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We investigate the sensitivity of cloud feedbacks to
the use of convective parametrizations by repeating
the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea
surface temperature perturbation experiments with
10 climate models which have had their convective
parametrizations turned off. Previous studies have
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suggested that differences between parametrized convection schemes are a leading source
of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with
convection switched off have a similar overall range of cloud feedbacks compared with
the standard configurations. Furthermore, applying a simple bias correction method to
allow for differences in present-day global cloud radiative effects substantially reduces the
differences between the cloud feedbacks with and without parametrized convection in the
individual models. We conclude that, while parametrized convection influences the strength
of the cloud feedbacks substantially in some models, other processes must also contribute
substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen
in the models in subtropical regimes associated with shallow clouds are still present in the
ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in
regimes associated with trade cumulus in the ConvOff experiments but is quite similar in
the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread
in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially
reduced in the ConvOff experiments however, indicating a considerable local contribution
from differences in the details of convective parametrizations. In both standard and ConvOff
experiments, models with less mid-level cloud and less moist static energy near the top of the
boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective
processes in contributing to inter-model spread in cloud feedback is discussed.

1. Introduction
Equilibrium climate sensitivity (ECS) is a standard measure of the sensitivity of climate models
to external forcing, and is defined as the equilibrium change in global mean near-surface
temperature following an instantaneous doubling of CO2. It remains an important quantity
for climate policy, because climate negotiations use the size of the increase in long-term global
mean surface temperature as a metric for dangerous anthropogenic interference with the climate
system [1]. The Fifth Assessment Report of the Intergovernmental Panel on Climate Change
concluded that estimates of the ECS based on observed climate change, climate models and
feedback analysis, as well as palaeoclimate evidence indicate a likely range of 1.5–4.5◦C [2] and
that the dominant source of spread among climate sensitivities from climate models is due to
differences in cloud feedbacks, particularly due to low clouds [3].

The Cloud Feedback Model Intercomparison Project (CFMIP) [4] coordinates a number of
idealized experiments in CMIP5, which perturb sea surface temperatures and CO2 in atmosphere
only experiments forced with observed AMIP sea surface temperatures (SSTs) and also in
idealized aquaplanet configurations [5]. These experiments include satellite simulators which
support quantitative evaluation of clouds using a range of satellite products [6]. Process
diagnostics, such as physical temperature and humidity budget tendency terms [7] and high-
frequency outputs at selected locations [8], are also included to support the generation and
testing of physical hypotheses for cloud feedback mechanisms. CFMIP also coordinates a joint
activity on cloud feedbacks with the global atmospheric system study (GASS). The CFMIP–
GASS intercomparison of SCM and LES (CGILS) aims to evaluate the performance of global
climate model (GCM) physics in single column models (SCMs) using large eddy simulations
(LESs) forced consistently in idealized subtropical cloud feedback scenarios associated with
well-mixed stratocumulus, stratocumulus over cumulus and shallow cumulus regimes [9,10].
Bretherton [11] provides a review of findings from CGILS and other recent high-resolution cloud
feedback studies.

These experiments have led to a number of new studies investigating the physical mechanisms
underlying cloud feedbacks, including [7,9,10,12–21]. A number of these studies have implicated
parametrized convection (both shallow and deep) as playing a central role in the mechanisms
of cloud feedback, although the relative importance of other processes remains unclear.
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Additionally, a number of studies have employed the so-called ‘emergent constraint’ approach
which exploits statistical relationships between observable and predicted quantities across
climate models to constrain climate sensitivity [21–25]. These, along with other studies such as
[26,27], have tended to find that models with mid-to-high climate sensitivities have more credible
simulations of present-day clouds, humidity and convection than those at the lower end of the
model range. Some studies have additionally combined the emergent constraint approach with
physical arguments [21].

Despite such progress, further work is still required to rigorously test the robustness of the
physical mechanisms proposed so far and the constraints that they imply for cloud feedback and
climate sensitivity. Given the nature of most model intercomparison projects, multi-model studies
can usually only demonstrate that results are consistent with a proposed physical hypothesis.
Such hypotheses can be tested more rigorously if we attempt to falsify them using sensitivity
experiments. For example, if a particular mechanism is proposed to contribute to positive
subtropical feedback, then suppressing the processes involved should weaken that feedback. This
process simplification approach has already been applied in some studies with single GCMs [7,14]
but has not yet been applied consistently across multiple of climate models; hence, the findings
of such studies so far remain highly model specific.

The Selected Process On/Off Klima Intercomparison Experiment (SPOOKIE) is a recent
initiative associated with CFMIP which aims to establish the relative contributions of different
areas of model physics to inter-model spread in cloud feedback by switching off or simplifying
different model schemes or processes in turn. Here, we present results from a pilot study
which assesses the impact of convective parametrizations on cloud feedbacks by switching off
convective parametrizations in 10 climate models.

Convective parametrizations are generally employed in climate models to represent transports
of heat, moisture and momentum associated with convective motions at subgrid scales as well as
associated cloud microphysical and precipitation processes [28–30]. Convective parametrizations
enable climate models to simulate various properties of atmospheric convection which cannot
be accurately represented at the resolved scale, such as allowing moist convection to occur
without reaching grid-scale saturation [31]. Previous studies have examined the impact and
benefits of parametrized convection in individual models, both by introducing new convective
parametrizations [32–35] and by running models with convective parametrizations suppressed
[31,36–38]. Additionally, Gettelman et al. [39] and Zhao [40] have demonstrated sensitivity of
cloud feedbacks to details of convective parametrizations in versions of the NCAR and GFDL
models, respectively. These more recent findings (and others discussed below) motivated our
choice to focus on the impact of convective parametrizations on cloud feedbacks in this initial
pilot study.

Cloud feedbacks could potentially be affected in various different ways by both deep and
shallow convective parametrizations. Most obviously, deep convective parametrizations would
be expected to influence the formation of cirrus clouds and so could potentially affect cloud
feedbacks associated with changes in the properties of high clouds. Although a near cancellation
between tropical longwave and shortwave cloud radiative effects (CREs) is observed in regions
of deep convective activity where clouds are optically thick [41], such a cancellation is by no
means guaranteed in climate models, or in the changing climate. Deep convection schemes could
potentially also affect changes in optically thinner cirrus clouds whose impact is mainly in the
longwave, by influencing upper tropospheric humidities across the wider tropics. However, as
noted above, the dominant source of spread in cloud feedbacks in climate models is due to low
clouds. These can potentially be influenced locally by shallow convective parametrizations or
by deep convective parametrizations if they trigger in regions where low clouds are prevalent.
For example, results from CGILS [10] suggest that the ability of SCMs to correctly diagnose the
presence of convection has a substantial impact on low cloud feedback. Zhang et al. [10] proposed
a mechanism for positive subtropical low cloud feedback in climate models whereby increased
entrainment of dry air from the free troposphere into the boundary layer by parametrized
convection in the warmer climate reduces low cloud amounts. Alternatively, it is possible that
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parametrized convection could exert a remote influence on shallow cloud feedbacks in climate
models, for example by affecting the temperature and humidity structure of the free troposphere,
as suggested by Brient & Bony [14]. Sherwood et al. [21] argued that a substantial fraction of the
variation in the strength of low level cloud feedback across models is regulated by the strength of
‘lower-tropospheric mixing’ between low- and mid-levels by small-scale parametrized processes
such as convection and the resolved large-scale shallow overturning circulation in the present-day
climate. These were argued to control the rate at which the boundary layer dries and low cloud
reduces as the climate warms. Sherwood et al. [21] additionally showed that indirect observable
proxies for the lower-tropospheric mixing rate based on the tropical temperature, humidity and
vertical velocity in ascending regions were significantly correlated with ECS and cloud feedback,
statistically ‘explaining’ just under half of the inter-model variance in the ECS. They also showed
evidence of significantly different amounts of low level drying by convective parametrizations
between a subset of models in subsiding regions, and suggested that their lower tropospheric
mixing mechanism could operate in shallow cloud regions as well as in regions of mean ascent.

Motivated in part by these findings, the pilot SPOOKIE experiments have repeated the CFMIP-
2/CMIP5 amip/amip4K experiments with convective parametrizations turned off (convoffamip
and convoffamip4K experiments). These experiments are designed to give an indication of the
impact of the models’ convective parametrizations on cloud feedbacks, and not of convection
in the general sense; convective instability which would be removed by the convective
parametrizations in the standard experiments will instead be removed by the models’ turbulent
mixing schemes and large-scale dynamics in the ConvOff experiments. If the details of convective
parametrizations are indeed responsible for a substantial part of the inter-model spread in
cloud feedback, then these experiments might be expected to exhibit a narrower range of
cloud feedback. Equally, if parametrized convection is responsible for positive subtropical cloud
feedbacks in the GCMs, then the ConvOff experiments would be expected to have neutral or
negative cloud feedbacks.

This study is structured as follows. §2 describes the models employed and lists details of the
convection schemes and the steps which were taken to switch them off. §3a discusses the impact
of switching off convection on the global cloud feedbacks. §3b discusses the impact on cloud
feedbacks in various cloud regimes over the low-latitude oceans. In §3c, we discuss the impact on
present-day cloud variables and relationships between them and the cloud feedbacks. We discuss
the potential role of other processes in contributing to inter-model spread in cloud feedback in §4,
and present our overall conclusions in §5.

2. Models and experimental design
Our experimental design is based on the CFMIP2/CMIP5 amip and amip4K experiments. The
amip experiment forces the atmosphere-only version of the model with observed seasonally and
inter-annually varying SSTs and sea ice concentrations, and the amip4K experiment applies a
uniform +4 K SST perturbation to the amip experiment [4]. This approach is derived from that of
Cess et al. [42] which originally diagnosed cloud feedbacks in perpetual July experiments forced
with an observed climatology and subject to a uniform +2 K warming. Many of the amip/amip4K
experiments used here are pre-existing CMIP5 experiments, but some were run specifically for
this intercomparison. These experiments were then repeated with convective parametrizations
switched off. Horizontal and vertical resolutions were maintained, but in some cases, other details
were changed to maintain the stability of the integrations. A brief description of each model, its
convection scheme and the steps taken to switch convection off follows for the various models.
Unless stated otherwise below, we use the amip/amip4K experiments from CMIP5. All of the
convection off experiments were performed specifically for this study. All experiments were run
for 30 years from January 1979 to December 2008, unless stated otherwise below.

CanAM4 [43] has a horizontal resolution of T63 with 35 layers in the vertical. CanAM4
uses a mass flux scheme for deep convection, including aerosol chemistry [44], a prognostic
closure based on convectively available potential energy [45] and a parametrization of convective
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momentum transport [43]. A separate shallow convection scheme is used which is allowed to
operate at the same time and location as the deep convection [33]. For the ConvOff experiments,
the model was modified, so that it completely bypassed the shallow and deep convection by
setting the mass flux to zero.

CESM1-CAM5.1-FV2 [46] was run specifically for this study from UW with a resolution of 1.9◦
latitude × 2.5◦ longitude and 30 vertical levels. Deep convection within the model is parametrized
using a plume ensemble approach with closure based on convective available potential energy as
computed for an entraining parcel [44,47]. This parametrization includes momentum transport
by convection [48]. The model uses a separate shallow convection parametrization which is
formulated with a bulk plume approach and mass-flux closure [49]. The shallow convective
parametrization is permitted to operate on all model levels. For the ConvOff experiments,
both the deep and shallow convective parametrizations were disabled. Dynamics and physics
timesteps for the simulations were shortened from their default values to avoid numerical
instabilities.

CNRM-CM5 [50] has a horizontal resolution of 1.4◦ and 31 levels. The deep convection scheme
is described by Bougeault [51] and follows a mass-flux approach. It triggers under conditions
related to total (large and subgrid scale) moisture convergence at low levels and vertical
conditional instability (CAPE), and the scheme is closed using the Kuo [52] hypothesis. CNRM-
CM5 does not have a separate treatment of shallow convection. In the ConvOff experiments,
the deep convection scheme was bypassed, and no other changes were required to make the
model run.

GFDL-AM2 [53] was run specifically for this study at UNIST with a horizontal resolution
of 2.5◦ × 2◦ and 24 vertical levels. GFDL-AM2 uses the relaxed Arakawa–Schubert convection
scheme [54] allowing some modifications documented in [53] (i.e. precipitation efficiency and re-
evaporation). There is no special treatment for shallow convection. This was completely switched
off in the ConvOff experiments. No other changes were required to make the model run.

GFDL-HIRAM [55] has 50 km horizontal resolution and 30 levels in the vertical, and the
amip4K experiment was run specifically for this study. The convection scheme is that of
Bretherton et al. [56] with additional modifications documented in [55]. It is a mass flux scheme
with a single bulk plume which both entrains and detrains. The entrainment/detrainment rate
is computed based on buoyancy sorting, which interacts with the environment dynamically and
thermodynamically. The amip/amip4K experiments were provided for the 25 year period 1981–
2005. All elements of the convection were switched off in the ConvOff experiments, which were
provided for the 20 year period 1981–2000.

HadGEM2-A [57] has a horizontal resolution of 1.25◦ latitude × 1.875◦ longitude and
38 vertical levels. The deep convective parametrization is a mass flux scheme based on
Gregory & Rowntree [58] but modified to include a CAPE based closure, convective
momentum transport and a simple radiative representation of anvils [59] and more recently
an adaptive treatment of detrainment [60]. Shallow convection is treated separately and uses
a closure based on [61] with entrainment/detrainment rates as in [62]. Both shallow and
deep schemes were switched off in the ConvOff experiments. The timestep was shortened
from 30 to 15 min to improve model stability. Additionally, we confirmed that reducing the
timestep does not substantially affect the cloud feedbacks in the standard configuration with
convection included.

The IPSL-CM5A-LR model has a resolution of 2.5◦ × 1.875◦ in longitude–latitude, and 39
vertical levels (including eight levels less than 2 km). The physics package of this model version
is described in [63,64]. The parametrization of shallow and deep convection is based on Emanuel
[65] and modified by Emanuel [66] and Grandpeix et al. [67]. This scheme is based on a mass flux
representation of adiabatic saturated updraughts and downdraughts, unsaturated downdraughts
(driven by re-evaporation of precipitation) and the induced motions of the environmental
air. The mixing between cloud and environmental air is based on the ‘episodic mixing and
buoyancy sorting’ scheme developed by Emanuel [65]. The simulations with the convection
scheme switched off use the same physics, except that the time step (15 min in the original set-up)

 on October 5, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


6

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A373:20140414

.........................................................

was reduced by a factor of two (7.5 min) to avoid numerical instabilities. Previous investigations
have shown that the model climatology was not significantly dependent on the time step for this
range of values. The IPSL-CM5A-LR ConvOff experiments were provided for the 27 year period
1979–2005.

MIROC5 [68] has a horizontal resolution of T85 (1.4◦) and 40 levels in the vertical. The
convection scheme has a mass flux closure similar to Arakawa–Schubert, but the entrainment rate
varies in time and space depending on the temperature and humidity [69]. Shallow convection
is not treated separately, but the scheme may represent some shallow cumulus clouds. The
entire convection scheme was switched off in the ConvOff experiments. No other modifications
were necessary.

MPI-ESM-LR has a horizontal resolution of T63 (which translates to around 200 km grid
spacing at the equator) and 47 levels in the vertical. It incorporates modified Tiedtke–Nordeng
parametrizations of shallow, deep and mid-level convection [70,71], which are modelled by
a unified mass flux formulation with a quasi-equilibrium closure for deep convection, and a
moisture closure for shallow convection [72]. All of the above were switched off in the ConvOff
experiments, and no other changes were necessary, although the model crashed a few times with
high wind speeds. It could in each case however be continued by introducing a small change to
the atmospheric state.

MRI-CGCM3 [73] has a resolution of (T159, L48). The Yoshimura cumulus scheme [74] is
a mass flux spectral cumulus parametrization scheme that explicitly considers an ensemble of
multiple convective updrafts. This cumulus scheme has the advantages that the variables in
entraining and detraining convective updrafts are calculated in detail layer-by-layer as in the
Tiedtke scheme, and that a spectrum of convective updrafts with different heights owing to
difference in entrainment rates is explicitly represented, as in the Arakawa–Schubert scheme. No
shallow convection scheme is used, and the Yoshimura cumulus scheme is designed to reproduce
all depths of convection. For the ConvOff experiments, all elements related to convection
scheme were switched off. No additional changes were required to make the model run stably
without convection.

3. Results

(a) Global mean cloud feedbacks
Figure 1a shows a scatterplot of the global mean cloud feedbacks in the 10 models examined
with and without convective parametrization. These cloud feedbacks are diagnosed using the
commonly employed method of taking the change in the long-term annually averaged global
mean net CRE between the amip and amip4K experiments for all available years (as documented
in §2) and dividing by the corresponding change in the long-term annually averaged global
mean near-surface temperature [75]. This method tends to yield less positive/more negative
values of cloud feedback than alternative approaches based on the alternative ‘partial radiative
perturbation’ method because it includes the masking effect of climatological cloudiness on non-
cloud feedbacks [76]. It is however a good predictor of inter-model spread in cloud feedback [77].

By comparing the models’ global cloud feedbacks with and without convective
parametrization, we can directly test the hypothesis that a substantial fraction of the inter-model
spread is due to differences in the details of the convective parametrizations. If this were the
case, then we would expect to see a considerable reduction in the inter-model spread in the
ConvOff experiments. The standard models have a range of 1.07 (−0.34 to 0.73) W m−2 K−1. This
range is not reduced however in the ConvOff experiments; in fact it increases by 23% to 1.32
(−0.52 to 0.80) Wm−2 K−1. Similarly, the standard deviation increases by 25%. At face value, this
would seem to indicate that differences in the details of convective parametrizations are not the
dominant cause of inter-model spread in global mean cloud feedbacks in this particular selection
of climate models.
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Figure 1. (a) Global mean net cloud feedbacks in CFMIP amip/amip4K experiments and convoffamip/convoffamip4K
experiments without parametrized convection. This is diagnosed as the change in the global mean net cloud radiative effect
(CRE) between the amip and amip4K experiments, normalized by the global mean near-surface temperature response and
includes the effects of climatological cloud masking on the non-cloud feedbacks. Black lines denote the ranges in the values
and the diagonal line indicates the one-to-one line. The lengths of the vertical coloured lines indicate the differences between
standardandConvOffvalues for the individualmodels. The linear correlation coefficient r is also shown. Panel (b) shows the same
but with the ConvOff feedbacks rescaled by the factor required to bring the global mean net CRE in the convoffamip experiment
into agreement with the standard amip experiment. Panel (c) shows the result of scaling all feedbacks by the factors required
to bring their control experiments into agreement with an observed value of the net CRE (−17.1 W m−2).

Before drawing firm conclusions on this point however, we consider an alternative potential
explanation for this result. Previous studies which have examined the impact of shallow cumulus
parametrizations in models have shown that the introduction of shallow convection schemes
tends to reduce cloud in the boundary layer [32–35]. It is, in principle, possible that enhanced
cloudiness in the ConvOff experiments could in itself have an impact on the cloud feedbacks
which would not be present if all of the models were retuned to have similar amounts of cloud as
the standard configurations. If this effect was to vary between the models, it could, in principle,
inflate the inter-model spread in the feedbacks and offset a reduction in spread associated with the
removal of differences between the convection schemes. For example, if switching off convection
in a model were to say double the amount of cloud in the amip and the amip4K experiment,
then that would imply a doubling of the difference between them—i.e. a doubling of the cloud
response. Such a scenario would imply a relationship between the amount of cloud in the control
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simulation and the strength of the cloud response to climate change, as has been proposed by
Brient & Bony [13]. They found a relationship between the amount of subtropical low level cloud
and the magnitude of its change in the warmer climate across different versions if the IPSL GCM.
This behaviour was interpreted in terms of a ‘beta feedback’ between low level cloud fraction, the
low clouds’ longwave radiative cooling and the relative humidity of the boundary layer. Stronger
coupling between these quantities was argued to result in a larger low level cloud fraction and
an amplification of any change in low cloud fraction in the warmer climate. If such relationships
are present in the models more generally, then it might be possible to estimate what the low level
cloud response would be in the ConvOff models if they were tuned to agree with the standard
versions. This could for example be achieved by scaling the convoffamip and convoffamip4K
low level cloud fractions by the factor required to bring the convoffamip low cloud fraction
into agreement with the amip value—i.e. dividing them both by the low cloud fraction from
convoffamip and multiplying by that from the standard amip experiment. This would effectively
scale the ConvOff cloud response by the same factor. Equivalently, we can estimate approximately
what the global mean cloud feedback would be following a retuning by taking the global mean
net cloud feedback in the ConvOff experiments and scaling that by the ratio of the global mean
net CRE from the amip experiment to that from convoffamip. Figure 1b shows the relationship
between the cloud feedbacks in the standard experiments as in figure 1a versus rescaled ConvOff
feedbacks calculated in the manner described above, to give an estimate of the spread in the
ConvOff feedback making an allowance for the effect of changes in the present-day net CRE.
This results in a range of 0.91 (−0.30 to 0.61) W m−2 K−1 for the scaled ConvOff feedbacks, a
reduction of 31% compared with their original range of 1.32 (−0.52 to 0.80) W m−2 K−1. Similarly,
the standard deviation is reduced by 38%. This constitutes a modest reduction of 15% compared
with the range of the standard models (1.07), but not a substantial one. Similarly, the standard
deviation reduces by 22%. This suggests that even if the ConvOff experiments were re-tuned
to bring their control simulations into closer agreement with the standard model versions, the
overall range in their cloud feedbacks would not be greatly reduced, supporting our initial
conclusions above.

We should of course bear in mind the fact that this estimate of the impact of retuning is very
simplistic and could be inaccurate. However, there are reasons to be optimistic. First, most of the
ConvOff feedback estimates are closer to the standard ones after they are rescaled. The points
in figure 1b are mostly closer to the diagonal line than those in figure 1a, and the correlation
coefficient between standard and ConvOff cloud feedbacks increases from 0.55 to 0.65 with the
rescaling, becoming significantly different from zero at the 5% confidence level. This is what we
would expect to see if (i) the scaling method was correctly adjusting for the effects of increased low
level cloudiness on the cloud feedbacks in the ConvOff experiments and (ii) such impacts were
contributing substantially to the differences between the cloud feedbacks in the standard and
ConvOff experiments. Additionally, we find that if all of the feedbacks (standard and ConvOff)
are rescaled to values consistent with the observed net CRE value of −17.1 W m−2 from the CERES
EBAF (Clouds and Earth’s Radiant Energy Systems Energy Balanced and Filled) dataset [78],
then the correlation increases even further to 0.81 (figure 1c). This suggests that the rescaling is
generally bringing the standard and ConvOff feedbacks into closer agreement, which would only
be expected if the rescaling approach was working effectively. Here again the rescaled ConvOff
experiments have only a slightly smaller spread than the standard experiments (a reduction again
of 15% in the range and 22% in the standard deviation). It is also interesting to note that rescaling
the standard experiments to have the same global mean net CRE reduces the range in their global
cloud feedbacks slightly by 8% and the standard deviation by 13%, which suggests that a small
part of the spread in the standard experiments might be attributable to differences in present-day
cloud biases.

Although the impact of parametrized convection on the overall range is relatively small
(a reduction of 15% allowing for changes in present-day CRE), we note that larger impacts are
present in some models which do not affect the overall range in this particular ensemble. The
largest impact of turning off convection is seen in GFDL AM2, in which the net cloud feedback
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increases from −0.05 to 0.75 W m−2 K−1, an increase of 0.8 W m−2 K−1. This is substantial
compared with the overall range in the standard experiments of 1.07 W m−2 K−1. However, this
model has the largest increase in global mean net CRE in the control (−31.9 in amip compared
with −80.1 W m−2 in convoffamip). Once the GFDL AM2 ConvOff feedback is rescaled by the
factor 31.9/80.1, it becomes 0.3 W m−2 K−1, just 0.35 W m−2 K−1 larger than the standard GFDL
AM2 feedback. This change is now considerably smaller than the overall cloud feedback range of
1.07 W m−2 K−1. Turning off parametrized convection can have substantial impacts on the global
cloud feedback if the net CRE in the control simulation is allowed to change substantially, but in
the models examined here, this effect is considerably smaller in models where the net CRE in the
control does not change substantially, or where the effects of changing the present-day CRE are
taken into account. It is also, in principle, possible that making different changes to the details of
convective parametrizations which are not included in our current ensemble could have larger
impacts on global cloud feedbacks than those seen here. Suppressing the convection schemes in
a particular set of models tells us about the impact of the structure and parameter settings of the
convection schemes in those models, and not the impact of all possible convection schemes or
parameter settings, which might have more extreme impacts. Previous studies with individual
models have in some cases indicated that changing parameter values in convection schemes can
have a substantial impact on ECS. For example, Rougier et al. [79] show that weakening lateral
entrainment in the convection scheme in HadSM3 increases the climate sensitivity substantially.
However, Joshi et al. [80] found that that the high sensitivity in HadSM3 on reducing entrainment
is attributable to a strong stratospheric water vapour feedback, and that the impact on the cloud
feedback is small. It is also important to note that our current standard and ConvOff ensembles
already span the range in cloud feedbacks typically seen in climate models [75]. Hence, adding
new models or different convection schemes to our current ensembles would not affect our
finding that the models can explore the full range of contemporary cloud feedbacks without
parametrized convection.

In summary, our conclusion is that while parametrized convection influences the strength of
the cloud feedbacks substantially in some models, differences in convection schemes between
the models do not have a substantial impact on the overall range in global cloud feedbacks
in the models examined here. The models are capable of exploring much of the overall range
in feedbacks without convective parametrizations active, indicating that other aspects of model
formulation are equally important in determining the overall range of cloud feedback.

(b) Cloud feedbacks over the low-latitude oceans
Many studies have highlighted the dominant role of the low-latitude oceans in contributing to
inter-model spread in cloud feedback [77,81,82]. Such studies have also identified a dominant
role for shallow cloud feedbacks over the tropical oceans by sorting the model responses into
shallow versus deep cloud regimes using quantities such as 500 hPa vertical velocity or lower-
tropospheric stability (LTS), the latter quantity being defined as the difference in potential
temperature of the air at 700 hPa and at the surface [83]. Medeiros & Stevens [84] classified
tropical clouds using joint distributions of these two variables, finding that vertical velocity
separates regimes dominated by boundary layer clouds from those associated with higher and/or
deeper clouds, whereas LTS is more effective at separating shallow cumulus and stratocumulus
within shallow cloud regimes. They also noted that precipitation and 500 hPa vertical velocity
are similarly effective in identifying regions of tropical convection. We have experimented with
various compositing approaches for this study, and have developed a single hybrid index based
on precipitation and LTS which aims to combine the benefits of these two indices. We chose
precipitation, because we consider this to be a more robust indicator of the strength of tropical
moist convection than, say, the vertical velocity at 500 hPa, which will be more sensitive to the
profile of the resolved vertical motion.
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Figure 2. Scatterplot of LTS and precipitation from the HadGEM2-A amip experiment for February 1979 over the low-latitude
oceans (30◦N/S). The angular LTS/precipitation index (ALPI) is diagnosed as the angle of declination of a line connecting each
point in LTS/precipitation space with an ‘anchor point’ on the top right. Locations with the strongest precipitation rates give
values of ALPI of around 5◦, whereas locations with the largest values of LTS result in an ALPI value of around 85◦. Grey lines
indicate the boundaries of ALPI percentile bins each covering 10% of the low-latitude ocean area.

Figure 2 shows a scatterplot of precipitation against LTS for a single monthly mean which
serves to illustrate the difficulties of using either variable alone to characterize the joint
distribution. Much of the variation in LTS occurs in a narrow range of weakly precipitating
regimes and so cannot be captured by a precipitation based index, whereas much of the variation
in precipitation occurs in a narrow range of weak LTS values. The angular LTS/precipitation
index (ALPI) is designed to sample the joint distribution of both variables and is calculated using
the following procedure. An ‘anchor point’ is formed near the location [LTSmax, Pmax] which
appears on the top right of the scatterplot in figure 2. The normalized distances of each LTS and
precipitation value from this anchor point are then calculated thus:

LTSdistance = LTSmax − LTS
LTSmax − LTSmin

+ 0.1 (3.1)

and

Pdistance = Pmax − P
Pmax − Pmin

+ 0.1. (3.2)

ALPI is then diagnosed as the angle of declination in degrees of the line taken between the data
point and the anchor point in normalized LTS/precipitation space:

ALPI = tan−1
(

Pdistance

LTSdistance

)
. (3.3)

The values of 0.1 are added to move the anchor point slightly, thus avoiding division by zero
for the largest values of LTS while treating LTS and precipitation symmetrically. This reduces the
range of ALPI values taken from 0–90◦ to 5–85◦.

Figure 3 shows composites of present-day CRE over the low-latitude oceans in the standard
and ConvOff experiments, sorted into area-weighted percentiles of ALPI. These are calculated
using monthly means for all years available in each experiment (see §2), by sorting each month
by ALPI percentiles and averaging the results in each bin in time. Percentiles are used to ensure
that the individual bins each cover one tenth of the total area, following the approach of Wyant
et al. [85]. The areas contributing to each of the bins will thus be the same in the present and future
climate, removing any need to take account of changing bin populations as necessary when using
fixed intervals. The 0–10% percentile range of ALPI includes the tenth of the tropical ocean area
with the strongest precipitation, and captures the strongest values of the longwave CRE in each
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Figure 3. Composites of net, shortwave and longwave cloud radiative effect (CRE) over low-latitude oceans (30◦N/S) in the
amip control experiments (a,c,e) and convoffamip (b,d,f ), sorted by percentiles of the angular LTS/precipitation index (ALPI).
Black diamonds denote correlations with the net cloud feedback in the same ALPI bin which are significant at the 95% level.
Squares indicate a significant correlation with the values in the bin and the average of the net cloud feedback over the entire
low-latitude ocean domain. Ensemble mean values are shown with a black dashed line.

of the models (figure 3e,f ) as well as the largest upper-level cloud fractions (figure 4a,b) and ice
water paths (figure 5c,d). Meanwhile, the 80–100% ALPI range covering the strongest regimes of
LTS includes the local maxima in low-level cloud fractions (figure 4e,f ) and minima in the net CRE
(figure 3a,b) present in many of the models and in the ensemble mean.

Figure 6 shows equivalent composites of the cloud feedbacks. These are diagnosed by sorting
the net CRE in the amip and amip4K experiments into percentiles of ALPI, taking the difference in
each bin and then dividing by the global mean change in near-surface temperature. This diagnosis
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Figure 4. As figure 3 but for maximum low, mid and high cloud fractions. These are dimensionless, taking values between 0
and 1, and are diagnosed from profiles of monthly mean cloud fraction on model levels by taking the maximum values in the
pressure ranges 0–440, 440–680 and 680 hPa–surface.

of the cloud feedback will include the effects of cloud masking as discussed above. Shortwave
cloud masking is negligible over the tropical oceans, but the longwave component is expected to
contribute up to −1 W m−2 K−1 to the longwave and net CRE responses in the subsiding regions
of the tropics and up to −2 W m−2 K−1 in deep convective regions (see [86] and its fig. 10). In the
warmer climate, both LTS and precipitation increase on average across the tropics; the position
of the anchor point is tied to the maximum LTS and precipitation values, and the equally sized
ALPI bins continue to sample comparable sections of the tropical cloud regime distribution; for
example, the 0–10% percentile bin continues to include the 10% of the tropical ocean area with the
strongest precipitation.
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Figure 5. Asfigure 3 but for liquidwater path (LWP) and icewater path (IWP). The compressed ranges of the LWPand IWP scales
are chosen to support comparison of the smaller values, but by necessity exclude the 0–10th percentile values of LWP for the
CNRM-CM5 convoffamip experiment (1.0 mm) and the 0–10th percentile values of IWP for GFDL AM2 and HIRAM convoffamip
experiments (0.47 and 0.51 mm, respectively).

Figure 6c shows that the standard models have largely positive shortwave cloud feedbacks in
the 40–100th percentile range of ALPI, where shallow clouds are expected to dominate the cloud
feedbacks. Based on analysis of cloud feedbacks in single column versions of several GCMs,
Zhang et al. [10] proposed a mechanism for positive subtropical feedback in climate models
whereby increased entrainment of dry air from the free troposphere into the boundary layer
by parametrized convection in the warmer climate reduces cloud. Additionally, Sherwood et al.
[21] argued that enhanced small-scale lower-tropospheric mixing of moisture by parametrized
processes such as convection in the warmer climate contributes (along with other factors) to
positive low cloud feedbacks in models. The ConvOff experiments should provide an indication
of the relative importance of these processes in the full models; if, for example, the dominant cause
of the positive cloud feedback in the models was due to the action of the parametrized convection
schemes, then we would expect to see substantial reductions in this feedback’s magnitude in the
ConvOff experiments. Comparison of the standard and ConvOff feedbacks in figure 6 indicates
that this is not generally the case. The ensemble mean net and shortwave cloud feedbacks are if
anything slightly more positive in the 40–100th percentile ranges. The magnitude of the positive
subtropical cloud feedback is reduced slightly in some cases (e.g. in IPSL-CM5A-LR, HadGEM2-A
and CNRM-CM5) but still remains positive in the 80–100th percentile range where stratocumulus
clouds are expected to dominate the cloud feedback. These results indicate that processes other
than parametrized convection are largely responsible for positive subtropical cloud feedback in
the climate models examined here. For example, Zhang et al. [10] also suggest that enhanced
cloud top entrainment by the models’ boundary layer schemes might contribute to positive
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Figure 6. Composites of net, shortwave and longwave cloud feedback over low-latitude oceans (30◦N/S) in the amip/amip4K
experiments (a,c,e) and convoffamip/convoffamip4K experiments (b,d,f ), sorted by percentiles of the angular LTS/precipitation
index (ALPI). Regions of strongest precipitation associated with deep convection fall in the lower percentiles while regions
of strong static stability where shallow clouds predominate fall into the higher percentiles. The black dashed line shows the
ensemble mean values in each bin.

cloud feedback, whereas Sherwood et al. [21] argue that enhanced lower-tropospheric mixing
by resolved shallow circulations will also contribute.

Sherwood et al. [21] also argue that inter-model differences in the strength of small-scale lower-
tropospheric mixing by parametrized convection contribute to the spread in the low-level cloud
feedback in models. If this was a substantial effect in our ensemble, then we might expect to
see a reduction in the range in net and shortwave cloud feedback in the mid–upper ALPI range.
However, our results show that the inter-model range in net and shortwave cloud feedback is not
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greatly changed in the upper ALPI range (where stratocumulus clouds are expected to dominate
the feedbacks), whereas it actually increases slightly in the mid ALPI range where we expect
shallow cumulus clouds to dominate.

Figure 6e,f does however show evidence for convective parametrizations making a substantial
contribution to inter-model spread in one aspect of cloud feedback; namely that of the longwave
cloud feedback in strongly precipitating regions of the tropics in the 0–30th percentile range.
The range of this feedback is substantially reduced in the ConvOff experiments, indicating
a considerable local contribution from inter-model differences in the details of convective
parametrizations. We also considered the possibility that the reduction in spread was caused
by changes in water vapour and/or lapse rate feedbacks via their cloud masking contributions
to the change in longwave CRE; we ruled this out, however, as the reduction in spread is also
clearly seen in the outgoing longwave radiation response but not the clear-sky equivalents (not
shown). In contrast to the strongly precipitating regimes, the inter-model range in longwave cloud
feedback increases slightly in the 50–100th percentile ALPI range in the ConvOff experiments,
which could be a consequence of increased diversity in properties of the models’ cirrus clouds in
the absence of retuning.

(c) Impact of convective parametrization on present-day cloud variables and relationships
with cloud feedbacks

Here, we discuss the impact of convective parametrizations on various cloud variables in the
present-day simulations, and their relevance to the cloud feedbacks. Many studies have identified
statistically significant relationships between climate model predictions of climate sensitivity or
cloud feedback and aspects of their present-day simulations which are, in principle, observable
[21–25]. The use of such relationships to place observational constraints on climate predictions
from models has recently come to be known as the ‘emergent constraint’ approach [87].
Caldwell et al. [88] identify a number of potential pitfalls with this approach, and argue that
such ‘data mining’ approaches are best used to identify potential relationships which are then
validated or discarded using physically based hypothesis testing. Sherwood et al. [21] is one
of the relatively few studies of this type which develops and interprets such constraints in
conjunction with testable physical arguments. In this section, we identify a number of statistically
significant relationships between present-day cloud properties within ALPI regimes and the
net cloud feedbacks within those regimes and also averaged over the entire low-latitude ocean
area. Our results are used to motivate the following discussion of potential physical processes
or mechanisms other than those associated with convective parametrization which might be
contributing to inter-model spread in cloud feedback, and how such ideas could be tested
via further sensitivity experiments in the future. Note that in this study we mainly focus on
relationships between cloud properties and cloud feedbacks within regimes, and do not attempt
to find relationships with overall climate sensitivity, the spread of which depends on other factors
as well as cloud feedback [77,82]. The discussion below focuses on relationships which appear
in both ensembles; we consider correlations which are present in one ensemble or the other but
not both unlikely to be robust or relevant to the processes explaining the overall spread in cloud
feedback.

We return to figure 3 which shows composites of the present-day CRE from the models. The
near cancellation between tropical longwave and shortwave CRE observed in regions of deep
convective activity where clouds are optically thick [41] is not reproduced by a number of the
standard models (for example in the 0–30th percentile ALPI range), and this is exacerbated in
the ConvOff experiments. These generally have more negative shortwave and net CRE values
across the tropics, in line with our expectation of increased low-level cloudiness. Figure 4 confirms
that low-level cloud fraction is larger as expected, although figure 5 additionally indicates
considerably larger grid-box mean liquid water paths (LWPs) in the ConvOff models compared
with the standard configurations, which may additionally contribute to the larger magnitude of
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the net and shortwave CRE. This is particularly notable in GFDL AM2, which has relatively large
values of both low cloud fraction and LWP in its ConvOff experiment.

The ConvOff models also have a tendency for increased values of longwave CRE in the
40–100th percentile range (figure 3e,f ) which we attribute to a combination of increased high-
level cloud fraction (figure 4a,b) and ice water path (IWP; figure 5c,d). One possible explanation
for this might be that, in the absence of convective parametrization, cloud condensate is rained out
less efficiently in deep convective regions, and this increases cirrus outflow into the surrounding
regions in the ConvOff experiments. The ConvOff experiments show larger cloud liquid and ice
water paths in strongly precipitating regions, consistent with this idea (figure 5).

The ConvOff models also show a larger spread compared with the standard models in
longwave CRE (figure 3e,f ), high-level cloud fraction (figure 4a,b) and IWP (figure 5c,d), which
may contribute to the slightly larger spread in longwave cloud feedback in the 40–100th percentile
range discussed in the previous section.

Figure 3 also shows correlations between the CRE values for the models in each ALPI bin and
the net cloud feedback in that bin (diamonds) and also the net cloud feedback averaged over the
entire low-latitude ocean area covered by the 10 ALPI bins (squares). These are plotted only if they
are statistically significant at the 95% level, as determined by the resampling bootstrap method
[89], sampling with replacement 10 000 times. In the ConvOff experiments, the shortwave CRE in
the 40–100th percentile range is significantly anti-correlated with the net cloud feedback, both
within the equivalent ALPI bins and across the low-latitude oceans. Because the GFDL AM2
ConvOff experiment is an outlier, we checked to see whether these correlations were mainly
reflecting the unusual behaviour of this one model by repeating the calculation without it. With
GFDL AM2 removed, the ConvOff experiments show similar correlations, but confined to the
80–100th percentile range only for the shortwave CRE only (not shown), much like that seen
in the standard experiments in figure 3c. Hence, both ensembles hint at a tendency for the
models with the largest magnitudes of the shortwave CRE in the most stable cloud regimes to
have more positive cloud feedbacks in those regimes. This provides support for the argument of
Brient & Bony [13] discussed above, in which models with more low level cloud tend to have
more positive feedbacks. Additional support for this argument is provided by the fact that the
low cloud fractions in the 90–100th percentile range are positively correlated with the net cloud
feedbacks in the same range (figure 4e,f ).

Figure 3e,f also shows that both the standard and ConvOff ensembles have positive
correlations between the values of the longwave CRE in the 90–100th percentile range and the
cloud feedback averaged over the low-latitude oceans, indicating that models with stronger
longwave CRE tend to have more positive cloud feedbacks. Figure 4b and 5c show similar
correlations between the low-latitude ocean cloud feedback and high cloud fraction in the
ConvOff ensemble and IWP in the standard models, respectively.

Additionally, both ensembles have mid-level cloud fractions which are anti-correlated with
the low-latitude ocean cloud feedback and also with the local net cloud feedback over much
of the 0–70th percentile range (figure 4c,d). The robustness of the anti-correlation between mid-
level cloud and cloud feedback across the two ensembles, combined with the large area over
which such correlations are present, suggests that the processes controlling mid-level cloudiness
in the tropics should be considered in any arguments put forward to explain the mechanisms of
inter-model spread in cloud feedbacks over the tropical oceans.

We also examined ALPI composites of a number of other quantities including measures
of vertical gradients in temperature, humidity and subsidence rate as in Sherwood et al. [21]
(not shown). These indices did not show robust correlations with feedbacks across both of our
ensembles and so we do not discuss them further here. We also examined the moist static energy
(MSE), a thermodynamic quantity which measures the total energy in a parcel of air, including
sensible heat owing to temperature, latent heat owing to water vapour and potential energy
owing to height, which is defined as

MSE = CpT + Lvq + gz,

 on October 5, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


17

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A373:20140414

.........................................................

standard models

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

co
rr

el
at

io
n

co
rr

el
at

io
n

ConvOff models

co
rr

el
at

io
n

co
rr

el
at

io
n

0 10 20 30 40 50

percentiles of ALPI (%) percentiles of ALPI (%)

60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

(a) (b)

(c) (d)

MRI-CGCM3 
MPI-ESM-LR 
CESM1 CAM5
MIROC5 
GFDL HIRAM

CanAM4 
HadGEM2-A 
CNRM CM5
GFDL AM2
IPSL CM5A LR

310

315

320

325

330

335

340

310

315

320

325

330

335

340

310

315

320

325

330

335

340

310

315

320

325

330

335

340

70
0 

hP
a 

M
SE

 (
kJ

 k
g–1

)
85

0 
hP

a 
M

SE
 (

kJ
 k

g–1
)

Figure 7. As figure 3 but for moist static energy (MSE) at 700 and 850 hPa.

where Cp is the specific heat of air at constant pressure, T is temperature, Lv is the latent heat
of vaporization, q is the specific humidity, g is the acceleration owing to gravity and z is the
height above the surface. Source terms for MSE in the atmosphere include surface sensible and
latent heat fluxes and absorption of solar radiation, whereas longwave radiative cooling is the
major sink term. MSE is redistributed within the atmosphere in the vertical by convective and
turbulent mixing processes, and both vertically and horizontally by the large-scale atmospheric
circulation. Because MSE is conserved during phase changes between water vapour and liquid
water associated with cloud condensation and evaporation of clouds and precipitation it is a
convenient indicator of heat transport within the atmosphere in the presence of clouds and
precipitating moist convection [31,90]. MSE budgets have more recently been used in studies
examining the influence of changes in large-scale advection, convective and turbulent mixing
on cloud feedbacks [7,14]. Figure 7 shows that significant anti-correlations are present between
the models’ cloud feedbacks and their present-day values of the MSE in the lower troposphere,
which is consistent with the argument that the overall spread in cloud feedback is regulated by
processes associated with lower-tropospheric mixing, as proposed by Sherwood et al. [21]. In the
standard models, the correlations are seen with the MSE at 850 hPa, a level chosen by Sherwood
et al. [21] to represent thermodynamic properties near the top of the boundary layer. Similar
correlations are present in the ConvOff models at the slightly higher level of 700 hPa, usually
considered to be more representative of the lower free troposphere. It is however possible that
in the absence of parametrized convection, turbulent mixing plays more of a role in transporting
water vapour into the lower free troposphere and in doing so deepens the boundary layer to have
a top closer to 700 hPa. The possibility of deeper boundary layers in the ConvOff experiments is
supported by a tendency for slightly larger mid-level (440–680 hPa) cloud fractions in the ConvOff
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experiments (figure 4). The presence of relationships between low level MSE and cloud feedback
in both standard and ConvOff models again suggests that inter-model differences in parametrized
convection are not the dominant cause of overall spread in the cloud feedbacks in these models,
and that other processes are largely responsible. We discuss such possibilities further below.

4. Discussion
Our results indicate that inter-model differences in the details of convective parametrizations
cannot explain the overall range in cloud feedbacks in the models examined here; the models
exhibit comparable spread in cloud feedback when their convective parametrizations are
switched off. Here, we discuss other processes which could be contributing to inter-model spread
in cloud feedback, and suggest some ways in which such ideas could be tested using further
process simplification experiments in future work.

Sherwood et al. [21] and Zhao [40] both argue that precipitation efficiency plays an important
role in cloud feedback. Sherwood et al. [21] define precipitation efficiency in terms of the amount
of precipitation for a given vertical transport of water vapour from the boundary layer to the
free troposphere. These transports are associated with ‘lower-tropospheric mixing’ by small-scale
processes such as convection or turbulence which are parametrized in GCMs, and by large-
scale mixing associated with resolved motions. Sherwood et al. [21] argue that models with
stronger lower-tropospheric mixing will have a stronger drying of the boundary layer, and that
this effect will strengthen in the warming climate and will reduce low-level cloud, resulting in a
positive low cloud feedback. Our finding that models with more positive cloud feedbacks tend
to have less MSE near the top of the boundary layer in the present climate is consistent with
this argument; stronger lower-tropospheric mixing in the present climate in higher sensitivity
models could deplete boundary layer MSE more by transporting it from the boundary layer to
the free troposphere at a faster rate. Our findings suggest however that processes other than
parametrized convection are required to explain the overall range of cloud feedbacks in the
models examined here.

Zhao [40] makes a distinction between convective precipitation efficiency associated with
parametrized convection and a large-scale precipitation efficiency associated with the stratiform
cloud and precipitation schemes in the models. In the absence of convective parametrization,
lower-tropospheric mixing must be achieved by resolved motions or by small-scale mixing by the
models’ parametrized turbulence schemes. If the strength of such mixing is not regulated by inter-
model differences in precipitation efficiency arising from the differences in the models’ convection
schemes, it might instead be regulated in a similar way, but by inter-model differences in the
precipitation efficiency associated with other parts of the model formulation. The precipitation
efficiency, defined as the amount of surface precipitation for a given vertical transport of water
vapour from the boundary layer to the free troposphere, could depend on various aspects of
model formulation, including cloud parametrizations, cloud precipitation microphysics and their
interactions with turbulent mixing and entrainment. Models which form precipitating clouds
easily at mid-levels in the tropics will rain out to the surface efficiently for a given upward
transport of water vapour. Conversely, models that form clouds and condensate less easily at
mid-levels in the tropics might instead need to produce condensation and latent heat release at
higher levels in order to balance atmospheric radiative cooling in the tropical free troposphere.
Precipitation falling from clouds which are higher in the atmosphere will be more likely to
evaporate before reaching the surface, producing more evaporative cooling to offset the latent
heat release provided by cloud condensation. Such models might thus require a larger upward
transport of water vapour by lower-tropospheric mixing to maintain a given net latent heat
release and surface precipitation rate, compared with models which are able to condense more
easily at mid-levels and so rain out more efficiently to the surface. Hence, models with less mid-
level cloud might have weaker precipitation efficiencies and need to transport more water vapour
vertically by lower-tropospheric mixing, drying the boundary layer more than models with
more mid-level cloud. Such an effect would be expected to strengthen proportionally with the
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hydrological cycle as the climate warms and the total amount of atmospheric radiative cooling,
net latent heat release and surface precipitation increase, resulting in models with less mid-
level cloud having stronger positive low-level cloud feedbacks. Such arguments could potentially
explain the anti-correlation between mid-level cloud fractions and cloud feedbacks seen in both
ensembles examined here.

We note that these arguments rely on cloud fraction at a given level being a useful proxy
for condensation rate and precipitation efficiency; although these quantities are not necessarily
exactly equivalent, a relationship between them is clearly plausible in that a model with a
larger cloud fraction for a given in-cloud condensation rate will have a larger grid-box mean
condensation rate, and hence a stronger condensate source term to support precipitation. We
also note that inter-model differences in mid-level cloud fraction and precipitation efficiency may
ultimately be due to a range of model formulation differences, including model representations
of turbulent mixing and entrainment, which can have effects in the free troposphere as well
as the boundary layer, as demonstrated by Tsushima et al. [91]. The depth of the shallow
circulation discussed by Sherwood et al. [21] could also influence the amount of mid-level cloud
and the bulk precipitation efficiency; for example, a model with a shallow circulation with a
maximum divergence below 700 hPa might form less mid-level cloud than a model with a shallow
circulation and a peak divergence at 500 hPa.

If the overall strength of lower-tropospheric mixing is, in fact, regulated by bulk precipitation
efficiency arguments such as those outlined above, then this raises the intriguing possibility that
the lower-tropospheric mixing and the cloud feedback in a given model might be quite similar
in magnitude in the standard and ConvOff configurations, even if much of the mixing is done
by the convective parametrization in the standard configuration. A large-scale constraint on
lower-tropospheric mixing could mean that resolved and parametrized turbulent mixing adjust
to compensate for an absence of parametrized convective mixing in the ConvOff experiments.
This question could be investigated in future work by directly quantifying the lower-tropospheric
mixing associated with parametrized convection, turbulent and resolved mixing, for example by
using temperature and humidity budget terms as in Zhang et al. [10] and Webb & Lock [7].

Our results also indicate that models with more low level clouds in the most stable areas of
the tropics tend to have more positive low feedbacks in those regions. This finding is consistent
with the expectations from the ‘beta feedback’ hypotheses of Brient & Bony [13]. Our results also
hint that models with larger values of longwave CRE in the most stable regimes tend to have
more positive cloud feedbacks across the tropics. Studies with LES have demonstrated that an
enhanced free-tropospheric greenhouse effect can reduce turbulent mixing and cloudiness in the
subtropical boundary layer [15]. There is also observational support for cirrus clouds breaking
up low level cloud in the current climate [92]. In the subsidence regions, the subsidence rate is
related to the lapse rate and the amount of radiative cooling [93]. In the absence of substantial
differences in lapse rate, models with more upper level cloud or larger IWPs in the subsidence
regions will have weaker radiative cooling in the upper troposphere, reducing the subsidence rate
at upper levels and making the circulation more bottom heavy (i.e. having stronger subsidence at
lower levels compared with upper levels). In a similar vein, models with more low level clouds
will have more radiative cooling at low levels, which will enhance subsidence at low levels, also
making the circulation more bottom heavy. Given that we find higher sensitivity models to have
more low clouds and more cirrus in the more stable regimes in the tropics, this could explain
why Sherwood et al. [21] found higher sensitivity models to have more shallow circulations.
Although our analysis did not find any correlations between measures of the shallow circulation
and cloud feedback which were robust across both of our ensembles, it remains possible that
lower-tropospheric mixing associated with such resolved circulations contributes to inter-model
spread in cloud feedback in our models, if not to a detectable degree.

We consider the potential mechanisms outlined above to be plausible but they are not the only
possibilities. These and other hypothesized mechanisms could be tested in a number of ways
in future process simplification experiments. For example, the precipitation efficiency in models
could be reduced by modifying the cloud microphysics to alter the ease of raining from mid-level

 on October 5, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


20

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A373:20140414

.........................................................

clouds over warm SSTs. Alternatively, cloud condensation at mid-levels could be suppressed by
re-evaporating cloud water. If the ideas outlined above are correct, then this would be expected
to force more condensation to occur at higher levels, increase vertical transports of water vapour
and boundary layer drying, reduce MSE near the top of the boundary layer and strengthen
positive low level cloud feedbacks. The idea that having more low-level cloud in stable regions
of the tropics results in a more positive feedback could be further tested by tuning low-level
cloud fractions, extending the approach of Brient & Bony [13] to a wider range of models. More
specifically, the ‘beta feedback’ hypothesis of Brient & Bony [13] could be tested in more models
by suppressing the longwave CREs of low level clouds, building on the approach of Fermepin &
Bony [94]. Similarly, the longwave radiative impact of cirrus clouds on low-level cloud feedbacks
could be tested by making ice clouds transparent to longwave radiation. Such experiments might
be more straightforward or inexpensive to perform in more idealized model configurations; for
example, the CFMIP aquaplanet configuration which is zonally symmetric has no seasonal cycle
and has been shown to reproduce the inter-model spread in cloud feedbacks on more realistic
configurations very effectively [5,75].

5. Summary and conclusions
In this study, we have demonstrated a new approach for investigating the processes contributing
to inter-model spread in cloud feedback. We have investigated the sensitivity of cloud feedbacks
to the use of convective parametrization by repeating the CMIP5/CFMIP-2 AMIP/AMIP +4K
uniform sea surface temperature perturbation experiments with 10 climate models which have
their convective parametrizations turned off. This is the first study to report results from a
substantial ensemble of models without parametrized convection.

Integrations without parametrized convection were successfully performed without
increasing model resolution, although other minor changes such as shorter timesteps were
required in some cases to maintain model stability. Some aspects of present-day model
performance were degraded in these ‘ConvOff’ experiments compared with the standard
versions. The ConvOff versions generally have more negative values of the shortwave and net
CRE across the tropics, associated with increased low-level fractions and LWPs. The ConvOff
models also have a tendency for increased values of longwave CRE in low cloud regimes, owing
to increases in high-level cloud fractions and/or IWP. Increased shortwave reflection from low-
level clouds in particular results in increased biases in the top-of-atmosphere radiative balances
of the ConvOff models.

The overall range in global cloud feedback in the standard model configurations is maintained
in the ConvOff experiments, increasing by 22%. The models all show increases in low level cloud
fraction when parametrized convection is switched off, substantially increasing the shortwave
radiation reflected to space. Applying a simple bias correction method to allow for differences
in present-day global mean net CRE substantially reduces the differences between the global
mean cloud feedbacks with and without parametrized convection in the individual models. The
cloud feedbacks in the two ensembles become strongly correlated, with the Convoff experiments
exploring 85% of the overall range from the standard models. This correlation, and the fact that the
models are capable of exploring much of the overall range in cloud feedbacks without convective
parametrizations active, strongly suggests that although parametrized convection influences the
strength of the cloud feedbacks substantially in some models, aspects of model formulation other
than convective parametrization ultimately determine the overall range in the cloud feedbacks in
the models examined here.

It is in principle possible that changes to the details of convective parametrizations which
are not included in our current ensemble could have larger impacts on global cloud feedbacks
than those seen here. However, our current standard and ConvOff ensembles already span the
range in cloud feedbacks typically seen in climate models. Hence, adding new models or different
convection schemes to our current ensembles would not affect our finding that the models can
explore much of the range of contemporary cloud feedbacks without parametrized convection.
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We have introduced a new approach for diagnosing cloud regimes over the low-latitude
oceans. The ALPI is a hybrid index which combines the benefits of LTS for isolating stable
low cloud regimes and surface precipitation rate for identifying strongly precipitating regimes
of deep convection, making a continuous transition between them in LTS/precipitation space.
ALPI composites of cloud feedbacks over the tropical oceans show that the largely positive
shortwave cloud feedbacks in shallow cloud regimes in the models are still present in the
ConvOff experiments, indicating that processes other than parametrized convection must be
responsible. Our results also indicate that in the absence of convective parametrization the inter-
model spread in net and shortwave cloud feedback is not greatly changed in stable regimes where
stratocumulus clouds are expected to dominate the feedbacks. Meanwhile, it increases slightly in
the regimes where we expect shallow trade cumulus clouds to dominate.

Convective parametrizations do however make a substantial contribution to inter-model
spread in the longwave cloud feedbacks in strongly precipitating regions of the tropics; the spread
of this feedback is substantially reduced in the ConvOff experiments. This local effect is however
clearly not large enough to have a substantial effect on the overall range of the global net cloud
feedback.

We have also assessed the impact of convective parametrizations on the present-day
simulation of various cloud variables and looked for relationships between them and the cloud
feedbacks. We have identified a number of statistically significant relationships between present-
day cloud properties within ALPI regimes and the net cloud feedbacks within those regimes
and also those averaged over the entire low-latitude ocean area, which are robust across models
with and without parametrized convection. Models with more low cloud and stronger values of
the shortwave CRE in the most stable regimes in the tropics tend to have more positive cloud
feedbacks within that regime, consistent with the findings of Brient & Bony [13], who found
that subtropical feedbacks in parameter-perturbed versions of the single column version of IPSL-
CM5A-LR were stronger in cases where more low level cloud and stronger values of shortwave
CRE were present in the control case. Additionally, models with larger values of the longwave
CRE (and more high level cloud or larger IWPs) in the most stable areas of the tropics tend
to have stronger cloud feedbacks averaged across the low-latitude oceans. We also found that
models with the least mid-level cloud in the deep convection and trade cumulus regimes tend to
have the most positive feedbacks both within the trade cumulus regimes and averaged over the
low-latitude oceans. Additionally, models with less MSE near the top of the boundary layer in the
trade cumulus regimes tend to have more positive cloud feedbacks there.

We have discussed a number of possible physical mechanisms which could explain our results,
and how these and other ideas could be tested in the future by performing further process
simplification experiments. If a robust interpretation of such results can be confirmed by such
sensitivity experiments in the future, then the relationships that we have identified between
feedbacks and present-day cloud variables could form the basis for a new set of emergent
constraints on tropical cloud feedback. Although mid-level clouds in strongly precipitating
regions are somewhat difficult to observe, the inclusion of cloud simulators in a wider range
of models based on active instruments such as CloudSat and CALIPSO (e.g. [6]) would support a
quantitative evaluation of this aspect of model performance.

More generally speaking, the roles of processes other than parametrized convection in
contributing to inter-model spread in cloud feedback could be explored further by modifying
other aspects of model physics, either by switching them off as we have done here, or by
replacing particular schemes with the same simplified version in different models. The present-
day simulation of shallow clouds is known to be highly sensitive to the details of turbulent mixing
and entrainment parametrizations in models. A recent LES study by Bretherton & Blossey [17]
demonstrated a positive cloud feedback associated with an entrainment liquid-flux mechanism,
where an increased cloud layer humidity flux in a warmer climate induces an entrainment liquid-
flux adjustment that dries the stratocumulus cloud layer. Turbulent entrainment parametrizations
could be switched off to assess their contributions to inter-model spread in cloud feedback.
Alternatively, the turbulent mixing schemes in the models could be replaced with a simple

 on October 5, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


22

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A373:20140414

.........................................................

and consistent alternative, for example one based on a Richardson number-dependent vertical
diffusivity term which would confine mixing within the boundary layer (as opposed to a constant
diffusivity which would have undesirable effects near the tropopause). Additionally, the role
of the large-scale circulation in contributing to inter-model spread in cloud feedback could be
explored. For example, the importance of the large-scale component of the lower-tropospheric
mixing mechanism proposed by Sherwood et al. [21] (which is argued to vary according to the
depth of the subtropical circulation) could be explored by applying artificial diabatic heating
terms to the models designed to change the depth of the circulation. As pointed out above,
this might be more straightforward to do in aquaplanet configurations. We plan to develop the
SPOOKIE approach further in the future by designing sensitivity tests for GCMs which target
such questions directly.

We hope that the data used in this study will be useful to investigate the impact of convective
parametrizations on many other aspects of climate model simulations. For example, we plan to
write a follow-up paper that assesses the impact of parametrized convection on various aspects of
present-day climate. We also plan to make the data from the ConvOff simulations available to the
wider scientific community in the near future. For more details, please contact the corresponding
author or refer to the CFMIP website (http://www.cfmip.net).
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