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Abstract—Data-driven intelligent diagnosis models 
expect to mine the health information of machines from 
massive monitoring data. However, the size of faulty 
monitoring data collected in engineering scenarios is 
limited, which leads to few-shot fault diagnosis as a 
valuable research point. Fortunately, it is possible to 
reduce the required amount of training data by integrating 
prior diagnosis knowledge into diagnosis models. Inspired 
by this, we present a prior knowledge-augmented self-
supervised feature learning framework for few-shot fault 
diagnosis. In the framework, 24 signal feature indicators are 
built to form prior features set based on existing diagnosis 
knowledge. Besides, a convolutional auto-encoder is used 
to mine the general features, which are considered to 
potentially contain fault information that prior features do 
not possess. We design a self-supervised learning scheme 
for training the diagnosis model, which enables the model 
to learn both prior and general features served as proxy 
labels. As a result, the model is expected to mine richer 
features from limited monitoring data. The effectiveness of 
the proposed framework is verified using two mechanical 
fault simulation experiments. From the angle of prior 
diagnosis knowledge, the proposed framework provides a 
new perspective to the problem of few-shot intelligent 
diagnosis of machines. 

 
Index Terms—Intelligent fault diagnosis, few-shot 

learning, prior knowledge, self-supervised learning 

I. INTRODUCTION 

ACHINE fault diagnosis plays a significant role in 

prognostics health management (PHM) by linking the 

machine monitoring data and its health status [1]. Deep learning 

provides a powerful tool for machine fault diagnosis, which 

enables diagnosis models to handle massive monitoring data 

and automatically output the health status of machines [2]–[4]. 

Due to the complex network structure and parameters, 

intelligent diagnosis models based on deep learning rely on 

large amounts of machine fault data for model training, and 

their diagnosis performance is usually positively correlated 

with the amount of training data [5]. However, in engineering 

scenarios, machines work in a normal condition for a long time 

and failures rarely occur. Although condition monitoring 

systems can continuously record machine working data, the size 

of the collected fault data is very limited. With insufficient fault 

data, the trained intelligent diagnosis model has weak 

generalization ability, which makes it difficult to achieve 

satisfactory application results in engineering scenarios. 

Few-shot fault diagnosis aims to use a small number of fault 

data samples to train diagnosis models. In recent years, scholars 

have achieved many remarkable results in this problem [5]. 

Existing research addressed it from three main perspectives. 

The first one is to augment the limited fault data [6]–[8]. For 

example, Zhang et al. [7] proposed a fault data augmentation 

method based on generative adversarial networks, which can 

generate fault data with similar distribution to real fault data. 

The experimental results show that data augmentation helps to 

improve the diagnosis performance of the model in the case of 

small samples. The second one is to improve the utilization of 

fault samples or to mine more information from limited fault 

samples [9]–[11]. For example, Ren et al. [9] constructed a 

capsule auto-encoder-based diagnosis model for fault detection 

using few samples, in which various fault feature capsules are 

extracted from limited fault data samples. The third one is to 

build diagnosis models based on transfer learning [12]–[14]. 

For instance, He et al. [14] proposed an intelligent diagnosis 

scheme based on a deep transfer auto-encoder, which can learn 

important fault features from a large related vibration dataset 

and transfer the parameter knowledge to the target but small 

dataset. However, data augmentation-based approaches 

consume large computational resources and are often hard to 

provide additional fault information for model training. 

Methods by improving the fault samples utilization have high 

requirements on the structural design of the diagnosis models, 

which usually increase the complexity of the models and are 

difficult to achieve the optimal states. Transfer learning-based 

schemes require the construction of source domain datasets that 

are large enough and relevant to the target diagnosis task, which 

consumes much manual labor.  

Recently, some latest studies in fields such as computer 
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vision have shown that injecting prior knowledge into a 

network model can improve its performance when there are not 

sufficient training data [15], [16]. In intelligent fault diagnosis, 

although many remarkable results have been achieved, the 

diagnosis knowledge accumulated over time has not been paid 

enough attention to, and scholars prefer to let models process 

monitoring data and output results automatically. Traditional 

intelligent diagnosis models are more like end-to-end black-

boxes, where researchers feed monitoring data into a model and 

expect the model to output the health status automatically [1]. 

The black-box nature of diagnosis models means that during the 

model training we cannot confirm whether the model has 

learned the knowledge related to fault identification. In 

particular, in the case of small training samples, models tend to 

learn some simple features to identify input data. In more 

extreme cases, features extracted by models may even be 

completely irrelevant to faults, because the data available for 

learning is very limited. In engineering scenarios, monitoring 

data is affected by environmental noise and working conditions, 

and data distribution is so complex that it is difficult to achieve 

accurate fault identification using only simple features learned 

by general models. Fortunately, prior diagnosis knowledge may 

help diagnosis models to learn more targeted and richer feature 

representations. Specifically, by injecting prior knowledge into 

diagnosis models, the models need not only to mine the black-

box features of the input data but also to consider the discovery 

of prior knowledge from the input data. Under such conditions, 

although there are few available samples, the model can learn 

richer data features through the complexity of the training task, 

and thus the generalization ability can be improved.  

In the field of fault diagnosis, domain experts have 

accumulated rich engineering experience and diagnosis 

knowledge in practice, such as fault mechanism of machines, 

fault features, diagnosis rules, and feature extraction algorithms, 

which form the prior knowledge in this field, and their 

effectiveness has been verified in numerous engineering cases 

[17]. For example, it is possible to determine whether a machine 

is abnormal by calculating signal feature indicators such as the 

peak and the mean value. This diagnosis knowledge is more 

targeted and reliable. Moreover, they are usually based on 

rigorous fault mechanism analysis, so they are also interpretable 

and can be understood by engineers. Recently, some scholars 

have tried to construct diagnosis models using prior diagnosis 

knowledge, and it has been shown that prior knowledge helps 

the models to learn more robust fault features and helps to 

improve the model interpretability [17]–[20]. However, it is 

worth noting that the current work has rarely explored the 

potential of prior diagnosis knowledge in reducing the amount 

of training data, which may be an important means to achieve 

accurate fault identification in the case of small samples. 

To improve the performance of diagnosis models in the case 

of limited fault data, we try to enhance the training of diagnosis 

models with prior diagnosis knowledge. As mentioned earlier, 

the fault features of machines are an important part of the prior 

knowledge in this field. Among the machine fault features, the 

feature indicators of monitoring signals can reflect the health 

status of the machine. It is a common means for traditional fault 

diagnosis to determine the fault type of a machine by 

calculating the signal feature indicators. Inspired by [3] and 

[21], we first select 24 commonly used signal feature indicators 

as the prior feature set, including 12 time-domain indicators and 

12 frequency-domain indicators whose validity has been 

verified in [3] and [21]. Besides, we use a deep convolutional 

auto-encoder (DCAE) to extract general features (24 

dimensions/24D) of the signals, which may contain fault 

information that is not available in the prior feature indicators. 

Our purpose of adding general features is to take full advantage 

of the powerful data processing power of neural networks. After 

that, we train a deep convolutional neural network (DCNN) 

based fault identification model using a self-supervised learning 

strategy. Self-supervised learning is the latest popular paradigm 

for training neural networks without labeled data, which has 

attracted the attention of scholars in the field of computer vision, 

especially in the problem of image as well as video data 

processing [22]. Unlike traditional unsupervised learning, self-

supervised learning artificially constructs proxy labels for the 

input data based on the properties of the data and then relies on 

the proxy labels to design supervised training tasks for neural 

networks. Neural networks are expected to learn feature 

representations from the input data by completing the designed 

supervised tasks. Recently, in intelligent fault diagnosis, 

scholars have started to initially explore the potential of self-

supervised learning for unlabeled mechanical data processing 

[23], [24]. However, the idea of mining prior knowledge 

contained in mechanical data using self-supervised learning has 

not been tried yet, and this paper will be devoted to training 

diagnosis models to learn prior diagnosis knowledge from raw 

data with self-supervised training strategy.  

In the structure proposed in this paper, the prior features and 

the general features are combined as the fusion features, which 

are served as the proxy labels. In the training process, we take 

a small amount of unlabeled data as the input of the fault 

identification model. The model is trained to output the proxy 

labels, i.e. fusion features, which means that the feature learning 

process of the model is guided by the fusion features rather than 

only by the fault labels. Then, we use a small amount of labeled 

data to fine-tune the model, and the fine-tuned model will be 

more adept at accurate fault identification. Through self-

supervised feature learning, the model is expected to extract 

richer and more relevant fault features from fault data, thus the 

fault identification accuracy will be improved under small 

samples condition. In contrast to other feature engineering-

based diagnostic models [20], we do not simply derive 

diagnosis results from signal feature indicators, but use prior 

features to enhance the training process of the end-to-end 

diagnosis model, and apply the trained end-to-end model to 

achieve fault identification. Finally, the authors need to point 

out that the purpose of this paper is to provide an idea or 

framework for training intelligent diagnosis models, rather than 

just showing some network modules or the diagnosis results of 

some cases. The network modules used in this paper, such as 

the DCAE and DCNN, can be easily replaced with other models 

like Long Short-Term Memory (LSTM) in practice according 

to the user's needs. Besides, the 24 prior features used in this 
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paper can likewise be replaced, added, or deleted according to 

the characteristics of the data to be analyzed. 

The contributions of this paper are summarized as follows. 

1) We present a prior diagnosis knowledge-augmented 

self-supervised feature learning scheme for machine 

fault identification using limited faulty monitoring data, 

which may provide a new perspective for few-shot fault 

diagnosis from the angle of prior knowledge.  

2) A self-supervised learning framework is designed to 

train the fault identification model with the prior and the 

general features served as the proxy labels in the pre-

training stage, which makes the model is no longer a 

complete black-box, and the fault features it learns are 

interpretable to some extent. 

3) Two mechanical fault simulation experiments are 

carried out to verify the effectiveness of the proposed 

model. Based on the experimental data, we analyze the 

learned fault features from the qualitative and 

quantitative perspectives using feature visualization 

technology and Pearson correlation coefficients. 

The rest of this paper is organized as follows. Section II 

presents related works on prior knowledge and self-supervised 

learning. Section III describes the proposed model in detail. 

Section IV verifies and discusses the proposed model based on 

two mechanical fault simulation experiments. Section V makes 

a conclusion for this paper. 

II. RELATED WORKS 

This paper attempts to apply prior knowledge to enhance the 

training of intelligent diagnosis models through a self-

supervised learning strategy. Therefore, this section will 

introduce the related works about intelligent diagnosis with 

prior knowledge and self-supervised representation learning. 

A. Intelligent diagnosis with prior knowledge 

Data-driven intelligent diagnosis models expect to find 

health information of machines from massive historical 

monitoring data. However, these intelligent models are trained 

automatically according to the input data, engineers cannot 

intervene in their training process, so these models are often 

incomprehensible and uninterpretable. In engineering scenarios, 

an uninterpretable model is usually not trusted because it may 

go wrong under certain unexpected circumstances [25]. While 

in practice, domain experts give diagnosis results for machines 

based on extensive engineering experience and background 

knowledge of diagnosis, rather than singularly on monitoring 

data. The experience as well as the knowledge that experts rely 

on, such as fault mechanism of machines, fault features, 

diagnosis rules, and feature extraction algorithms, can be called 

the prior knowledge in the field of fault diagnosis. Prior 

diagnosis knowledge is usually based on fault simulation and 

mechanism analysis, which means that they are rigorous and 

reliable. More importantly, they can be understood by engineers 

and therefore more easily trusted in engineering scenarios [17]. 

Some scholars have tried to integrate existing diagnosis 

knowledge into their intelligent models to improve the 

diagnosis performance and interpretability of the models. For 

example, A multi-task convolutional neural network was 

applied in [17] for fault diagnosis and localization, the fault 

characteristics frequency was fused into the first convolution 

layer. Zheng et al. [18] proposed a deep domain generalization 

network with prior diagnosis knowledge for bearing fault 

diagnosis, in which the signals were preprocessed under the 

guidance of prior knowledge. Yu et al. [19] presented a 

knowledge-guided deep belief network-based diagnosis model, 

in which the classification rules were inserted into the model as 

prior knowledge. In [20], the empirical fault features selected 

by engineers are combined with deep learning-based data 

features, and the fused features were fed into the XGBoost 

classifier for classification directly.  

Existing works have demonstrated that prior knowledge 

helps intelligent diagnosis models to learn robust fault features. 

In addition, the interpretability of models can also be improved. 

However, little work has been done to use prior knowledge to 

improve the diagnosis performance of models under limited 

fault data conditions. With only a small number of fault samples 

available for model training, it is difficult to learn 

discriminative and representative fault features. In this paper, 

we will enhance the training process of the model using prior 

diagnosis knowledge, which is expected to enable the model to 

mine richer fault information from a small amount of data, thus 

improving the generalization ability of the diagnosis models. 

B. Self-supervised representation learning 

Self-supervised learning is an emerging neural network 

training paradigm in recent years, which is dedicated to mining 

high-level semantic features from unlabeled data [22]. As 

shown in Fig. 1, it consists of two steps, self-supervised pre-

training and fine-tuning, which can also be referred to as 

upstream and downstream tasks, respectively. Given a training 

dataset     1 1, ,..., ,n nD x y x y , where  ,i ix y  is formed by a 

sample ix  and its corresponding class label iy . For the model f  

to be trained, the training objective in the pre-training stage can 

be described as 

   
1

ˆ arg min ,
n

i i
f F i

f l f x p
 

   (1) 

where f̂  is the obtained model in this stage, F  is overall 

hypothesis set,  l   represents loss function, and ip  is the 

proxy label for the sample ix  designed by human experts 

manually, which is derived from the sample ix  itself but does 

not depend on the class label iy . By self-supervised pre-training, 

the model f  can obtain reliable weights set, which will be 

reused in the fine-tuning stage [26]. In the fine-tuning stage, the 

training objective can be described as 

Sample         Proxy label P

Experts

Sample Class label YModel FF

:Flow of self-supervised pre-training :Flow of fine-tuning

f

ix

ix iy

ipModel FFf

 
Fig. 1. Illustration of self-supervised learning. 
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   
ˆ 1

ˆarg min ,
n

i i
f F i

f l f x y

 

   (2) 

where f 
 is the final model. 

How to construct proxy labels for data is the key of self-

supervised learning. In the field of computer vision, some 

scholars artificially rotated images at different angles and used 

the rotated angles as the proxy labels for supervised model 

training [27]. The experimental results in [27] demonstrate that 

the model can learn semantic features of images by predicting 

the rotation angle, thus providing an effective feature 

representation for downstream tasks. In addition, Noroozi et al. 

[28] constructed a position prediction task for image region 

blocks by segmenting images and using their positions as proxy 

labels to achieve self-supervised pre-training of the network. 

Recently, the idea of self-supervised representation learning has 

also been introduced into the field of intelligent fault diagnosis 

[23], [24], [29], [30]. For example, Zhang et al. [23] proposed 

a self-supervised feature learning-based federated learning 

strategy for fault diagnosis of machines, in which the authors 

construct fake data by swapping the positions of data fragments, 

and the model judges the data as real or fake for self-supervised 

training. Senanayaka et al. [24] used a self-supervised 

convolutional neural network for fault feature extraction, the 

temporary class labels given by a one-class support vector 

machine were served as the proxy labels for self-supervised 

training.  

Existing works provide preliminary evidence that self-

supervised learning has potential in feature mining, especially 

in the processing of unlabeled data. In engineering scenarios, 

unlabeled data is easier to obtain than labeled data, so the 

application of self-supervised learning in building intelligent 

diagnosis models will predictably increase. However, as a 

flexible learning strategy, how to make models learn prior 

diagnosis knowledge from raw monitoring data based on self-

supervised learning has not been explored by scholars. For 

example, the self-supervised task is constructed by swapping 

signal fragments in [22], and the proxy labels in [23] are derived 

from a one-class SVM, which are not strongly correlated with 

prior diagnosis knowledge. In this paper, we try to construct a 

self-supervised training task for the model using fault features 

from existing diagnosis knowledge as the proxy labels, so that 

the model can achieve the purpose of learning prior diagnosis 

knowledge from raw monitoring data. 

III. PROPOSED METHOD 

A. Overview of the proposed model 

In this section, we describe the proposed model in detail, as 

shown in Fig. 2. Given the training set  
1

N

i i
X x


 , where 

1n

ix   is the i th sample with n  data points. Further, the 

training set X  can be divided into two subsets, i.e., the labeled 

subset  
1

,
K

l i i i
X x y


  and the unlabeled subset 

 
1

N K

u i i
X x




 , where 0 K N  . The sample i lx X  is 

labeled with the health condition label  1,2,...,iy M , where 

M  is the total number of health conditions. 

First of all, as the source of the prior diagnosis knowledge in 

the proposed model, the feature indicators of monitoring signals 

are commonly used by domain experts to determine the health 

status of machines. Therefore, we select 24 feature indicators 

based on the recommendation of [3] and [21], and the validity 

of these indicators has been verified in [3] and [21]. As given 

in Table I, they contain 12 time-domain indicators and 12 

frequency-domain indicators. The 24 indicators are served as 

prior features set  1 2 24 1
, ,...,

N
i i i

i
p p p


 after data standardization, 

which can be calculated as  

 
 

 

i i

i

i

p mean p
p

std p


 . (3) 

Then, we use a deep convolutional auto-encoder (DCAE), 

which has been proved to be effective in unsupervised feature 

extraction from vibration data [6], to extract the general features 

 1 2 24 1
, ,...,

N
i i i

i
g g g


 of the signal. The general features learned by 

deep neural networks may contain fault information that the 

prior features do not have. To construct the proxy labels for 

training, we fused the prior features and the general features and 

standardized them using Eq. 3 to obtain the fusion features set 

 1 2 48 1
, ,...,

N
i i i

i
f f f


. And then, a deep convolutional neural 

network (DCNN) based fault identifier, which has strong 

feature extraction ability and its effectiveness in fault 

identification has been proven in a wide range of work [31], is 
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Fig. 2. Framework of the proposed model. 
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trained in a self-supervised way, where the sample ix X  is fed 

into DCNN, and the proxy-labels  1 2 48, ,...,i i if f f  are output.  

Finally, to obtain higher fault identification accuracy, a few 

labeled samples are used to fine-tune the parameters of DCNN, 

where the sample i lx X  is input into DCNN, and the health 

condition label iy  is output. 

B. Network structure 

The proposed model involves two network modules, i.e., a 

DCAE and a DCNN. DCAE contains a convolutional encoder, 

which has four convolutional layers and four pooling layers, 

and a convolutional decoder, which has four convolutional 

layers and four up-sampling layers. The structure of the DCNN-

based fault identifier is given in Table II. In the proposed model, 

the fault identifier will extract features from raw signals by the 

calculation of the convolutional layers and the pooling layers. 

Given the kernel in the i th convolutional layer is ik , the 

bias is ib , and the output ic  can be calculated as 

 
,

1

i

j j j k j

i i i i

k M

c lrelu p k b



 
    

 
  (4) 

where iM  is the feature vector of the i th convolutional layer, 

lrelu  is the LeakyReLU activation function 

 
, 0

0.2 , 0 

x x
lrelu

x x


 

 
, (5) 

and 1ip   is the output of the 1i  th pooling layer.  

 1 1maxj k j s

i i
k

p c


 

 


  (6) 

where   is the pooling window size and s  is the stride. As 

given in Table II, the output of the fourth pooling layer 4p  is 

downscaled to 48 dimensions using a fully connected layer, 

which can be described as 

  4q q qg lrelu p w b   (7) 

where qg  is the output of the fully connected layer, qw  and qb  

are the weight matrix and bias of this layer. 

To achieve fault classification, the extracted features qg  are 

fed into a softmax classifier. The output of the softmax 

classifier is  ih x . 

  

 

 

 

1

2

1

1| ;

2 | ; 1

... ...

| ;

T
i

T
i

T
j i

T
M i

x

i i

x
i i

i M
x

xji i

ep y x

p y x e
h x

e
p y M x e













 

   
  

       
  
     


 (8) 

where   is the parameter of the softmax classifier. 

C. Training strategy 

The training of the proposed model consists of the following 

three steps. 

1) Proxy labels construction 

The 24 prior features set  1 2 24 1
, ,...,

N
i i i

i
p p p


 of the sample 

ix X  are calculated and standardized. The general features 

 1 2 24 1
, ,...,

N
i i i

i
g g g


 of the sample ix X  are extracted by DCAE. 

The prior features and the general features are fused and 

standardized to form the fusion features set  1 2 48 1
, ,...,

N
i i i

i
f f f


, 

which is served as the proxy labels. 

In this step, DCAE achieves the extraction of the general 

features by optimizing the data reconstruction loss drL . 

 
 

2

1 1

N n j j

i ii j

dr

x x
L

nN

 



   (9) 

where x  is the reconstructed data sample. 

2) Self-supervised pre-training 

The sample ix X  is input into DCNN, and the output of the 

fully connected layer in DCNN is taken to fit the proxy label 

 1 2 48, ,...,i i if f f  by optimizing the self-supervised loss spL . 

  
248

1 1

48

N i i

j ji j

sp

f f
L

N

 





   (10) 

TABLE II 

 THE STRUCTURE OF THE FAULT IDENTIFIER 

Layer 
Channels @ Kernel size×

Stride / Pool size×Stride 

Output 

shape 
Padding 

Activation 

function 

Input / 1×1024 / / 

1D Convolution 32@4×1 32×1024 Same LeakyReLU 

Max-pooling 2×2 32×512 Valid / 

1D Convolution 32@4×1 32×512 Same LeakyReLU 

Max-pooling 2×2 32×256 Valid / 

1D Convolution 64@4×1 64×256 Same LeakyReLU 

Max-pooling 2×2 64×128 Valid / 

1D Convolution 64@4×1 64×128 Same LeakyReLU 

Max-pooling 2×2 64×64 Valid / 

Flatten / 4096 / / 

Fully connected / 48 / LeakyReLU 

Classification / 7 / Softmax 

 
 

TABLE I 

 24 PRIOR FEATURE INDICATORS 
Time-domain Frequency-domain 

Name Equation Name Equation 

Mean value 1

1

1
( )

N

n

p x n
N 

   Frequency mean 

value 13

1

1
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N

n

p s n
N 

   
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 

2

2 1
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1

N

n i

p x n p
N 

 

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1

1
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N

n
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Square root 
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2

3

1

1
( ( ) )

N

n

p x n
N 
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skewness 
 

3

15 133
2 1

14

1 N

n

p s n p
Np 

     

Absolute 

mean value 4

1

1
( )

N

n

p x n
N 

   Frequency 

steepness 
 

4

16 132
114

1 N

n

p s n p
Np 

     

Skewness 
3

5

1

1
( ( ))

N

n

p x n
N 

   Gravity frequency 17

1 1
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N N

i

n n
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 
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4

6

1

1
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N

n
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standard deviation 
     

2
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1 1

N N

i
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 
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Variance 
2

7
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1
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2
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Peak index 9 2max ( )p x n p  Regularity degree      2 4

21

1 1 1

N N N

i i

n n n

p f s n s n f s n
  

    

Waveform 

index 10 2 4p p p  
Variation 

parameter 22 18 17p p p  

Pulse index 11 4max ( )p x n p  Eighth-order 

moment 
   

3 3

23 17 18

1

N

i

n

p f p s n Np

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3
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where  x n  is a signal sample containing N  data points,  s n  is a spectrum, and 

if  is the frequency value of the i th spectrum line. 
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where f  is the output of the fully connected layer in DCNN. 

3) Parameters fine-tuning 

The sample i lx X  is input into DCNN, and the predicted 

label  ih x  is output directly. The parameters are fine-tuned by 

optimizing the cross-entropy loss function cL . 

     
1 1

1
1 log

K M

c i i j
i j

L y j h x
K  

   . (11) 

where 1   is a function returning 1 if iy j , and 0 otherwise. 

IV. EXPERIMENTAL VERIFICATION AND RESULT 

DISCUSSION 

In this section, we will introduce two mechanical fault 

simulation experiments and verify the effectiveness of the 

proposed model based on the collected experimental data. The 

two experiments are carried out in Spectra Quest (SQ) 

mechanical fault simulation test bench and Tian-Xian (TX) 

mechanical fault simulation test bench respectively. 

A. Experiments and data description 

1) SQ mechanical fault simulation experiment 

As shown in Fig. 3, the SQ test bench mainly consists of a 

drive motor, a rotor, a load, a data recorder, and vibration 

sensors. To simulate different health conditions of rolling 

bearings, we processed six kinds of single-point faults, which 

are labeled as minor inner race fault (IF-1), medium inner race 

fault (IF-2), severe inner race fault (IF-3), minor outer race fault 

(OF-1), medium outer race fault (OF-2), and severe outer race 

fault (OF-3), as given in Fig. 4. In addition, there is a healthy 

bearing in normal condition (NC-0) for comparison. In the 

vibration data collection experiments, the rotating speed is 

40Hz, and the sampling frequency of the data recorder is 

25.6kHz. We recorded bearing vibration data in seven kinds of 

health conditions in turn. To verify the proposed model, we 

construct a bearing vibration data samples set, which contains 

1125 samples in each health condition, and each sample 

contains 1024 data points.  

2) TX mechanical fault simulation experiment 

As given in Fig. 5 and 6, the TX test bench consists of a motor, 

a gearbox, a data recorder, and vibration sensors. Different from 

the SQ bearing fault simulation experiment, which only has one 

tested object, the TX fault simulation experiment tested both 

bearings and gears. In the experiment, we processed six kinds 

of bearing single point faults and one gear fault. Besides, a 

normal condition is also tested for comparison. The eight health 

conditions are labeled as normal condition (NC-0), bearing cage 

fault (CF-0), gear fault (GF-0), bearing roller fault (RF-0), 

bearing outer race spot welding (OF-0), bearing minor outer 

race fault (OF-1), bearing medium outer race fault (OF-2), and 

bearing severe outer race fault (OF-3). During the data 

collection process, the rotating speed of the motor is 800rpm, 

and the sampling frequency of the data recorder is 5kHz. 

Similarly, we construct a sample set containing 774 samples in 

each health condition, and each sample contains 1024 data 

points. 

B. Fault diagnosis using small samples 

First, we need to define the range of small samples. In the 

study of few-shot intelligent diagnosis, there are usually two 

options for defining the range of small samples. The first one is 

to use the ratio of the training samples number to the total 

samples number, for example, when the training samples do not 

exceed 10% of the total samples, it is considered as the small 

sample case [32]. The second one is to use the absolute number 

of training samples, for example, when the number of training 

samples does not exceed 30, it is considered as the small sample 

case [7]. Here, we are more in agreement with the latter, 

because even 10% of the data volume is substantial when the 

total number of samples to be analyzed is large enough. 

Therefore, in this paper, we define the small sample condition 

sensormotor recorder

gearbox

 
Fig. 5. TX test bench. 

test gear

test bearing

 
Fig. 6. Gearbox including tested bearings and gears. 
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recorder
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load

 
Fig. 3. SQ test bench. 

Inner race 
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Fig. 4. Faulty bearings in the SQ experiment. 
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when the training samples number in each class does not exceed 

50. Compared to the total number of samples in each class 

(1125 in the SQ data and 774 in the TX data), we consider 50 

to be a small value. It should be noted that in this part, we also 

took 100 training samples to carry out experiments, which was 

to verify the validity of the model over a larger range.  

Then, we selected nine methods for comparison.  

1) PF-S: We extract 24 feature indicators from signal 

samples, and feed them into the Softmax classifier for 

fault classification directly. The 24 signal feature 

indicators are given in Table I. 

2) GF-S: We use the DCAE in the proposed model to 

extract the general features of the signals, and input them 

into the Softmax classifier for classification directly. 

3) FF-S: The extracted features in PF-S and GF-S are fused 

to form the fusion features. The fusion features are input 

into the Softmax classifier for classification directly. 

4) DCNN: We use a DCNN to process the signal samples 

directly, and the health condition labels are output by 

DCNN automatically. The structure and parameters 

setting of DCNN are given in Table II.  

5) PF-DCNN: A DCNN is pre-trained by self-supervised 

learning and then fine-tuned, in which the prior features 

in PF-S are used as the proxy labels. The fully connected 

layer in this DCNN has 24 nodes, and the rest of the 

parameters are set as in Table II.  

6) GF-DCNN: We take the convolutional encoder from the 

trained DCAE in GF-S and add a Softmax classifier to 

the last layer to form a DCNN, and then fine-tune this 

DCNN using labeled data.   

7) SSAE: Saufi et al. [33] presented a stacked sparse auto-

encoder (SSAE) for machine fault identification with 

limited fault data, in which the L2 weight regularization 

and sparsity regularization were applied in SSAE. 

8) R-Net: Yang et al. [34] proposed a residual wide-kernel 

deep net (R-Net) for bearing fault diagnosis using 

limited samples, in which residual learning blocks were 

used to prevent overfitting. 

9) S-Net: A few-shot learning approach based on Siamese 

neural network (S-Net) was proposed in [11] for bearing 

fault classification, which obtained high classification 

accuracy with small training data. 

Besides, the proposed model is abbreviated as PM in the 

analysis of experimental results.  

For the setting of hyper-parameters, we conducted some 

experiments to determine the appropriate values of the learning 

rates and training epochs in the model. In the training process, 

the DCAE in the proposed model is trained 500 epochs with a 

learning rate of 0.01. The fault identifier is pre-trained 500 

epochs with a learning rate of 0.01 and then fine-tuned 50 

epochs with a learning rate of 0.001. Each set of the experiment 

is repeated 10 times, and the average results are recorded for 

analysis, as given in Tables III and IV. 

TABLE III 
 FAULT DIAGNOSIS RESULT 1 BASED ON TWO SET OF EXPERIMENTAL DATA 

Data Model 
 Number of training samples (All labeled)   

10 15 20 25 30 40 50 100 

SQ 

PF-S 0.7230±0.0322 0.7500±0.0118 0.7763±0.0211 0.7693±0.0262 0.7776±0.0206 0.8010±0.0640 0.8378±0.0010 0.9037±0.0008 

GF-S 0.5297±0.0330 0.6948±0.0691 0.7830±0.0464 0.8083±0.0524 0.8405±0.0142 0.9027±0.0014 0.9335±0.0112 0.9526±0.0182 

FF-S 0.7148±0.0356 0.7966±0.0237 0.8032±0.0246 0.8119±0.0223 0.8681±0.0156 0.9098±0.0052 0.9530±0.0052 0.9620±0.0025 

DCNN 0.5514±0.0552 0.7316±0.0743 0.8355±0.0352 0.8884±0.0116 0.9375±0.0055 0.9535±0.0404 0.9634±0.0314 0.9757±0.0257 

SSAE 0.6479±0.0191 0.7620±0.0186 0.8723±0.0453 0.9219±0.0041 0.9556±0.0021 0.9668±0.0022 0.9683±0.0016 0.9886±0.0014 

R-Net 0.5808±0.0388 0.7484±0.0375 0.8637±0.0255 0.9176±0.0260 0.9440±0.0056 0.9564±0.0140 0.9617±0.0054 0.9868±0.0018 

S-Net 0.6189±0.0177 0.7309±0.0243 0.8339±0.0160 0.8827±0.0117 0.9193±0.0178 0.9417±0.0254 0.9479±0.0090 0.9608±0.0098 

PM 0.6692±0.0279 0.8213±0.0497 0.9175±0.0203 0.9511±0.0235 0.9622±0.0106 0.9704±0.0277 0.9835±0.0157 0.9921±0.0201 

TX 

PF-S 0.8128±0.0155 0.8058±0.0125 0.7947±0.0583 0.7855±0.0626 0.8050±0.0573 0.8066±0.0201 0.8252±0.0095 0.8352±0.0095 

GF-S 0.6713±0.0311 0.7160±0.0271 0.7136±0.0616 0.7561±0.0214 0.7702±0.0272 0.8292±0.0119 0.8817±0.0263 0.9248±0.0195 

FF-S 0.8423±0.0262 0.8263±0.0273 0.8586±0.0263 0.8863±0.0233 0.8772±0.0307 0.9002±0.0104 0.9240±0.0111 0.9567±0.0055 

DCNN 0.7851±0.0512 0.8071±0.0397 0.8507±0.0334 0.8854±0.0359 0.9136±0.0374 0.9288±0.0166 0.9337±0.0193 0.9588±0.0116 

SSAE 0.6943±0.0327 0.7073±0.0077 0.8055±0.0170 0.8309±0.0090 0.8486±0.0115 0.8822±0.0188 0.8971±0.0229 0.9323±0.0144 

R-Net 0.7370±0.0561 0.7817±0.0521 0.8553±0.0378 0.8792±0.0283 0.9060±0.0273 0.9233±0.0274 0.9610±0.0055 0.9756±0.0088 

S-Net 0.7531±0.0118 0.8256±0.0140 0.8639±0.0165 0.9023±0.0214 0.9261±0.0310 0.9338±0.0211 0.9530±0.0129 0.9592±0.0283 

PM 0.8094±0.0209 0.8478±0.0252 0.8904±0.0229 0.9237±0.0162 0.9350±0.0206 0.9576±0.0186 0.9737±0.0152 0.9873±0.0243 

 
TABLE IV 

 FAULT DIAGNOSIS RESULT 2 BASED ON TWO SET OF EXPERIMENTAL DATA 
Number of training samples SQ experimental data TX experimental data 

Total Labeled PF-DCNN GF-DCNN PM PF-DCNN GF-DCNN PM 

10 

1 0.3238±0.0956 0.2878±0.1252 0.5983±0.0541 0.6045±0.0650 0.5744±0.1068 0.7624±0.0215 

5 0.5158±0.0538 0.5092±0.1588 0.6347±0.0249 0.6602±0.0320 0.7016±0.0353 0.7683±0.0263 

10 0.6400±0.0429 0.5597±0.1432 0.6692±0.0279 0.7519±0.0179 0.7639±0.0350 0.8094±0.0209 

20 

1 0.3998±0.0547 0.4326±0.1195 0.8163±0.0404 0.5549±0.1002 0.7096±0.0341 0.7861±0.0401 

5 0.7785±0.0995 0.6121±0.1038 0.8186±0.0544 0.8043±0.0385 0.7530±0.0248 0.8637±0.0320 

10 0.8212±0.0418 0.7537±0.0378 0.8459±0.0379 0.8544±0.0451 0.8327±0.0379 0.8802±0.0242 

15 0.8649±0.0207 0.7767±0.0146 0.9150±0.0313 0.8856±0.0241 0.8623±0.0159 0.8946±0.0210 

20 0.8859±0.0098 0.8199±0.0159 0.9175±0.0203 0.8759±0.0185 0.8708±0.0124 0.8904±0.0229 

30 

1 0.4848±0.0680 0.5212±0.1253 0.8761±0.0492 0.6061±0.0434 0.6881±0.0745 0.8145±0.0597 

5 0.8581±0.0644 0.8021±0.0734 0.8942±0.0377 0.8090±0.0468 0.7739±0.0356 0.8923±0.0141 

10 0.9034±0.0626 0.8795±0.0189 0.9273±0.0160 0.8677±0.0493 0.8443±0.0211 0.8907±0.0198 

15 0.9128±0.0355 0.8891±0.0095 0.9571±0.0216 0.9064±0.0316 0.8567±0.0088 0.9184±0.0212 

20 0.9436±0.0048 0.8973±0.0168 0.9702±0.0190 0.9122±0.0251 0.8642±0.0176 0.9246±0.0181 

25 0.9591±0.0107 0.9263±0.0220 0.9646±0.0195 0.9133±0.0358 0.9058±0.0025 0.9243±0.0199 

30 0.9659±0.0026 0.9485±0.0209 0.9622±0.0106 0.9379±0.0115 0.9316±0.0081 0.9350±0.0206 

40 

1 0.4524±0.0811 0.5938±0.1166 0.9026±0.0392 0.5744±0.0978 0.7220±0.1034 0.8467±0.0389 

5 0.8323±0.0536 0.9088±0.0267 0.9606±0.0107 0.7804±0.0496 0.8674±0.0325 0.8958±0.0247 

10 0.9696±0.0215 0.9209±0.0284 0.9647±0.0158 0.8858±0.0462 0.9253±0.0120 0.9200±0.0153 

50 

1 0.4041±0.0778 0.6383±0.0484 0.9336±0.0307 0.6090±0.0689 0.6847±0.0356 0.8504±0.0459 

5 0.7858±0.0585 0.9395±0.0480 0.9762±0.0138 0.7905±0.0375 0.9038±0.0307 0.9247±0.0189 

10 0.9387±0.0428 0.9574±0.0331 0.9819±0.0097 0.8931±0.0297 0.9520±0.0083 0.9581±0.0123 

100 

1 0.4888±0.0757 0.6234±0.0075 0.9677±0.0032 0.4702±0.1073 0.6972±0.0954 0.8281±0.0545 

5 0.8951±0.0564 0.9288±0.0401 0.9683±0.0061 0.8389±0.0692 0.9260±0.0238 0.9382±0.0201 

10 0.9527±0.0214 0.9623±0.0703 0.9889±0.0061 0.0692±0.0103 0.9508±0.0219 0.9552±0.0071 
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As shown in Table III, the proposed model achieves the 

highest accuracy in the six experiments from 15 samples to 50 

samples. At the sample size of 10, PF-S and FF-S, which 

directly utilize the prior features, perform better than the 

proposed model, which indicates that the prior features are 

effective for fault identification under small samples. Although 

the proposed model also learns the prior features in the self-

supervised pre-training stage, the learned features are bound to 

have errors because the features learned by the model are 

obtained by the calculation of multilayer neural networks rather 

than by explicitly defined formulas. Especially when the 

amount of training data is small, this error will cause the 

proposed model to fail to achieve better results than PF-S and 

FF-S. Compared with PF-S, GF-S, and FF-S, DCNN is an end-

to-end model, which can process data automatically. However, 

DCNN is prone to problems such as overfitting under 

conditions of small samples. The proposed model is also end-

to-end and incorporates prior diagnosis knowledge and general 

features of data in the training process, so the fault features 

learned by the proposed model are richer than those of an 

ordinary DCNN. Moreover, compared with the three state-of-

the-art methods, the results based on both two sets of fault 

experimental data show that the proposed model has higher 

diagnosis performance under small sample conditions. 

In addition, in Table IV, the proposed model obtained by 

self-supervised pre-training with both prior and general features 

performs better than that obtained by pre-training with a single 

type of feature in most cases. It is worth noting that the smaller 

the number of training samples, the more obvious the advantage 

of the proposed model over other relevant models. Finally, 

under the condition of 100 training samples, the proposed 

model is still able to achieve higher fault identification accuracy 

compared to other methods. 

The features utilized in the proposed model, including prior 

features (PF), general features (GF), and fusion features (FF), 

have a significant impact on the performance of the model. 

Therefore, it is necessary to verify the effectiveness of these 

features for fault classification. We selected five classification 

models and trained them directly using these features for 

comparison. The five models are described as follows. 

1) F-CNN: A convolutional neural network with two 

convolutional layers and two pooling layers is selected, 

the parameters of the convolutional layers are 8@4×1 

(channels @ kernel size ×stride) and the parameters of 

the pooling layers are 2×2 (pool size ×stride). 

2) F-kNN: A k-Nearest Neighbors classifier with the 

number of neighbors of 5. 

3) F-MLP: A two-layer Multi-layer Perceptron with 48 and 

24 nodes when FF is used as input, and 24 and 12 nodes 

when PF or GF is used as input. 

4) F-SVM: A Support Vector Machine with the kernel 

function of Gaussian radial basis function. 

5) F-Softmax: A Softmax classifier. The experimental 

results of this model are given in Table III. 

In the experiments, we use 20 samples as training samples 

and the rest as test samples, and the experimental results are 

shown in Fig. 7. In Fig. 7, the horizontal coordinate represents 

the input features. For example, SQ-PF represents the PF in the 

SQ experimental data. The vertical coordinate represents the 

average accuracy. With only 20 training samples, all three kinds 

of features achieved accuracy of more than 0.7 in all five 

models. It is noteworthy that the accuracy of using FF as input 

exceeds 0.8 in all experiments, which shows that the features 

used in the proposed model are effective for fault classification. 

Proposed method (SQ) = 0.9175 Proposed method (TX) = 0.8904

 
Fig. 7. Fault classification based on traditional classifiers using PF, GF, and FF 

under 20 training samples. The red line and the blue line represent the accuracy 
of the proposed model with SQ data and TX data respectively. 

C. Fault diagnosis under data imbalance 

For many industrial systems, there is an imbalance between 

the amount of normal data and faulty data. Therefore, the 

proposed model is validated using imbalanced data to show its 

applicability in more realistic industrial scenarios. 

We conducted the following experiments based on SQ data. 

In the experiments, 20 samples of each fault type are taken as 

faulty training samples and the rest are used as test samples. The 

number of normal samples is determined according to the data 

imbalance ratio, and if the data imbalance rate is 50, then the 

number of normal training samples is 1000. In the case of data 

imbalance, the recall R  for each type of data is an important 

indicator to evaluate the performance of the model.  

   i

i

T
R class i

P
   (12) 

where 
iP  is the total number of samples contained in class i  

and 
iT  is the number of samples correctly identified in class i . 

We repeated the experiments 10 times and took the average 

results for analysis, as given in Table V.  

From Table V, it can be seen that the recall for faulty samples 

fluctuates and tends to decrease as the imbalance ratio increases. 

And, the recall for normal samples is always 1.0, which is 

because the proportion of normal samples in the training set is 

larger than faulty samples, and therefore the trained model has 

a stronger identification of normal samples. In terms of the 

average accuracy, when the training set is balanced, the 

classification accuracy is 0.9175, and when the data imbalance 

ratio is as high as 50, the classification accuracy can still reach 

0.8236. Thus, it can be seen that the proposed model can still 

achieve relatively high fault identification accuracy even if 

there is a certain degree of imbalance in the data. 
TABLE V 

 RECALL R  UNDER DATA IMBALANCE USING SQ DATA 

 
Imbalance ratio 

10 20 30 40 50 

IF-1 1.0000±0 0.9998±0.0005 0.9988±0.0018 0.9996±0.0009 0.9996±0.0009 

IF-2 0.8162±0.1483 0.8732±0.0902 0.8038±0.1587 0.7464±0.1618 0.7550±0.2113 

IF-3 0.7848±0.1778 0.5608±0.3782 0.6422±0.3244 0.6038±0.3386 0.6004±0.2219 

OF-1 0.8386±0.1188 0.9768±0.0199 0.8846±0.0983 0.8922±0.2182 0.8272±0.1804 

OF-2 0.9366±0.0878 0.8048±0.2140 0.8258±0.1640 0.9268±0.0470 0.8818±0.0565 

OF-3 0.8436±0.2169 0.9222±0.0569 0.9326±0.0792 0.7274±0.1382 0.7016±0.2529 

NC-0 1.0000±0 1.0000±0 1.0000±0 1.0000±0 1.0000±0 

Average 

accuracy 
0.8886±0.0384 0.8767±0.0441 0.8696±0.0801 0.8423±0.0522 0.8236±0.0427 
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D. Analysis of the learned features 

Evaluation of the learned features is an important measure of 

the superiority of the model. We select seven models, i.e., PF-

S, GF-S, FF-S, DCNN, PF-DCNN, GF-DCNN, and the 

proposed model, and then qualitatively observed the learned 

data features using t-SNE technology [35]. Based on the 

classification accuracies in Tables III and IV, we chose to 

visualize the learned features under 20 training samples to 

highlight the superiority of the proposed model, the results are 

shown in Fig.8 and 9. 

(a) PF-S (b) GF-S (c) FF-S (d) DCNN

(g) Proposed(f) GF-DCNN(e) PF-DCNN  
Fig. 8. Feature visualization of SQ experimental data. 
 

(a) PF-S (b) GF-S (c) FF-S (d) DCNN

(g) Proposed(f) GF-DCNN(e) PF-DCNN  
Fig. 9. Feature visualization of TX experimental data. 

 

It can be found that the features used in PF-S and GF-S are 

relatively limited in the ability to characterize the different 

types of data, and there are multiple types of data that are 

misclassified. The distinguishability of features in FF-S has 

been improved due to the combination of prior and general 

features. Under the condition of small samples, the features 

extracted by DCNN are also prone to unclear classification 

boundaries. In contrast, the proposed model can obtain clearer 

classification boundaries than DCNN, therefore, the number of 

misclassified samples is reduced greatly. Finally, the proposed 

model based on fusion features learns more distinguishable 

fault features than the models (PF-DCNN and GF-DCNN) 

based on single feature sources. 

Further, we use the Pearson linear correlation coefficient 

(Pcc) to quantify the correlation of the learned features before 

and after fine-tuning [7]. A higher correlation between the 

features before and after fine-tuning indicates that self-

supervised pre-training is more useful for fault identification 

since the features learned by pre-training have high similarity 

to the features eventually used by the model. As shown in Fig. 

10, the feature learned by the model through pre-training is a 

48-dimensional vector (fusion features), of which the first 24 

dimensions are the prior features and the last 24 dimensions are 

the general features. We will analyze the correlation of the 

features from three perspectives, the first one is the correlation 

between the overall features or fusion features, the second one 

is the correlation between the prior features, and the third one 

is the correlation between the general features. Taking the SQ 

data as an example, we focus on the correlation of the features 

before and after fine-tuning from 10 to 50 training samples. 

Each set of experiments was repeated 10 times and the average 

correlation was taken for analysis. We present the obtained 

results separately according to the health condition labels, as 

given in Fig. 11. 

Prior features (24D) General features (24D)

Fusion features (48D)

 
Fig. 10. Learned features of SQ data before and after fine-tuning (IF-1 condition 
and 20 training samples). 

As can be seen from Fig. 11, the data features learned before 

and after fine-tuning have a certain degree of correlation. 

Moreover, for most kinds of health conditions, the feature 

correlation tends to increase slowly as the number of training 

samples increases, which indicates that the data features learned 

by self-supervised pre-training are indeed useful for the final 

fault identification. The specific analysis results are as follows. 

1) For the inner race faulty data, when the number of 

training samples is small, the correlation of the prior 

features is higher than that of the general features, which 

indicates that the prior features play a greater role in the 

inner race fault identification than the general features at 

this time. And as the number of training samples 

increases, the correlation of the general features 

gradually exceeds that of the prior features. 

2) For the data in the normal condition, feature correlations 

do not vary much with the number of training samples, 

and the correlations of the general features are slightly 

higher than the prior features in most cases. 

3) For the outer race faulty data, we note that the 

correlations of the general features are higher than the 

prior features in almost all cases, which suggests that the 

general features may be more beneficial than the prior 

features in the SQ data for the identification of bearing 

outer race faults. 

Overall, the data features artificially constructed enhance the 

model training through self-supervised learning. More 

importantly, unlike traditional end-to-end black-box models, 

the fault features learned by the proposed model are adapted 

from the artificially constructed ones, so the proposed model 

can be considered to have a certain degree of interpretability. 

E. Discussion 

Finally, the advantages of the proposed model are listed as 

follows. 

1) The proposed model requires only a small number of 

fault signal samples for training. Through self-

supervised pre-training, the proposed model can extract 

rich and discriminative features from a small amount of 

data, thus improving the accuracy of fault identification. 

2) The diagnosis performance of the proposed model is 

enhanced using prior diagnosis knowledge, which is 

generally targeted and reliable. The interpretability of 
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the model is improved. 

3) The network modules like DCAE and DCNN and the 

prior features set used in the presented model are 

substitutable and engineers can easily replace them 

according to the characteristics of the data to be analyzed. 

Certainly, there are some shortcomings for further 

consideration. First, when the number of training samples is 

very small, the performance of the model still needs to be 

further improved. Since the prior features have been 

experimentally shown to be effective under small samples, how 

to make the model further fully learn and utilize the prior 

features may be an effective means to improve the model 

performance. Second, engineers can identify faults in new 

classes based on prior diagnosis knowledge, while the proposed 

model currently can only identify the faults contained in its 

training set and cannot predict new types of faults. Therefore, 

how to identify unseen faults is still a problem worth 

considering for the proposed model. In the future development, 

we may add a prior knowledge embedded zero-shot learning 

module [36] to the proposed model to achieve the identification 

of unseen fault types. 

V. CONCLUSION 

In this paper, we propose a prior knowledge augmented self-

supervised feature learning scheme for intelligent fault 

diagnosis of machines under the condition of small samples. 

We build prior features set based on existing diagnosis 

knowledge and extract general features of data using a deep 

convolutional auto-encoder. A self-supervised learning 

framework is designed using the prior and general features as 

proxy labels for the training of the fault identifier. The trained 

fault identifier can mine rich features from a small number of 

signal samples and achieve relatively high fault identification 

accuracy. The validity of the proposed model is verified based 

on two sets of mechanical fault simulation data. The results 

show that, with the enhancement of prior diagnosis knowledge, 

the proposed model can achieve better performance than related 

methods in the case of small samples. And for future 

development, the proposed model should consider how to learn 

and utilize the prior knowledge more fully and how to use the 

prior knowledge to identify unseen fault types of machines. 
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