premia is approximately linear. As would be expected, i) the dealer’s credit quality has a larger 

impact on CDS premia than the investor’s credit quality; ii) the higher the investor’s credit risk, the higher 
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the premium that the dealer charges; iii) the higher the dealer’s credit risk, the lower the premium that the 

dealer asks. Without considering default correlations and comrelations, we find that, in general, the impact 

of counterparty risk on CDS premia is relatively small. This is in line with the empirical findings of Arora, 

Gandhi, and Longstaff (2009). 

Next, we study the sensitivity of CDS premia to changes in the joint credit quality of associated 

parties. Sensitivity analysis is a very popular way in finance to find out how the value and risk of an 

instrument/portfolio changes if risk factors change. One of the simplest and most common approaches 

involves changing one factor at a time to see what effect this produces on the output. We are going to 

examine the impacts of the default correlations AB , AC , BC , and the comrelation ABC  separately. 

Assume that party A has an ‘A+100bps’ credit quality and party B has an ‘A’ credit quality. The 5-year 

risky CDS premium is calculated as 0.02703. 

As the absolute value of the slope increases, so does the sensitivity. The results illustrate that BC  

has the largest effect on CDS premia. The second biggest one is ABC . The impacts of AB  and AC  are 

very small. In particular, the effect of the comrelation is substantial and has never been studies before. A 

natural intuition to have on CDS is that the party buying default protection should worry about the default 

correlations and comrelation. 

 

3 Conclusion 

This article presents a new valuation framework for pricing financial instruments subject to credit 

risk. In particular, we focus on modeling default relationships. Some well-known risky valuation models in 

the market can be viewed as special cases of this framework, when the default dependencies are ignored. 

To capture the default relationships among more than two defaultable entities, we introduce a new 

statistic: comrelation, an analogue to correlation for multiple variables, to exploit any multivariate statistical 

relationship. Our research shows that accounting for default correlations and comrelations becomes 

important, especially under market stress. The existing valuation models in the credit derivatives market, 
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which take into account only pair-wise default correlations, may underestimate credit risk and may be 

inappropriate. 

We study the sensitivity of the price of a defaultable instrument to changes in the joint credit quality 

of the parties. For instance, our analysis shows that the effect of default dependence on CDS premia from 

large to small is the correlation between the protection seller and the reference entity, the comrelation, the 

correlation between the protection buyer and the reference entity, and the correlation between the protection 

buyer and the protection seller. 

The model shows that a fully collateralized swap is risk-free, while a fully collateralized CDS is 

not equivalent to a risk-free one. Therefore, we conclude that collateralization designed to mitigate 

counterparty risk works well for financial instruments subject to bilateral credit risk, but fails for ones 

subject to multilateral credit risk.  

 

Appendix 

Proof of Proposition 1. Let 0Tt = . On the first cash flow payment date 1T , let )( 1TV  denote the 

market value of the instrument excluding the current cash flow 1X . According to Equation (10), we have 

( ) tF)(),()( 1110 TVXTTKEtV +=          (A1) 

Similarly, we have 

( ) 
1

)(),()( 22211 TTVXTTKETV F+=           (A2) 

 Note that ),( 10 TTK  is 
1TF -measurable. According to taking out what is known and tower 

properties of conditional expectation, we have 
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 By recursively deriving from 2T  forward over mT , where mm XTV =)( , we have 
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Proof of Proposition 3. Let 0Tt = . On the first payment date 1T , let )( 1TV  denote the market 

value of the CDS excluding the current cash flow 1X . There are a total of eight ( 82 3 = ) possible states 

shown in Table A1. The risky price is the discounted expectation of the payoffs and is given by 
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Similarly, we have 
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 Note that ),( 10 TTO  is 
1TF -measurable. According to taking out what is known and tower properties 

of conditional expectation, we have 
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 By recursively deriving from 2T  forward over mT , where mm XTV =)( , we have 
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