Tianyi Zhou

Tianyi Zhou
  • Doctor of Philosophy
  • Professor (Assistant) at University of Maryland, College Park

About

125
Publications
28,435
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,197
Citations
Current institution
University of Maryland, College Park
Current position
  • Professor (Assistant)

Publications

Publications (125)
Preprint
Full-text available
Text-to-image models like stable diffusion and DALLE-3 still struggle with multi-turn image editing. We decompose such a task as an agentic workflow (path) of tool use that addresses a sequence of subtasks by AI tools of varying costs. Conventional search algorithms require expensive exploration to find tool paths. While large language models (LLMs...
Preprint
Full-text available
Graphical User Interface (GUI) agents, powered by Large Foundation Models, have emerged as a transformative approach to automating human-computer interaction. These agents autonomously interact with digital systems or software applications via GUIs, emulating human actions such as clicking, typing, and navigating visual elements across diverse plat...
Preprint
Full-text available
We present Florence-VL, a new family of multimodal large language models (MLLMs) with enriched visual representations produced by Florence-2, a generative vision foundation model. Unlike the widely used CLIP-style vision transformer trained by contrastive learning, Florence-2 can capture different levels and aspects of visual features, which are mo...
Preprint
Full-text available
Existing LLM agent systems typically select actions from a fixed and predefined set at every step. While this approach is effective in closed, narrowly-scoped environments, we argue that it presents two major challenges when deploying LLM agents in real-world scenarios: (1) selecting from a fixed set of actions significantly restricts the planning...
Preprint
What makes a difference in the post-training of LLMs? We investigate the training patterns of different layers in large language models (LLMs), through the lens of gradient, when training with different responses and initial models. We are specifically interested in how fast vs. slow thinking affects the layer-wise gradients, given the recent popul...
Preprint
Full-text available
Low-quality or scarce data has posed significant challenges for training deep neural networks in practice. While classical data augmentation cannot contribute very different new data, diffusion models opens up a new door to build self-evolving AI by generating high-quality and diverse synthetic data through text-guided prompts. However, text-only g...
Preprint
Full-text available
Evaluating large language models (LLMs) is costly: it requires the generation and examination of LLM outputs on a large-scale benchmark of various tasks. This paper investigates how to efficiently reduce the tasks used to benchmark LLMs without affecting the evaluation quality. Our study reveals that task transferability and relevance provide criti...
Preprint
We introduce OmnixR, an evaluation suite designed to benchmark SoTA Omni-modality Language Models, such as GPT-4o and Gemini. Evaluating OLMs, which integrate multiple modalities such as text, vision, and audio, presents unique challenges. Particularly, the user message might often consist of multiple modalities, such that OLMs have to establish ho...
Preprint
Can large language models (LLMs) directly serve as powerful world models for model-based agents? While the gaps between the prior knowledge of LLMs and the specified environment's dynamics do exist, our study reveals that the gaps can be bridged by aligning an LLM with its deployed environment and such "world alignment" can be efficiently achieved...
Preprint
While generalization over tasks from easy to hard is crucial to profile language models (LLMs), the datasets with fine-grained difficulty annotations for each problem across a broad range of complexity are still blank. Aiming to address this limitation, we present Easy2Hard-Bench, a consistently formatted collection of 6 benchmark datasets spanning...
Preprint
In this paper, we study format biases in reinforcement learning from human feedback (RLHF). We observe that many widely-used preference models, including human evaluators, GPT-4, and top-ranking models on the RewardBench benchmark, exhibit strong biases towards specific format patterns, such as lists, links, bold text, and emojis. Furthermore, larg...
Preprint
Federated Collaborative Filtering (FedCF) is an emerging field focused on developing a new recommendation framework with preserving privacy in a federated setting. Existing FedCF methods typically combine distributed Collaborative Filtering (CF) algorithms with privacy-preserving mechanisms, and then preserve personalized information into a user em...
Preprint
Full-text available
Large language models (LLMs), despite their breakthroughs on many challenging benchmark tasks, lean to generate verbose responses and lack the controllability of output complexity, which is usually preferred by human users in practice. In this paper, we study how to precisely control multiple linguistic complexities of LLM output by finetuning usin...
Preprint
Large language models (LLMs) still lack delicate controllability over their responses, which is critical to enhancing their performance and the user experience. However, curating supervised fine-tuning (SFT) datasets to improve LLM controllability usually relies on human experts or proprietary LLMs, which requires additional costs. To bridge this g...
Preprint
Large vision-language models (LVLMs) hallucinate: certain context cues in an image may trigger the language module's overconfident and incorrect reasoning on abnormal or hypothetical objects. Though a few benchmarks have been developed to investigate LVLM hallucinations, they mainly rely on hand-crafted corner cases whose fail patterns may hardly g...
Preprint
Most public instruction finetuning datasets are relatively small compared to the closed source datasets used to train industry models. To study questions about finetuning at scale, such as curricula and learning rate cooldown schedules, there is a need for industrial-scale datasets. However, this scale necessitates a data generation process that is...
Preprint
Reinforcement learning with human feedback~(RLHF) is critical for aligning Large Language Models (LLMs) with human preference. Compared to the widely studied offline version of RLHF, \emph{e.g.} direct preference optimization (DPO), recent works have shown that the online variants achieve even better alignment. However, online alignment requires on...
Preprint
Full-text available
The primary challenge in Federated Learning (FL) is to model non-IID distributions across clients, whose fine-grained structure is important to improve knowledge sharing. For example, some knowledge is globally shared across all clients, some is only transferable within a subgroup of clients, and some are client-specific. To capture and exploit thi...
Preprint
Large vision-language models (LVLMs) have achieved impressive results in various visual question-answering and reasoning tasks through vision instruction tuning on specific datasets. However, there is still significant room for improvement in the alignment between visual and language modalities. Previous methods to enhance this alignment typically...
Preprint
Finetuning large language models with a variety of instruction-response pairs has enhanced their capability to understand and follow instructions. Current instruction tuning primarily relies on teacher models or human intervention to generate and refine the instructions and responses, which are costly, non-sustainable, and may lack diversity. In th...
Preprint
Full-text available
We introduce "HALLUSIONBENCH 1 ," a comprehensive benchmark designed for the evaluation of image-context reasoning. This benchmark presents significant challenges to advanced large visual-language models (LVLMs), such as GPT-4V(ision) and LLaVA-1.5, by emphasizing nuanced understanding and interpretation of visual data. The benchmark comprises 346...
Preprint
Full-text available
Large language models (LLMs), after being aligned with vision models and integrated into vision-language models (VLMs), can bring impressive improvement in image reasoning tasks. This was shown by the recently released GPT-4V(ison), LLaVA-1.5, etc. However, the strong language prior in these SOTA LVLMs can be a double-edged sword: they may ignore t...
Chapter
As large-scale pre-trained models have become the major choices of various applications, new challenges arise for model pruning, e.g., can we avoid pruning the same model from scratch for downstream tasks? How to reuse the pruning results of previous tasks to accelerate the pruning for new tasks? To address these challenges, we create a small model...
Preprint
Full-text available
In the realm of Large Language Models, the balance between instruction data quality and quantity has become a focal point. Recognizing this, we introduce a self-guided methodology for LLMs to autonomously discern and select cherry samples from vast open-source datasets, effectively minimizing manual curation and potential cost for instruction tunin...
Conference Paper
Federated recommendation is a new Internet service architecture that aims to provide privacy-preserving recommendation services in federated settings. Existing solutions are used to combine distributed recommendation algorithms and privacy-preserving mechanisms. Thus it inherently takes the form of heavyweight models at the server and hinders the d...
Preprint
Full-text available
Large language models~(LLMs) obtain instruction-following capability through instruction-finetuning (IFT) on supervised instruction/response data. However, widely used IFT datasets (e.g., Alpaca's 52k data) surprisingly contain many low-quality instances with incorrect or irrelevant responses, which are misleading and detrimental to IFT. In this pa...
Preprint
Full-text available
While many unsupervised learning models focus on one family of tasks, either generative or discriminative, we explore the possibility of a unified representation learner: a model which uses a single pre-training stage to address both families of tasks simultaneously. We identify diffusion models as a prime candidate. Diffusion models have risen to...
Preprint
We study how to train personalized models for different tasks on decentralized devices with limited local data. We propose "Structured Cooperative Learning (SCooL)", in which a cooperation graph across devices is generated by a graphical model prior to automatically coordinate mutual learning between devices. By choosing graphical models enforcing...
Preprint
Full-text available
Large language models~(LLMs) are instruction followers, but it can be challenging to find the best instruction for different situations, especially for black-box LLMs on which backpropagation is forbidden. Instead of directly optimizing the discrete instruction, we optimize a low-dimensional soft prompt applied to an open-source LLM to generate the...
Preprint
Federated weather forecasting is a promising collaborative learning framework for analyzing meteorological data across participants from different countries and regions, thus embodying a global-scale real-time weather data predictive analytics platform to tackle climate change. This paper is to model the meteorological data in a federated setting w...
Preprint
Federated recommendation system is a recently emerging architecture, which provides recommendation services without exposing users' private data. Existing methods are mainly designed to recommend items already existing in the system. In practical scenarios, the system continuously introduces new items and recommends them to users, i.e., cold-start...
Preprint
Federated Recommendation is a new service architecture providing recommendations without sharing user data with the server. Existing methods deploy a recommendation model on each client and coordinate their training by synchronizing and aggregating item embeddings. However, while users usually hold diverse preferences toward certain items, these me...
Preprint
Full-text available
In this work, we propose a simple method that applies a large language model (LLM) to large-scale retrieval in zero-shot scenarios. Our method, Language language model as Retriever (LameR) is built upon no other neural models but an LLM, while breaking up brute-force combinations of retrievers with LLMs and lifting the performance of zero-shot retr...
Preprint
Distribution shift (e.g., task or domain shift) in continual learning (CL) usually results in catastrophic forgetting of neural networks. Although it can be alleviated by repeatedly replaying buffered data, the every-step replay is time-consuming. In this paper, we study which modules in neural networks are more prone to forgetting by investigating...
Preprint
Full-text available
Chain-of-Thought (CoT) prompting can effectively elicit complex multi-step reasoning from Large Language Models~(LLMs). For example, by simply adding CoT instruction ``Let's think step-by-step'' to each input query of MultiArith dataset, GPT-3's accuracy can be improved from 17.7\% to 78.7\%. However, it is not clear whether CoT is still effective...
Preprint
We present a novel method, Aerial Diffusion, for generating aerial views from a single ground-view image using text guidance. Aerial Diffusion leverages a pretrained text-image diffusion model for prior knowledge. We address two main challenges corresponding to domain gap between the ground-view and the aerial view and the two views being far apart...
Preprint
Full-text available
Large language models (LLMs) are capable to perform complex reasoning by in-context learning (ICL) when provided with a few input-output demonstrations (demos) and more powerful when intermediate reasoning steps ("chain of thoughts (CoT)") of the demos are given. Is it necessary to use multi-demo in ICL? In this paper, we study ICL using fewer demo...
Preprint
As a few large-scale pre-trained models become the major choices of various applications, new challenges arise for model pruning, e.g., can we avoid pruning the same model from scratch for every downstream task? How to reuse the pruning results of previous tasks to accelerate the pruning for a new task? To address these challenges, we create a smal...
Preprint
With rising concerns about privacy, developing recommendation systems in a federated setting become a new paradigm to develop next-generation Internet service architecture. However, existing approaches are usually derived from a distributed recommendation framework with an additional mechanism for privacy protection, thus most of them fail to fully...
Preprint
Federated recommendation is a new Internet service architecture that aims to provide privacy-preserving recommendation services in federated settings. Existing solutions are used to combine distributed recommendation algorithms and privacy-preserving mechanisms. Thus it inherently takes the form of heavyweight models at the server and hinders the d...
Preprint
Data augmentation is a critical contributing factor to the success of deep learning but heavily relies on prior domain knowledge which is not always available. Recent works on automatic data augmentation learn a policy to form a sequence of augmentation operations, which are still pre-defined and restricted to limited options. In this paper, we sho...
Preprint
Full-text available
We present Twin Answer Sentences Attack (TASA), an adversarial attack method for question answering (QA) models that produces fluent and grammatical adversarial contexts while maintaining gold answers. Despite phenomenal progress on general adversarial attacks, few works have investigated the vulnerability and attack specifically for QA models. In...
Preprint
Federated Learning (FL) is a machine learning paradigm that allows decentralized clients to learn collaboratively without sharing their private data. However, excessive computation and communication demands pose challenges to current FL frameworks, especially when training large-scale models. To prevent these issues from hindering the deployment of...
Conference Paper
Knowledge sharing and model personalization are two key components in the conceptual framework of personalized federated learning (PFL). Existing PFL methods focus on proposing new model personalization mechanisms while simply implementing knowledge sharing by aggregating models from all clients, regardless of their relation graph. This paper aims...
Article
Heterogeneity across clients in federated learning (FL) usually hinders the optimization convergence and generalization performance when the aggregation of clients' knowledge occurs in the gradient space. For example, clients may differ in terms of data distribution, network latency, input/output space, and/or model architecture, which can easily l...
Article
Full-text available
Personalized decision-making can be implemented in a Federated learning (FL) framework that can collaboratively train a decision model by extracting knowledge across intelligent clients, e.g. smartphones or enterprises. FL can mitigate the data privacy risk of collaborative training since it merely collects local gradients from users without access...
Preprint
Full-text available
Generating high-quality textual adversarial examples is critical for investigating the pitfalls of natural language processing (NLP) models and further promoting their robustness. Existing attacks are usually realized through word-level or sentence-level perturbations, which either limit the perturbation space or sacrifice fluency and textual quali...
Preprint
Full-text available
Federated learning (FL) aims at training a global model on the server side while the training data are collected and located at the local devices. Hence, the labels in practice are usually annotated by clients of varying expertise or criteria and thus contain different amounts of noises. Local training on noisy labels can easily result in overfitti...
Preprint
Transformer-based models generally allocate the same amount of computation for each token in a given sequence. We develop a simple but effective "token dropping" method to accelerate the pretraining of transformer models, such as BERT, without degrading its performance on downstream tasks. In short, we drop unimportant tokens starting from an inter...
Preprint
Knowledge sharing and model personalization are two key components to impact the performance of personalized federated learning (PFL). Existing PFL methods simply treat knowledge sharing as an aggregation of all clients regardless of the hidden relations among them. This paper is to enhance the knowledge-sharing process in PFL by leveraging the str...
Preprint
In a federated learning system, the clients, e.g. mobile devices and organization participants, usually have different personal preferences or behavior patterns, namely Non-IID data problems across clients. Clustered federated learning is to group users into different clusters that the clients in the same group will share the same or similar behavi...
Preprint
Full-text available
Aspect-level sentiment classification (ALSC) aims at identifying the sentiment polarity of a specified aspect in a sentence. ALSC is a practical setting in aspect-based sentiment analysis due to no opinion term labeling needed, but it fails to interpret why a sentiment polarity is derived for the aspect. To address this problem, recent works fine-t...
Preprint
Federated learning (FL) can protect data privacy in distributed learning since it merely collects local gradients from users without access to their data. However, FL is fragile in the presence of heterogeneity that is commonly encountered in practical settings, e.g., non-IID data over different users. Existing FL approaches usually update a single...
Preprint
Full-text available
The learning rate (LR) schedule is one of the most important hyper-parameters needing careful tuning in training DNNs. However, it is also one of the least automated parts of machine learning systems and usually costs significant manual effort and computing. Though there are pre-defined LR schedules and optimizers with adaptive LR, they introduce n...
Conference Paper
The learning rate (LR) schedule is one of the most important hyper-parameters needing careful tuning in training DNNs. However, it is also one of the least automated parts of machine learning systems and usually costs significant manual effort and computing. Though there are pre-defined LR schedules and optimizers with adaptive LR, they introduce n...
Preprint
Full-text available
The heterogeneity across devices usually hinders the optimization convergence and generalization performance of federated learning (FL) when the aggregation of devices' knowledge occurs in the gradient space. For example, devices may differ in terms of data distribution, network latency, input/output space, and/or model architecture, which can easi...
Conference Paper
Full-text available
Human-curated knowledge graphs provide critical supportive information to various natural language processing tasks, but these graphs are usually incomplete, urging auto-completion of them (a.k.a. knowledge graph completion). Prevalent graph embedding approaches, e.g., TransE, learn structured knowledge via representing graph elements (i.e., entiti...
Preprint
Full-text available
Zero-shot learning (ZSL) aims to classify images of an unseen class only based on a few attributes describing that class but no access to any training sample. A popular strategy is to learn a mapping between the semantic space of class attributes and the visual space of images based on the seen classes and their data. Thus, an unseen class image ca...
Preprint
Wrong labeling problem and long-tail relations are two main challenges caused by distant supervision in relation extraction. Recent works alleviate the wrong labeling by selective attention via multi-instance learning, but cannot well handle long-tail relations even if hierarchies of the relations are introduced to share knowledge. In this work, we...
Preprint
The goal of zero-shot learning (ZSL) is to train a model to classify samples of classes that were not seen during training. To address this challenging task, most ZSL methods relate unseen test classes to seen(training) classes via a pre-defined set of attributes that can describe all classes in the same semantic space, so the knowledge learned on...
Preprint
We study many-class few-shot (MCFS) problem in both supervised learning and meta-learning settings. Compared to the well-studied many-class many-shot and few-class few-shot problems, the MCFS problem commonly occurs in practical applications but has been rarely studied in previous literature. It brings new challenges of distinguishing between many...
Article
We study many-class few-shot (MCFS) problem in both supervised learning and meta-learning settings. Compared to the well-studied many-class many-shot and few-class few-shot problems, the MCFS problem commonly occurs in practical applications but has been rarely studied in previous literature. It brings new challenges of distinguishing between many...
Preprint
Federated learning has received great attention for its capability to train a large-scale model in a decentralized manner without needing to access user data directly. It helps protect the users' private data from centralized collecting. Unlike distributed machine learning, federated learning aims to tackle non-IID data from heterogeneous sources i...
Preprint
Full-text available
We improve both the open-set generalization and efficiency of link prediction on knowledge graphs by leveraging the contexts of entities and relations in a novel semantic triple encoder. Most previous methods, e.g., translation-based and GCN-based embedding approaches, were built upon graph embedding models. They simply treat the entities/relations...
Article
Full-text available
The goal of zero-shot learning (ZSL) is to train a model to classify samples of classes that were not seen during training. To address this challenging task, most ZSL methods relate unseen test classes to seen(training) classes via a pre-defined set of attributes that can describe all classes in the same semantic space, so the knowledge learned on...
Article
Full-text available
Distantly supervised relation extraction intrinsically suffers from noisy labels due to the strong assumption of distant supervision. Most prior works adopt a selective attention mechanism over sentences in a bag to denoise from wrongly labeled data, which however could be incompetent when there is only one sentence in a bag. In this paper, we prop...
Preprint
Full-text available
For time series classification task using 1D-CNN, the selection of kernel size is critically important to ensure the model can capture the right scale salient signal from a long time-series. Most of the existing work on 1D-CNN treats the kernel size as a hyper-parameter and tries to find the proper kernel size through a grid search which is time-co...
Preprint
Self-attention mechanisms have achieved great success on a variety of NLP tasks due to its flexibility of capturing dependency between arbitrary positions in a sequence. For problems such as query-based summarization (Qsumm) and knowledge graph reasoning where each input sequence is associated with an extra query, explicitly modeling such condition...
Preprint
Full-text available
Distantly supervised relation extraction intrinsically suffers from noisy labels due to the strong assumption of distant supervision. Most prior works adopt a selective attention mechanism over sentences in a bag to denoise from wrongly labeled data, which however could be incompetent when there is only one sentence in a bag. In this paper, we prop...
Preprint
Full-text available
Meta-learning extracts the common knowledge acquired from learning different tasks and uses it for unseen tasks. It demonstrates a clear advantage on tasks that have insufficient training data, e.g., few-shot learning. In most meta-learning methods, tasks are implicitly related via the shared model or optimizer. In this paper, we show that a meta-l...
Conference Paper
Full-text available
A variety of machine learning applications expect to achieve rapid learning from a limited number of labeled data. However, the success of most current models is the result of heavy training on big data. Meta-learning addresses this problem by extracting common knowledge across different tasks that can be quickly adapted to new tasks. However, they...
Preprint
Full-text available
A variety of machine learning applications expect to achieve rapid learning from a limited number of labeled data. However, the success of most current models is the result of heavy training on big data. Meta-learning addresses this problem by extracting common knowledge across different tasks that can be quickly adapted to new tasks. However, they...
Article
We study the problem of selecting a subset of weakly labeled data where the labels of each data instance are redundant and imperfect. In real applications, less-than-expert labels are obtained at low cost in order to acquire many labels for each instance and then used for estimating the ground truth. However, on one side, preparing and processing d...
Conference Paper
Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention...
Preprint
Full-text available
In this paper, we propose a self-attention mechanism, dubbed "fast directional self-attention (Fast-DiSA)", which is a fast and light extension of "directional self-attention (DiSA)". The proposed Fast-DiSA performs as expressively as the original DiSA but only uses much less computation time and memory, in which 1) both token2token and source2toke...
Article
Full-text available
Recurrent neural networks (RNN), convolutional neural networks (CNN) and self-attention networks (SAN) are commonly used to produce context-aware representations. RNN can capture long-range dependency but is hard to parallelize and not time-efficient. CNN focuses on local dependency but does not perform well on some tasks. SAN can model both such d...
Article
Full-text available
Many natural language processing tasks solely rely on sparse dependencies between a few tokens in a sentence. Soft attention mechanisms show promising performance in modeling local/global dependencies by soft probabilities between every two tokens, but they are not effective and efficient when applied to long sentences. By contrast, hard attention...

Network

Cited By