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ABSTRACT

This article presents a comprehensive framework for valuing financial instruments subject to credit
risk. In particular, we focus on the impact of default dependence on asset pricing, as correlated default risk
is one of the most pervasive threats in financial markets. We bring the concept of comvariance into the area
of credit risk modeling to capture the statistical relationship among three or more random variables.
Furthermore, we define a new statistics, comrelation, as a scaled version of comvariance. Accounting for
default correlations and comrelations becomes important in determining CDS premia, especially during the
credit crisis. We find that the default comvariance/comrelation has substantial effects on the asset pricing

and risk management, which have never been documented.
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1 Introduction

A broad range of financial instruments bear credit risk. Credit risk may be unilateral, bilateral, or
multilateral. Some instruments such as, loans, bonds, etc, by nature contain only unilateral credit risk
because only the default risk of one party appears to be relevant, whereas some other instruments, such as,
over the counter (OTC) derivatives, securities financing transactions (SFT), and credit derivatives, bear
bilateral or multilateral credit risk because two or more parties are susceptible to default risk.

There are two primary types of models that attempt to describe default processes in the literature:
structural models and reduced-form (or intensity) models. Many practitioners in the credit trading arena
have tended to gravitate toward the reduced-from models given their mathematical tractability. They can
be made consistent with the risk-neutral probabilities of default backed out from corporate bond prices or
credit default swap (CDS) spreads/premia.

Central to the reduced-form models is the assumption that multiple defaults are independent
conditional on the state of the economy. In reality, however, the default of one party might affect the default
probabilities of other parties. Collin-Dufresne et al. (2003) and Zhang and Jorion (2007) find that a major
credit event at one firm is associated with significant increases in the credit spreads of other firms. Giesecke
(2004), Das et al. (2006), and Lando and Nielsen (2010) find that a defaulting firm can weaken the firms in
its network of business links. These findings have important implications for the management of credit risk
portfolios, where default relationships need to be explicitly modeled.

The main drawback of the conditionally independent assumption or the reduced-form models is
that the range of default correlations that can be achieved is typically too low when compared with empirical
default correlations (see Das et al. (2007)). The responses to correct this weakness can be generally
classified into two categories: endogenous default relationship approaches and exogenous default
relationship approaches.

The endogenous approaches include the contagion (or infectious) models and frailty models. The
frailty models (see Duffie et al. (2009), Koopman et al. (2011), etc) describe default clustering based on

some unobservable explanatory variables. In variations of contagion or infectious type models (see Davis



and Lo (2001), Jarrow and Yu (2001), etc.), the assumption of conditional independence is relaxed and
default intensities are made to depend on default events of other entities. Contagion and frailty models fill
an important gap but at the cost of analytic tractability. They can be especially difficult to implement for
large portfolios.

The exogenous approaches (see Li (2000), Laurent and Gregory (2005), Hull and White (2004),
Brigo et al. (2011), etc) attempt to link marginal default probability distributions to the joint default
probability distribution through some external functions. Due to their simplicity in use, the exogenous
approaches become very popular in practice.

Collateralization is one of the most important and widespread credit risk mitigation techniques used
in derivatives transactions. According the ISDA (2012), 71% of all OTC derivatives transactions are subject
to collateral agreements. The use of collateral in the financial markets has increased sharply over the past
decade, yet the research on collateralized valuation is relatively sparse. Previous studies seem to turn away
from direct and detailed modeling of collateralization (see Fuijii and Takahahsi (2012)). For example,
Johannes and Sundaresan (2007), and Fuijii and Takahahsi (2012) characterize collateralization via a cost-
of-collateral instantaneous rate (or stochastic dividend or convenience yield). Piterbarg (2010) regards

collateral as a regular asset in a portfolio and uses the replication approach to price collateralized contracts.

2 Pricing Financial Instruments Subject to Bilateral Credit Risk
In the reduced-form approach, the stopping (or default) time z; of firm i is modeled as a Cox arrival

process (also known as a doubly stochastic Poisson process) whose first jump occurs at default and is

defined by,
7, =inf {t [ hi(s.Z,)ds > Hi} (1)
where h;(t) or h(t,Z,) denotes the stochastic hazard rate or arrival intensity dependent on an exogenous

common state Z, and H; is a unit exponential random variable independent of Z, .



It is well-known that the survival probability from time t to s in this framework is defined by
0.(t,5) :=Pi(r>s|r>t,Zt)=e>p(—jt5hi(u)duj (2a)
The default probability for the period (t, s) in this framework is given by
q(ts)=P(r<s|r>t,Z)=1-p.(ts) =1—exp(—fhi (u)du) (2b)

There is ample evidence that corporate defaults are correlated. The default of a firm’s counterparty
might affect its own default probability. Thus, default correlation/dependence arises due to the counterparty
relations.

Two counterparties are denoted as A and B. The binomial default rule considers only two possible

states: default or survival. Therefore, the default indicator Y; for party j (j=A, B) follows a Bernoulli
distribution, which takes value 1 with default probability q;, and value 0 with survival probability p;, i.e.,
P{Y; =0}=p; and P{Y; =T} =q;. The marginal default distributions can be determined by the reduced-

form models. The joint distributions of a multivariate Bernoulli variable can be easily obtained via the
marginal distributions by introducing extra correlations.

Consider a pair of random variables (Y, ,Yg ) that has a bivariate Bernoulli distribution. The joint

probability representations are given by

Poo =P(Ya=0,Yg =0)=paPg +0ps (32)
Po1 =P(Ya=0,Yg =1)=pals —0ag (3b)
Pro =P(Ya=1Yg =0)=0aPg —Ons (3¢)
P =P(Ya=1Yg =1)=0a0s +0ng (3d)

where E(Y,)=q; , oj=p,q; ,» and opg= E[(Ya—0da)(Ys —Ug)]= Pas0aTs = Pasy/UaPAUs P WhETE ppg
denotes the default correlation coefficient, and &, denotes the default covariance.

A critical ingredient of the pricing of a bilateral defaultable instrument is the default settlement

rules. There are two rules in the market. The one-way payment rule was specified by the early International



Swap Dealers Association (ISDA) master agreement. The non-defaulting party is not obligated to
compensate the defaulting party if the remaining market value of the instrument is positive for the defaulting
party. The two-way payment rule is based on current ISDA documentation. The non-defaulting party will
pay the full market value of the instrument to the defaulting party if the contract has positive value to the
defaulting party.

1.1 Risky valuation without collateralization

Consider a defaultable instrument that promises to pay a X; from party B to party A at maturity
date T, and nothing before date T. The payoff X; may be positive or negative, i.e. the instrument may be
either an asset or a liability to each party. All calculations are from the perspective of party A.

We divide the time period (t, T) into n very small time intervals (At) and use the approximation
exp(y)z1+ y provided that y is very small. The survival and the default probabilities for the period (t,
t+At) are given by

B(t) = p(t,t +At) = exp(=h(t)At) ~1—h(t)At (4a)
4(t) = q(t,t + At) =1—exp(— h(t)At) ~ h(t)At (4b)

Suppose that the value of the instrument at time t+ At is V (t + At) that can be an asset or a liability.
There are a total of four (2° = 4) possible states shown in Table 1.

The risky value of the instrument at time t is the discounted expectation of all the payoffs and is
given by

V(t) = E{EXp (_ r(t)At)llv (t+At)20< Poo (1) + @5 (1) Poy (D)+ @5 (1) P1o (1) + @5 (1) i (V) >V (t+ At)‘ﬁ
1y gm0 Poo (8) + B (1) Po (1) + 0 (€) Buo (1) + 9 (1) Poa () WV (E+ AD)|F, ]} (5a)
~ E{exp[- (r () +1y cxpols 0 + Ly a2 (ALY (t+ AD| T, }= E{exo (- g@) ALV (t+AY)|F, |

where

9(®) =r{t) +1, o appole (0 +1 gageola ) (5b)

I (1) = (1— 05 (1) 1 (8) + (1— 25 (1) 1 (8) — (1— 05 (1) — P (1) + a5 (1) JPam )4/ P (D) ) (5¢)



|A(t) = (1_ 2 (t))hA (t) + (1_ Pa (t))hB (t) - (1_ 2 (t) —Pn (t) +Pps (t))pAB (t)\/ hA (t)hB (t) (Sd)
where 1, is an indicator function that is equal to one if Y is true and zero otherwise, E{-|j€} is the
expectation conditional on the 7/, r(t) is the risk-free short rate, and ¢, is the recovery rate.

The pricing equation above keeps terms of order At. All higher order terms of At are omitted.

Similarly, we have
V(t+At) = Efexp(— gt + AYALV (t + 24| 7, ) (6)
Note that exp(—g(t)At) is #,..r -measurable. By definition, an _7;.,, -measurable random

variable is a random variable whose value is known at time t + At . Based on the taking out what is known

and tower properties of conditional expectation, we have

V(1) = E{exp(- g()ALV (t + AY|7 | = E{expl— g @) AE[exp— gt + AYALV (t+248)| F o || )
= E{exp(— S oalt+ iAt)At))\/ (t+2At)| ﬁ}

By recursively deriving from t forward over T where V(T)= X; and taking the limit as At

approaches zero, we obtain
V() =EBET)X | %)= {exp[ K g(u)du}x |f} ®)

We may think of G(t,T) as the bilateral risk-adjusted discount factor and g(u) as the bilateral risk-

adjusted short rate. Equation (8) has a general form that applies in a particular situation where we assume

that parties A and B have independent default risks, i.e. p,, =0 and ¢,, =0. Thus, we have:

V=66 T A} Eford - [} gri x| %} (99)
where
G(u) = r(U) +L ol () + <ol aW) (9b)
I (1) = (L - g (U))hg (U) + (LT (U) I, () (9c)
ROEIEFAG) RORIEA) N1 (9d)



Equation (9) is the same as equation (2.5°) in Duffie and Huang (1996).

In theory, a default may happen at any time, i.e., a risky contract is continuously defaultable. This
Continuous Time Risky Valuation Model is accurate but sometimes complex and expensive. For simplicity,
people sometimes prefer the Discrete Time Risky Valuation Model that assumes that a default may only
happen at some discrete times. A natural selection is to assume that a default may occur only on the payment
dates. Fortunately, the level of accuracy for this discrete approximation is well inside the typical bid-ask
spread for most applications (see O’Kane and Turnbull (2003)). From now on, we will focus on the discrete
setting only, but many of the points we make are equally applicable to the continuous setting.

If we assume that a default may occur only on the payment date, the risky value of the instrument

in a discrete-time setting is given by

V()= E{D(th)[lezo< Poo (6, T) + @5 (T) Poy (8, T)+ @5 (T) Py (8, T) + 9, (T) pll(tiT)>XT U:t
+]-><T<o< Poo (8, T) +@a(T) Poy (6T)+ @p(T) Py (6, T) + 9,45 (T) pll(tiT)>XT U:t]} (10a)
= E[D T, oke €T) + Ly ka6 T)X | F = E(KET)X, | )

where

kg (t,T)=pg(t, T)Pa(t,T) + g (T)dg (t, T) PA(t, T) + @5 (T) Ps (t,T)qA(L,T)

+ 08 ()8 (LTI T) + 0 (L T)A- 05 (T) = 25 (T) + 05 (T)) (o)
ka(t,T) = ps(t,T)DA(LT)+¢A(F)OIA(LT)DB(t,T)+(ﬁA(|')_IOA(t,T)O|B(t,T) (100)
+0ps (Mg C AT +0pg (LTI L= 0a (M) = FaT) + 005 (7))
where D(t,7) denotes the stochastic risk-free discount factor at t for the maturity T given by
D(L.T) = exp[—_[: r(u)du} (10d)

We may think of K(t,T)as the risk-adjusted discount factor, and k,(t,T) and kg (t,T) as the
adjustment factors. Equation (10) tells us that the bilateral risky price of a single-payment instrument can
be expressed as the present value of the payoff discounted by a risk-adjusted discount factor that has a

switching-type dependence on the sign of the payoff.



Equation (10) can be easily extended from one-period to multiple-periods. Suppose that a

defaultable instrument has m cash flows. Let the m cash flows be represented as X ,..., X, with payment

dates T,,..., T,, . Each cash flow may be positive or negative. We have the following proposition.

Proposition 1: The risky value of the multiple-payment instrument is given by
V(D)= ZinllEl(Hij;lO KT T Ko 4] (11a)
where t=T, and
K(T;,Tj.1) = D(T; vTj+l)(1(Xj+1+V(Tj+l))20kB (M) + L, v T,p<0 Ka (T vTj+1)) (11b)
where k,(T;,T;,;) and kg(T;,T;,;) are defined in Equation (10).

Proof: See the Appendix.
From Proposition 1, we can see that the intermediate values are vital to determine the final price.

For a payment interval, the current risky value has a dependence on the future risky value. Only on the final

payment date T _, the value of the instrument and the maximum amount of information needed to determine

the risk-adjusted discount factor are revealed.
1.2 Risky valuation with collateralization

Collateralization is the most important and widely used technique in practice to mitigate credit risk.
The posting of collateral is regulated by the Credit Support Annex (CSA) that specifies a variety of terms
including the threshold, the independent amount, and the minimum transfer amount (MTA), etc. The
threshold is the unsecured credit exposure that a party is willing to bear. The minimum transfer amount is
the smallest amount of collateral that can be transferred. The independent amount plays the same role as
the initial margin (or haircuts).

The collateral amount posted at time t is given by

0 otherwise

)= {V (t)—H(t) if V(t)>H(t) (12)



where H(t) is the collateral threshold. In particular, H(t) =0 corresponds to full-collateralization®; H >0

represents partial/under-collateralization; and H <0 is associated with over-collateralization. Full
collateralization becomes increasingly popular at the transaction level. In this paper, we focus on full
collateralization only, i.e., C(t) =V (t).

The main role of collateral should be viewed as an improved recovery in the event of a counterparty
default. According to Bankruptcy law, if there has been no default, the collateral is returned to the collateral
giver by the collateral taker. If a default occurs, the collateral taker possesses the collateral. In other words,
collateral does not affect the survival payment; instead, it takes effect on the default payment only.

The value of the collateralized instrument at time t is the discounted expectation of all the payoffs

and is given by

V(t) = E[D(t, u)(poo (£ UV (U) + Py (£UYC(U) + Py (£, U)C(u) + Py, (. U)C(W))|F; ]

(13a)
= E[D(t, ) Poo (&, )V (U) | F; ]+ L~ E(poo (1) | F )V (1)

or
V() =E[D(9)poo 6. 9V () |7 J/ Elpoo .9 77) (130)

If we assume that default probabilities are uncorrelated with interest rates and payoffs?, we have
V(t) =E[D(t, s\V(s) |7 | (14)

Equation (14) is the formula for the risk-free valuation. Thus, we have the following proposition.

Proposition 2: If a bilateral risky instrument is fully collateralized, the risky value of the instrument is equal

to the risk-free value, as shown in equation (14).

! There are three types of collateralization: Full-collateralization is a process where the posting of collateral
is equal to the current MTM value. Partial/under-collateralization is a process where the posting of collateral
is less than the current MTM value. Over-collateralization is a process where the posting of collateral is
greater than the current MTM value.

2Moody’s Investor’s Service (2000) presents statistics that suggest that the correlations between interest
rates, default probabilities, and recovery rates are very small and provides a reasonable comfort level for

the uncorrelated assumption.



Since an IRS is a typical bilateral risky contract, Proposition 2 squares with the results of Johannes
and Sundaresan (2007), and is also consistent with the current market practice in which market participants
commonly assume fully collateralized swaps are risk-free and it is common to build models of swap rates
assuming that swaps are free of counterparty risk.

1.3 Numerical results

We first assume that i) counterparties A and B have independent default risks; ii) the hazard rates
are deterministic; and iii) both parties have a constant recovery of 60%. We use the LMM to evolve the
interest rates and then price the risky IRS according to Proposition 1. The risky swap rates are computed
and shown in Table 3.

From Table 3, we derive the following conclusions: First, a fixed-rate payer with lower credit
quality (higher credit risk) pays a higher fixed rate. Second, a credit spread of about 100 basis points
translates into a swap spread of about 1.3 basis points. Finally, the credit impact on swap rates is
approximately linear within the range of normally encountered credit quality. This confirms the findings of
Duffie and Huang (1996). Intuitively, a risk-free floating-rate payer demands a higher fixed rate if the fixed-
rate payer has a lower credit score.

We next present some new results. Assume that party A has an ‘A+300bps’ credit quality, i.e., a
‘300 basis points’ parallel shift in the A-rated credit spreads, and party B has an ‘A’ credit quality. The
risky swap rate with asymmetric credit qualities is calculated as 0.03436.

Assume ¢, =0.5. The effect of the default correlation p,g on swap rate is shown in Figure 1. We

can draw the following conclusions from the results: First, the counterparty default correlation and the swap
rates have a negative relation, i.e., a negative sensitivity of swap rates to changes in counterparty default
correlation is obtained. Second, the graph suggests an almost linear relationship between the swap rates and
the default correlation. Finally, the impact of the default correlation is modest (e.g., in the range of [-2, 2]

basis points).



Bilateral credit risk modeling is probably the simplest example involving default dependency, but
it shows several essential features for modeling correlated credit risk, which will help the reader better

understand the increasingly complex cases in the following section.

2 Pricing Financial Instruments Subject to Multilateral Credit Risk

The interest in the financial industry for the modeling and pricing of multilateral defaultable
instruments arises mainly in two respects: in the management of credit risk at a portfolio level and in the
valuation of credit derivatives. Central to the pricing and risk management of credit derivatives and credit
risk portfolios is the issue of default relationships.

Let us discuss the three-party case first. A CDS is a good example of a trilateral defaultable
instrument where the three parties are counterparties A, B and reference entity C. In a standard CDS contract
one party purchases credit protection from another party, to cover the loss of the face value of a reference
entity following a credit event. The protection buyer makes periodic payments to the seller until the maturity
date or until a credit event occurs. A credit event usually requires a final accrual payment by the buyer and
a loss protection payment by the protection seller. The protection payment is equal to the difference between
par and the price of the cheapest to deliver (CTD) asset of the reference entity on the face value of the
protection.

The default indicator Y; for firm j (j = A or B or C) follows a Bernoulli distribution, which takes
value 1 with default probability q;, and value O with survival probability p;. The joint probability

representations of a trivariate Bernoulli distribution (see Teugels (1990)) are given by

Pooo =P(Ya=0,Yg =0,Yc =0) = paPgPc +Pcoas + PeOac +Padec ~Fasc (15a)
Proo =P(Ya =1Yg =0,Yc =0)=0aPsPc —PcOag ~PeOac +UaTsc +Fasc (15b)
Poto =P(Ya =0,Yg =LYc =0) = paGg Pc —PcOag +Us0ac — PaTac +Fasc (15¢c)
Poo1 = P(Ya =0,Yg =0,Yc =1)= paPgdc +0coas —PeOac —Padec +basc (15d)

10



P10 =P(a=LYg =1Yc =0)=0a0s Pc + PcOag —UsTac —Ua0rc —Fasc (15e)

Pro1 =P(Ya =1Yg =0,Yc =1)=0aPgc —dcoas + Peoac ~UaTec ~Fasc (15f)
Powr =P(Ya =0,Yg =1Yc =1) = padsUc —0dcoas —Us0ac + Pa0sc —Fasc (150)
Pr1 =P(Ya=1Yg =1Yc =1)=0a0gdc +0dcOag +080Ac +Ua0BC +0hrc (15h)
where
Opsc = E((Ya = 0a)(Ys ~Gs)(Yc ~0c)) (15i)

Equation (15) tells us that the joint probability distribution of three defaultable parties depends not

only on the bivariate statistical relationships of all pair-wise combinations (e.g., ;) but also on the

trivariate statistical relationship (e.g., 6,5:)- was first defined by Deardorff (1982) as comvariance,

QABC
who use it to correlate three random variables that are the value of commodity net imports/exports, factor
intensity, and factor abundance in international trading.

We introduce the concept of comvariance into credit risk modeling arena to exploit any statistical
relationship among multiple random variables. Furthermore, we define a new statistic, comrelation, as a
scaled version of comvariance (just like correlation is a scaled version of covariance) as follows:

Definition 1: For three random variables X ,, Xg, and X, let u,, ug,and y. denote the means of X,

, Xg,and X.. The comrelation of X,, Xz, and X is defined by

E[(XA — 1) (Xg —pg)(Xc _,Uc)]
VEX n — sta <EIX g — 10 * XE|X — |

(16)

;ABC =

According to the Holder inequality, we have

‘E((XA — 1) (X = g) (X _/uc))‘ < E‘(XA = 1) (X = g)(Xc _/uc)‘ S3\/E‘XA _/'IA‘B x E‘XB _:us‘s x E‘Xc _/Jc‘s (17)
Obviously, the comrelation is in the range of [-1, 1]. Given the comrelation, Equation (15i) can be

rewritten as

Oppc = E((YA —qa)(Yg —0g)(Xc — QC)) = §ABCS\/E|YA - QA|3 X E|YB - QB|3 X E|Yc - QC|3

(18)
= CrecY|PAGA(PE + 02) Pads (P +02) Pedc (pZ+2)

11



3 .
where E(Y;)=q; and ElY, —q;| = p;q;(p}+q}), J=A B, or C.
If we have a series of n measurements of X ,, Xz, and X, written as X, , Xg and X.; where i =

1,2,...,n, the sample comrelation coefficient can be obtained as:

S (Xai = 2a) (e — 1) (Xei — Hc)

3\/2?:1|Xm —ﬂA|3 X Zin:1|XBi —/JB|3 X Zin:1|XCi —Hc |3

More generally, we define the comrelation in the context of n random variables as

(19)

§ABC =

Definition 2: For n random variables X,, X,,..., X, , let z denote the mean of X, where i=1,..,n. The

comrelation of X, X,,..., X, is defined as

n

E[(Xl_#l)(xz — )+ (X, —#n)]
VEIX, ] X E[X — 1| -+ E[X

§12...n =

(20)

|n
The correlation is just a specific case of the comrelation where n = 2. Again, the comrelation ¢, |,

is in the range of [-1, 1] according to the Holder inequality.
2.1 Risky valuation without collateralization

Let valuation date be t. Suppose that a CDS has m scheduled payments. Let each payment be

represented as X; =-sNo(T;_y,T;) with payment dates T, ,..., T, where i=1,,,m, §(T_,,T,) denotes the
accrual factor for period (T,,,T,), N denotes the notional/principal, and s denotes the CDS premium. Party

A pays the premium/fee to party B if reference entity C does not default. In return, party B agrees to pay the
protection amount to party A if reference entity C defaults before the maturity. We have the following
proposition.

Proposition 3: The value of the multiple-payment CDS is given by
vo-XEllT o mok iz Sl som Tk, arTL T (212)
where t =T, and

O(Tj !Tj+1) = 1(V(Tj+l)+xj+l)zo $s (Tj vTj+1) +1(V(Tj+1)+xj+1)<o Pa (Tj !Tj+1) (21b)

12



Ba (T3 T5) = 1A (T T3 Pe (T3 T 1) P (T T3 + A (T3 T3 ) P (T3 T3 P (T3 T ) (T )
+ pA(Tj ’Tj+1)qB (Tj 1Tj+1)p(: (Tj ’Tj+1)(’7A(Tj+1)+qA(Tj vTj+1)qB (rj lTj+1)pC (rj lTj+1)¢AB(Tj+1)
+ P (T}, T0)oas(T; nTj+1)(1_(/7A(Tj+1)_(ﬁAO—jﬂ)‘HﬂAB (TJ+1)) (21c)
+0AC(I—]!Tj+1)[pB(Tj1Tj+1)( ¢’A(rj+1))+q3(rJ:T1+1)((PA j+1) ‘PAB(FJA))]
400 (T T )[Pa (T T 20 (T,,0)+ 4 T T, (04 (T0) = 020 (T,
+€ABC(Tj'Tj+l)( 1+, (Ty) - (DAB(rj+1)+¢’A(Tj+1))}D(TjvTj+1)

Ps (Tj ij+1) = {pA(Tj 7Tj+1) Ps (T, 'Tj+1) Pc (Tj 1Tj+l) +Q, (Tj ij+1) Pe (Tj 1Tj+1) Pc (Tj ,TM)@B (Tj+1)
+ pA(Tj 1Tj+1)qB (Tj -Tj+1) Pc (Tj :Tj+1)¢’a (Tj+1) + qA(Tj 7Tj+1)qB (Tj 1Tj+1) Pc (Tj 1Tj+1)¢AB (Tj+1)
+ Pc (Tj vTj+1)GAB (rj lTj+1)(1_ DB (Tj+l) — P (Tj+l) RN (I-j+1)) (21d)
+0,c (Tj'Tj+l)[pB (ijTj+1)(1_¢B (rm))"‘ Ug U]1T1+1)(¢B (I—j+1)_(pAB(Tj+1))]
+ 00 (T T3 )[Pa (T T30 =06 (T)+ 0 (T, T,)@s (T1.0) = 00 (T,
O T )14 P (T1) = 0as (T0) + 06 (T,) DT T0)

T, T10) = {Pa(T T3 Pe (T3 T )b (T, T + G (T, T P (T T )de (T4, T35 (T o)
+ Pa (Tj 1Tj+l)qB (Tj ’Tj+1)qC (Tj !Tj+l)(oB (Tj+1) + qA(Tj 1Tj+1)qB (Tj !Tj+1)qc (Tj ij+1)¢AB (Tj+1)
+0c (T, T.1)o e (T 1Tj+1)(1_ Ps(T1) — P (T1) + Ppe (Tj+1)) (21e)
= (T T)[Po (T T )= 6 (T120))+ 8 (T T )Mo (7)) = 020 (T10) )
—Oge (Tj lTj+1)[pA (Tj :Tj+1)(1_ 2 (Tj+l))+ Qa (Tj lTj+1)(¢B (Tj+1) —Pns (Tj+1))]
+0hsc (rj :Tj+1)(1_ Ps (Tj+1) +Pps (rj+1) — @8 (rj+1))}D(Tj lTj+1)

where R(Tj !Tj+1) = (N (1_(% (Tj+1))_a(Tj 1Tj+1))’ a(Tj !Tj+l) =sNo(Ts, T)/ 2, and X, = _SNg(Tj !Tj+1)'

Proof: See the Appendix.

We may think of O(t,T) as the risk-adjusted discount factor for the premium and Q(t, T) as the
risk-adjusted discount factor for the default payment. Proposition 3 says that the pricing process of a
multiple-payment instrument has a backward nature since there is no way of knowing which risk-adjusted
discounting rate should be used without knowledge of the future value. Only on the maturity date, the value
of an instrument and the decision strategy are clear. Therefore, the evaluation must be done in a backward
fashion, working from the final payment date towards the present. This type of valuation process is referred
to as backward induction.

Proposition 3 provides a general form for pricing a CDS. Applying it to a particular situation in

which we assume that counterparties A and B are default-free, i.e., p; =1, q; =0, p;=0,and ¢, =0,

where j=A or B and k, I=A, B, or C, we derive the following corollary.
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Corollary 1: If counterparties A and B are default-free, the value of the multiple-payment CDS is given by

vo =X EllT o T k(% X EllT o T ha, TR, T
=>"" EDT) pe @ TOX|F [+ X7 E[DET) pe (6T,0)de (o TOR(T,L T F,

(22)

where O(Ti—liTi) = D(Ti—liTi) Pc (Ti—l’Ti) ; Q(Ti—l’Ti) = D(Ti—bTi )qC (Ti—lvTi) :
The proof of this corollary becomes straightforward according to Proposition 3 by setting p,, =0,
Dpg = 0, Gage =0, P; =1, q; = 0, pc (t’Ti) = Hig_:lo p(rg :Tg+l) , and D(t.T) = Hig_jo D(Tg7Tg+1) :

If we further assume that the discount factor and the default probability of the reference entity are

uncorrelated and the recovery rate ¢, is constant, we have

Corollary 2: Assume that i) counterparties A and B are default-free, ii) the discount factor and the default

probability of the reference entity are uncorrelated; iii) the recovery rate ¢, is constant; the value of the
multiple-payment CDS is given by
V() =X L PET) R AT )@ T TINA-c)- o)) - 2L PET) RTINS 1 T) - (23)
where P(t,T,) = E[D(t,T,)| %] denotes the bond price, ﬁc(t,Ti)zE[pC(t,Ti)|ﬁ], 9.t T)=1-p.(tT,),
Pt Ti)a(Tia, T)) =P Tiy) - PAT;).
This corollary is easily proved according to Corollary 1 by setting E[XY|jt"]= E[x|ft]E[Y|j{] when

X and Y are uncorrelated. Corollary 2 is the formula for pricing CDS in the market.
Our methodology can be extended to the cases where the number of parties n > 4. A generating
function for the (probability) joint distribution (see details in Teugels (1990)) of n-variate Bernoulli can be

expressed as

p, -1 p,, -1 p, -1
(n) — n ® n-1 ®---® 1 (n)
P {Qn 1 } |:ql'|—1 1 j| [% 1 }0' (24)

where ® denotes the Kronecker product; p™ ={p{ | and & ={s{"| are vectors containing 2"

components: p{” = Prokyk, » K=14 >0 k2™ ke 0.1 o =0k, kypok, = E(l_[in:l(Yi -q; )" )
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2.2 Risky valuation with collateralization
We assume that a CDS is fully collateralized, i.e., the posting of collateral is equal to the amount

of the current MTM value: C(t) =V (t) . For a discrete one-period (t, u) economy, there are several possible
states at time u: i) A, B, and C survive with probability p,,,. The instrument value is equal to the market
value V(u) ; ii) A and B survive, but C defaults with probability pyy;. The instrument value is the default
payment R(u) ; iii) For the remaining cases, either or both counterparties A and B default. The instrument
value is the future value of the collateral V (t)/D(t,u) (Here we consider the time value of money only).

The value of the collateralized instrument at time t is the discounted expectation of all the payoffs and is
given by

V () = E{D(t, u)[ Poo (t, )V (U) + Pogs (&, U)R(U)
+(p100(t,u)+ Pozo (T, U) + Pyyo(t, U) + Pugy (t,U) + Py (L, 1) + p111(tfu))v t)y/ D(t’u)]U:t} (25a)
= E{[D(t, u)(Pooo (t, UV (S) + Pooa (t, UYR(U))+ (L= Pooo (t,U) = Poor (&, U) IV (©)]| F, |

or

El(pat.u)pg (t,u) + o pg (t.U))| 75 V @)
=E{D(t,u)(pc (t,u)V (u) + ¢ (&, u)RW))(P A (t,U) Pg (t,U) + o pg (t, 1)) (25b)
+D(t, u)(V (u) - R(U))(pg (t, U)o ac (t,U) + A (L, u)ope (t,U) — Oage (L, 1)) 75 |

If we assume that (pa(t,u)pg(t,u)+oag(t,u)) and D(t,u)(pc (t,u)V (u) +dc (t, u)R(U)) are

uncorrelated, we have

V() =V (1) + Eapc t,U)/ppg (8, 1) (26a)

where
VF(®) = ED(t,u)[pe (t UV (u) +ac (L WRW)] 7 | (26b)
W as(tU) = E{[pa(t,u) pg (L U) + o pg (L U)]L7 | (26¢)

Sapc(t,u)= E{[D(t: U) (g (t, U)o ac (t,U) + Pa (L, U)oae (t,U) — Opge (t,u))(V (u) — R(U))]UZ; } (26d)
The first term Vv 7 (t) in equation (26) is the counterparty-risk-free value of the CDS and the second

term is the exposure left over under full collateralization, which can be substantial.
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Proposition 4: If a CDS is fully collateralized, the risky value of the CDS is NOT equal to the counterparty-
risk-free value, as shown in equation (26).

Proposition 4 or equation (26) provides a theoretical explanation for the failure of full
collateralization in the CDS market. It tells us that under full collateralization the risky value is in general
not equal to the counterparty-risk-free value except in one of the following situations: i) the market value

is equal to the default payment, i.e., V (u) = R(u) ; ii) firms A, B, and C have independent credit risks, i.e.,
P =0 and gpgc =0; oriii) Pgoac + Padsc =Oagc-
2.3 Numerical results
Since the payoffs of a CDS are mainly determined by credit events, we need to characterize the

evolution of the hazard rates. Here we choose the Cox-Ingersoll-Ross (CIR) model. The CIR process has

been widely used in the literature of credit risk and is given by
dh, =a(b—h,)dt+ o/h, dW, (27)
where a denotes the mean reversion speed, b denotes the long-term mean, and o denotes the volatility.
The calibrated parameters are shown in table 4. We assume that interest rates are deterministic and
select the regression-based Monte-Carlo simulation (see Longstaff and Schwartz (2001)) to perform risky
valuation.

We first assume that counterparties A, B, and reference entity C have independent default risks, i.e.,

Pas = Pac = Pac = Pag = asc =0, and examine the following cases: i) B is risk-free and A is risky; and ii)

A is risk-free and B is risky. We simulate the hazard rates using the CIR model and then determine the
appropriate discount factors according to Proposition 3. Finally we calculate the prices via the regression-
based Monte-Carlo method. The results are shown in Table 5 and 6.

From table 5 and 6, we find that a credit spread of about 100 basis points maps into a CDS premium
of about 0.4 basis points for counterparty A and about -0.7 basis points for counterparty B. The credit impact
on the CDS premia is approximately linear. As would be expected, i) the dealer’s credit quality has a larger

impact on CDS premia than the investor’s credit quality; i) the higher the investor’s credit risk, the higher
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the premium that the dealer charges; iii) the higher the dealer’s credit risk, the lower the premium that the
dealer asks. Without considering default correlations and comrelations, we find that, in general, the impact
of counterparty risk on CDS premia is relatively small. This is in line with the empirical findings of Arora,
Gandhi, and Longstaff (2009).

Next, we study the sensitivity of CDS premia to changes in the joint credit quality of associated
parties. Sensitivity analysis is a very popular way in finance to find out how the value and risk of an
instrument/portfolio changes if risk factors change. One of the simplest and most common approaches
involves changing one factor at a time to see what effect this produces on the output. We are going to

examine the impacts of the default correlations p,g, pac, pgc. and the comrelation ¢ ,,. separately.

Assume that party A has an ‘A+100bps’ credit quality and party B has an ‘A’ credit quality. The 5-year
risky CDS premium is calculated as 0.02703.

As the absolute value of the slope increases, so does the sensitivity. The results illustrate that pg
has the largest effect on CDS premia. The second biggest one is ¢ .. The impacts of p,z and p,. are

very small. In particular, the effect of the comrelation is substantial and has never been studies before. A
natural intuition to have on CDS is that the party buying default protection should worry about the default

correlations and comrelation.

3 Conclusion

This article presents a new valuation framework for pricing financial instruments subject to credit
risk. In particular, we focus on modeling default relationships. Some well-known risky valuation models in
the market can be viewed as special cases of this framework, when the default dependencies are ignored.

To capture the default relationships among more than two defaultable entities, we introduce a new
statistic: comrelation, an analogue to correlation for multiple variables, to exploit any multivariate statistical
relationship. Our research shows that accounting for default correlations and comrelations becomes

important, especially under market stress. The existing valuation models in the credit derivatives market,
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which take into account only pair-wise default correlations, may underestimate credit risk and may be
inappropriate.

We study the sensitivity of the price of a defaultable instrument to changes in the joint credit quality
of the parties. For instance, our analysis shows that the effect of default dependence on CDS premia from
large to small is the correlation between the protection seller and the reference entity, the comrelation, the
correlation between the protection buyer and the reference entity, and the correlation between the protection
buyer and the protection seller.

The model shows that a fully collateralized swap is risk-free, while a fully collateralized CDS is
not equivalent to a risk-free one. Therefore, we conclude that collateralization designed to mitigate
counterparty risk works well for financial instruments subject to bilateral credit risk, but fails for ones

subject to multilateral credit risk.

Appendix
Proof of Proposition 1. Let t =T, . On the first cash flow payment date T, let V(T,) denote the
market value of the instrument excluding the current cash flow X, . According to Equation (10), we have
V() = E[K (T, T, +V (1) 7] (A1)
Similarly, we have
v = ek, V)| A ] (A2)
Note that K(T,,T,) is % -measurable. According to taking out what is known and tower

properties of conditional expectation, we have

V(®) = E[K(To, T) (X, +V ()| A |= E[K (To. T) X4 A ]
+ E{K(ro lTl)[E(K(TlaTz)Xz‘ﬁl)+ E(K(Ty, To)V Uz)‘ﬁl)] |./Tt } (A3)
e[k x| [T k@ T ol 7 T ok TV a7

By recursively deriving from T, forward over T, , where V(T,,) = X, , we have
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v =" [T kT K A]

(A4)

Proof of Proposition 3. Let t =T,. On the first payment date T,, let V(T,) denote the market

value of the CDS excluding the current cash flow X, . There are a total of eight (2° =8) possible states

shown in Table Al. The risky price is the discounted expectation of the payoffs and is given by

V) = E{ Ly 0 {(Pooo (To To) + Pago (T T)7a (T2) + Poso (T, To) s (T) + Pasg (T, To) e TNV (T) + X )| F,)
+1(V(T1)+X1)<0<(p000 (To ) + Paoo (To T @A (ML) + Poso (To, TPA (ML) + Pryo (To: T1) g (Tl))(v (T) + Xl)‘ﬁ>

+ (Paoe (T T2) + Prog (To TP (1) + Py (T, T) s (T) + Py (T T (TR(T, T|F; ID(4,T))

= E{O(T,, T,)(V (T.) + X,) + Q(T,, TR, T) 7 }

where
O(To ’Tl) = 1(v (Ty)+X,)=0 ¢B (ro ’Tl) +1(V(T1)+X1)<0 ¢A (To ’Tl)

AUTIDE {pA(TO T Pe (Mo T Pe (To, Ty) + da (T, T1) s (To, Ty) Pe (To, T @A (T1)
+ Pa(To, T) e (To, T1) Pe (To, T)@a (T1) + Aa (To, T e (To, T1) Pe (To, Ty )@ (T1)
+Pc (To, Ty)o e (T 'Tl)(l_ A1) = @a(T) + g (T1))
TO0xc (T01T1)[p5 (To’T1)(1_¢A(T1))+qB (TOYTl)(aA(Tl)_(pAB (Tl))]
+0gc (TO’Tl)[pA(TO’Tl)(l_(ZA(Tl))-FqA(TO’Tl)(¢A(Tl)_¢AB(T1))]
+0ABC(TO’T1)(_1+(ZA(T1)_(pAB (Tl)+(pA(T1))}D(TO’Tl)

B (To.T2) = {Pa (1o, T2) P (To: T2) Pe (To, ) + A (To, T Pe (To, T2) Pe (T, T2) 5 (To)
+ Pa(TT) s (To, T Pe (To, Ty) e (T1) + A (To, T e (To, T2) Pe (To, Ty )@ (T1)
+Pc (T, T)o e (T 7T1)(l_ @ (1) — @5 (T)) + 0ue (Tl))
+05c(To 'Tl)[pB (T, :T1)(1_ Ps (Tl))+ de (T le)(‘PB (1)) — @ (Tl))]
+0gc (To ’Tl)[pA(TO’Tl)(l_ Pe (Tl))+ (T ’Tl)((ZB (1)) — Pps (Tl))]
+ 05 (To le)(_l+ ?5 (1) = @ns (T1) + @5 (Tl))}D(TO 1)

O, T) = {Pa (6. T) P (To. T (T6, T) + 0 (T6.T) P (T, T) e (To. T) 5 (T:)
+ Pa(To, T (To, T)de (To, T)e (T1) + A (To, T)dg (To, T)dc (To, T)@ap (T1)
+0c(To. T)one (ToaT)(l_(PB (M) = @e (T1) + @pg (Tl))
~Ohc (TO’T)[pB (TO'T)(]'_@B (Tl))+ Us (TO’T)((pB (M) — @as (Tl))]
~Osc (To’T)[pA(TovT)(l_ Ps (Tl))+ qA(TO'T)((ﬁB (M) — @ne (Tl))]
+Oppc (TO'T)(]'_(ZB (M) + @as (1) — @5 (Tl))}D(ToaT)

Similarly, we have

(A5a)

(A5h)

(A5c)

(A5d)

(A5e)
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V(1) = E{O(T, T,)(X, +V (T,))+ T, T,)R(T, )] % | (A6)
Note that O(T,,T,) is _%, -measurable. According to taking out what is known and tower properties

of conditional expectation, we have

V(1) = E{l0(T, T)(X, +V (1) + (T, TR, )] F = E[O(T, T X, | ]
+EQ(T, TR, DI I EOM, TIE(OM, T)(X, +V (T)+ QL TIRM, T, )17

(A7)
= Zizzl E[ ij_:loO(rJ' ’Ti+1))xi ]+ Z; E[(Hi:oO(Tj iTj+l)b(ri—l’Ti ) R(ri—liTi )]
vel[T.om Toh @]
By recursively deriving from T, forward over Tn , where V(T ) = X, , we have
vy =Xr E[[T o Tk A - el 2o, 1.0 b, TR, T A (A8)
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