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Introduction
Individuals respond differently to drugs and some-
times the effects are unpredictable. An underlying
factor is that differences in the DNA contribute sig-
nificantly to variation in the treatment responses
of individuals. A general conclusion is that the in-
tersection of genomics and medical clinical data
has the potential to yield a new set of diagnostic
tools and decision support methods that can be
used to individualise and optimise patient therapy
and care.

As a basis for the development of a new set of
diagnostic and decision support tools, we concern
ourselves with the topic of “data intelligence” which
refers to the interaction with large amounts of data
in rich, semantically meaningful ways, going be-
yond search possibilities to create the path from
data to information to knowledge. The term clin-
ical data intelligence in particular takes medical
data from heterogeneous resources into account,
combines the extracted information, and generates
medical clinically-relevant knowledge about patients
or treatments. The healthcare sector has been iden-
tified as one of the main areas to benefit from the
recent trend towards data intelligence and large scale
data analytics [16, 21].

In the KDI project funded by the Federal Min-
istry for Economic Affairs and Energy (BMWi),
we assume that clinical big data analytics needs
to focus on the clinical decision processes to be-
come smart data (Fig. 1). With longitudinal data
from many patients and with complete patient
information, new reasoning processes based on
big data analysis and data predictions can poten-
tially be implemented. Many patients are needed

Fig. 1 Towards smart data

to capture the whole complexity of the medical
domain. Complete information about each individ-
ual patient is needed to minimise the effect of con-
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Abstract
This article is about a new project that com-
bines clinical data intelligence and smart data.
It provides an introduction to the “Klini-
sche Datenintelligenz” (KDI) project which is
founded by the Federal Ministry for Economic
Affairs and Energy (BMWi); we transfer re-
search and development results (R&D) of the
analysis of data which are generated in the clin-
ical routine in specific medical domain. We
present the project structure and goals, how
patient care should be improved, and the joint
efforts of data and knowledge engineering, in-
formation extraction (from textual and other
unstructured data), statistical machine learn-
ing, decision support, and their integration
into special use cases moving towards indi-
vidualised medicine. In particular, we describe
some details of our medical use cases and co-
operation with two major German university
hospitals.

founding factors1. These are obviously important
areas of research; it is, however, crucial to be able
to locate appropriate datasets for research in the
first place and to use domain knowledge to integrate
disparate, typically distributed datasets. The tasks
of identifying potential impacts on the practice of
personalised care and constructing authoritative
knowledge bases for clinical decision support pose
a lot of challenges in legal and technological terms.
To overcome technological challenges of data ac-
cess and data integration, we require knowledge
engineering in the medical domain by using tech-
nical ontologies and metadata standards [51]. For
example, truthfully representing patient informa-
tion requires the use of adequate ontologies and
terminologies which have been developed in re-
cent years in medical knowledge engineering and
in the context of the development of guidelines.
In addition, the information on which the physi-
cians base their decisions is often not contained
in structural form but at best in various textual

1 Consider an automatic program attempting to assess the effectiveness of
drug X, from population data in which drug usage was a patient’s choice. Data
show that gender differences influence a patient’s choice of drug as well as
their chances of recovery (Y). In this scenario, gender Z confounds the relation
between X and Y since Z is a cause of both X and Y (Wikipedia).

(and possibly hand-written) reports. Information
extraction from the available raw source data is
required to make this information available for
a subsequent analysis. Due to the difficulties in
extracting information from texts such as medi-
cal reports and other source data, image data and
OMICS data2 in particular can possibly provide addi-
tional important information for further processing.
Finally, statistics and statistical machine learning
methods provide a well established framework for
the modelling and analysis of “actions” in a spe-
cific medical context. Here one can potentially build
on many years of previous work on medical know-
ledge representations, i. e. applying large corpora
of medical ontologies, taxonomies and dictionar-
ies, e. g. SNOMED (Systematized Nomenclature
of Medicine), ICD (International Classification
of Diseases), RadLex (covering radiology-specific
terms), and FMA (Foundational Model of Anatomy
ontology) to be used beyond accounting purposes.

Due to the described complexity, the clini-
cal data intelligence project requires joint efforts
of knowledge engineering, information extrac-
tion from textual data, iconical data (pertaining
to images), and other unstructured data as well
as statistical machine learning approaches. We
claim that “Clinical Data Intelligence” is a per-
fect field for exploiting the economic potential
and future development in Germany, where know-
ledge engineering, information extraction, and
statistical machine learning can benefit from one
another. Potential applications of the Ministry’s
smart data initiative (Fig. 2) are as follows: first,
the prediction of actions (e. g. diagnoses or pro-
cedures) to support a physician’s decisions by
modelling medical practice; second, an analysis
of the benefits of medical actions in terms of a
final outcome; and third, a system that provides
the physician with indications (which of the po-
tential actions under consideration to select as
to generate the greatest patient benefit). We also
discuss some practical aspects of the German
research project KDI which involves two major
German university hospitals, namely the Charité
in Berlin and the University Hospital in Erlangen
(Uker).

2 The English-language neologism OMICS refers to genomics, proteomics or
metabolomics and aims at the collective characterisation and quantification of
pools of biological molecules that translate into the structure, function, and
dynamics of an organism.



Fig. 2 Overall concept of the “smart data” programme, funded
by the German Federal Ministry for Economic Affairs and Energy

Towards smart data
Expanding the boundaries of health informatics has
recently been recognised as one of the top research
topic for international conventions on medical care
in the twentyfirst century.3

Artificial Intelligence (AI) can play a major role
and help define the topics in the transition of big
data towards smart data, where smart data refers
to the meaningful subset of big data. Personalised
health data can become the driver of health care
innovation and delivery. Specifically, this would be a
significant shift from the paradigm where physicians
make patient treatment decisions only based on their
clinical experience and by evidence-based results
derived from general population studies instead of
clinical studies. A common definition of evidence-
based medicine is the following: “evidence-based
medicine requires a bottom-up approach that in-
tegrates the best external evidence with individual
clinical expertise and patient choice” [45]. The in-
tegration of these three components should enable
the physician (and patient) to enhance their clinical
decisions, so the opportunity for optimal patient
quality of life and clinical outcomes can be achieved.
KDI focusses on the doctor’s decisions (possibly to
be combined with other movements such as Par-
ticipatory Medicine). The KDI project envisions to
integrate decision support into the clinical routine in

3 See, e. g. the AAAI Fall symposium on Expanding the Boundaries of Health
Informatics using AI: Making Personalized and Participatory Medicine A Reality,
http://www.adventiumlabs.com/HIAI14.

Fig. 3 Work packages

the form of personalised decision support systems
for special use cases (Fig. 1). The six work packages,
which are explained next, are summarised in Fig. 3.

Research database
A comprehensive view on all patient data in a consis-
tent and integrated way is of great importance. The
research database (Fig. 4) contains all data collected
from a patient across systems such as diagnoses,
laboratory values, radiology images, and pathology
results in a single view. Data are collected from as
many patients as possible to allow for large-scale
analytical methods. The KDI project tries to comple-
ment and advance the collection of structured data
by also integrating unstructured data (free text),
imaging data, and genomic-data. For this, the raw
data must be extracted from the source systems (e. g.
a PACS system) and normalised using standardised
terminologies. As for structured data, classical data
warehouse approaches have already been applied
successfully to unlock information for secondary
purposes such as quality management and research.
Unstructured data has to be translated into struc-
tured information by text mining. The contents of
image data can be described (annotated) by using
structured reports such as the BIRADS approach
for mammography. Furthermore relevant image fea-
tures describing specific image contents (such as the
“density of a breast”) can be automatically extracted;
OMICS data can be taken from, e. g. study databases.

Data allocation
It is planned that all available data will be uploaded
to the joint research database [35] and made avail-

http://www.adventiumlabs.com/HIAI14
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Fig. 4 Research database

able to the project partners for further processing.
The infrastructure is based on the tranSMART
technology.4 TranSMART is a data sharing and ana-
lytics platform for translational biomedical research.
It combines the data-model from the clinical data
warehouse i2b2 with the possibility to integrate
OMICS data [10, 53]. Major challenges in combining
the data are (1) the heterogeneity and completeness
of interfaces and semantic data models; (2) the se-
cure and privacy-aware access to data, and (3) the
selection and use of appropriate technologies to
build a scalable infrastructure. Refinement mod-
ules read raw data from the research database,
process the data (e. g. machine learning, feature
extraction from images or texts) and aggregate
the results. Envisioned end user applications may
provide physicians and researchers access to the
database to search for information or to generate
reports. The “smartplatform” is an example of what
is possible by a leveraged access to clinical data [32].
The data and results from the refinement modules
can be used for multiple clinical and research us-
age scenarios. Study management systems include
patient information; analytical results may support
clinical decision making by automatically providing
personalised recommendations. All components
are installed and operated within the participating
clinics Uker and Charité for legal reasons. How-
ever, a de-identified (anonymous) shadow database

4 http://transmartfoundation.org/.

will be implemented to allow access for external
developers [13, 19, 40–42].

Anonymisation, security, privacy
De-identification of a new set of allocated and rel-
evant patient records is of critical importance.
Removing protected health information (PHI) is a
critical step in making medical records accessible
to more people and automatic procedures of data
analytics; here we rely on commercial technology
provided by [11].

Many legal and ethical issues arise when pro-
cessing personal data. Collected patient data may
only be used for immediate treatment purposes.
Other kinds of processing such as for quality man-
agement or research purposes is strictly regulated.
This is why removing PHI is a crucial step in making
medical records accessible to other kinds of sec-
ondary purposes in a de-identified (anonymous)
way. Especially free-text data is problematic, as
patient-related passages cannot easily be identified.
A tool that has been developed in previous projects
will thus be further improved to account for hetero-
geneous unstructured input and thus make narrative
reports, discharge letters and other kinds of data
available for further analytics.

Semantic annotation
With traditional applications, users may browse or
explore visualised patient data such as radiology
images, but little to no help is given when it comes
to the interpretation of what is being displayed. This

http://transmartfoundation.org/


is due to the fact that the semantics of the data are
not explicitly stated, hence the semantics therefore
remain inaccessible to the system and in turn also to
the medical expert using such a system. This can be
overcome by incorporating external medical know-
ledge from ontologies which provide the meaning
(i. e. formal semantics) of the data at hand [50].

Texts. Information extraction from text is typically
performed by a combination of natural language
processing and machine learning approaches. The
automatic analysis of medical texts is particularly
challenging since sentences are often incomplete,
use clinic-specific terms, and contain an abun-
dance of negations. Biomedicine remains one of its
most interesting application domains for automatic
interpretation of, e. g. a physician letter. This is pri-
marily due to the potentially very broad impact of
biomedical findings, but also to the extensiveness
of electronic knowledge sources that need to be ex-
ploited in an innovative way by integrating natural
language processing and machine learning tech-
niques. Current state-of-the-art methods are able to
reliably detect key entities in texts; the extraction
of statements from texts (much more valuable for
describing the patient’s status) is still a challenge.
So the aggregation of data representation does not
necessarily enhance data quality. A feasible solution
is that the degree of uncertainty is represented in the
annotations and the consecutive processing steps
take this uncertainty measure into account.

A recent related example task or automated text
mining has been introduced in the 2014 i2b2 NLP
challenge: Identifying risk factors for heart disease
over time. Medical records for diabetic patients con-
tain information about heart disease risk factors
such as high blood pressure and cholesterol levels,
obesity, smoking status etc. This challenge aimed
to identify the information that is medically rel-
evant to identifying heart disease risk, and track
their progression over sets of longitudinal patient
records. Within the KDI project, relation extraction
from complete sentences for example, is done via a
minimally-supervised machine learning system for
relation extraction from free text, consisting of two
parts, a rule learning and a relation extraction stage
feeding each other in a bootstrapping framework,
and starting from so-called “semantic seeds” [65].
In addition, we will draw particular attention to the
task-oriented extraction of temporal information

in the case of “clinical narratives” supporting the
structured laboratory data [18, 34, 54, 55, 67].

Images. The automatic analysis of image source data
of various modalities (radiology, pathology, EKG,
EEG, ...) has made great progress in recent years.
Since THESEUS MEDICO [48], it is possible to locate
and measure major organs as well as healthy and
malicious lymph nodes. We expect that our project
will greatly benefit from the inclusion of imaging
features and semantic image annotations.

The automatic analysis and information ex-
traction from images of various modalities (e. g.
radiology, sonography, endoscopy, microscopy) or
from biosignals of various types such as ECG, EEG,
EMG, has made great progress in recent years. Vol-
umetric image data such as MRI or CT data sets can
also be processed [46, 47, 61, 62].

Nevertheless, a complete automated high-level
information extraction from medical images is yet
an unsolved challenge, which shall partially be ad-
dressed within the KDI project using digital and
digitised mammographies (radiological projection
images from the breast) as an example. Up-to-date
many image analysis approaches have been pro-
posed to automatically or interactively detect [27]
and delineate mammographic lesions [14] in radio-
graphic breast images. From the delineated image
regions a set of descriptive features describing vari-
ous visible aspects such as contrast, “texturedness”,
“roughness”, “elongation”, “size”, “compactness” or
more complex characteristics such as spectral prop-
erties of a lesion are automatically extracted [59, 60].
These image features are then used to train a classi-
fier in order to distinguish “malign” from “benign”
lesions [15]. Nevertheless, visible properties such
as “texturedness”, “coarseness” or “cloudiness” of
an image region are quite hard to formulate into
computer interpretable form. Instead, it is com-
mon practice to use a plethora of different machine
vision features, as well as geometric and spectral
features from the available images. Using the set of
all possible extracted features, automatic selection
methods and machine learning approaches are ap-
plied to find the best subset of characteristic features
for a certain classification and diagnostic problem.
Within the KDI project new image features shall be
implemented and evaluated in order to address the
challenge to identify woman with a higher risk for
breast cancer for early detection.
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Fig. 5 Scope of the KDI patient data model

Semantic data model
and intelligent access

In the healthcare sector, more and more data about
the patient’s health status as well as about medical
background knowledge becomes available. All this
patient’s data can be stored in different data repos-
itories (e. g. in the various healthcare information
systems such as PACS, KIS, HIS, RIS or LIS) in very
heterogeneous formats (such as structured lab re-
sults or unstructured medical reports or images) and
at distributed locations (being the general physician,
the hospital, some medical specialist, or the rehab
hospital etc.) As of today, only a small percentage
of the patient-related data can and is (re)used in
advanced clinical applications [69]. This is mainly
due to the fact that the available patient data is not
semantically integrated and, thus, high efforts for
reusing the data sources in advanced clinical ap-
plication are needed. With the above-mentioned
THESEUS MEDICO project several clinical deci-
sion support applications were able to demonstrate
the high value of semantically integrated patient
data. For instance, the reasoning-based application
for lymphoma patient classification became pos-
sible through the semantic integration of medical
image annotation with the related patient data [68].
It has also been demonstrated [38] how semanti-
cally integrated patient data can be interpreted in
a context-sensitive manner by integrating medical
background knowledge to improve clinical deci-
sion support. In addition, the semantic annotation
of clinical data with concepts or codes from estab-
lished domain ontologies covering medical and
clinical knowledge such as the Foundational Model
of Anatomy (FMA), SNOMED CT or the Interna-

tional Classification of Diseases (ICD) needs to be
complemented by an ontologically well founded se-
mantic model to structure the references and links
to these ontologies. Only if the semantic labels asso-
ciated with the patient data sources are aligned and
used in a consistent manner, a seamless access to
heterogeneous patient data becomes possible. This
can be realised by means of a semantic patient data
model that aligns the various related terminologies
and coding systems being used for labelling content.

Today’s available models of clinical information
such as the HL7 Reference Information Model, how-
ever, lack a well defined ontological foundation. In
the KDI project, we will try to focus on the develop-
ment of a semantic data model enabling the seamless
access to longitudinal patient data for advanced ana-
lytics application (Fig. 5). This task aims to extend
the recent research work on establishing a semantic
model for clinical information [39].

Medical guidelines
From a technical viewpoint, the clinical state-of-
the-art in medical decision making is represented
in medical guidelines. Guidelines reflecting com-
mon best practice, are based on the results of well
understood clinical trials and are at the core of
the implementation of evidence based medicine.
There have been some efforts to formalise medi-
cal guidelines and make them computer-accessible.
Computerised clinical guidelines have contributed
to the formalisation and automation of clinical data
and knowledge. Of particular interest are guidelines
to generate medical logic modules [1] because in
KDI we interpret smart data as data which can feed
personalised decision support systems by reasoning



mechanisms. A first step towards this direction will
be to improve understanding how current recom-
mendations are written and to test the adequacy of
guideline models [26] towards clinically relevant
reasoning and decision support.

Data analytics
Internationally, there are various initiatives under
way to improve patient care by collecting and ana-
lysing patient and outcome information across
providers. An example in the US is the Health In-
formation Technology for Economic and Clinical
Health Act (HITECH Act). In this context, large
volumes of data are collected and it is hoped that
improvements in healthcare can be based on the
analysis of this data. A first general result is that
fundamental changes in the healthcare system are
required and data privacy, data ownership and data
security issues must be resolved to make these efforts
effective. A more viable solution effective already
today would be the analysis of data of individual
clinics, as pursued in this project. Thus the goal is
not as much to improve processes across clinics but
to improve processes in each clinic individually.

From an analytical point of view we analyse
data from many individual patients in a complex
temporal context with many possible complaints,
diagnosis, treatments, procedures and diagnostic
results. The basis of our approach is a probabilistic
data base model derived from the clinical research
data base via machine learning. We use a general-
isation of similar approaches for the modelling of
knowledge graphs as described in [12, 36, 37]. This
probabilistic data base model is based on the learn-
ing of latent embeddings and can be the basis for
an analysis of the clinical processes but also for the
derivation of a number of decision support mod-
ules. As discussed in [12, 36, 57], the probabilistic
data base model can also support information ex-
traction from unstructured data such as texts and
images.

This approach has already been successfully
applied to predict hospital readmissions of patients:
unscheduled readmission is a well-known problem
of healthcare providers around the world and caused
additional costs of 17.4 Billion dollars in the US in
2004 and £1.6 Billion in the UK (see USA Hospital
Readmission Reduction Program (HRRP); in UK,
there is also no reimbursement for within 30 days
emergency readmissions).

Readmissions put a high burden not only on the
healthcare system,butalsoon thepatients since com-
plications after discharge generally lead to additional
burdens. Our experiments showed that a predictions
model that exploits latent embeddings can lead to im-
proved readmission prediction models [3, 8, 56, 66].
Apredictivemodel [28]couldalsotake last labresults,
average lab results during the last year, medications
prescribed on the previous visit, and medications
prescribed during the last year into account.

Integrated decision support
Integrated decision support has two components.
First, to answer the question of how to get from
guidelines to clinical decision support (for which
a unified approach to translating and implementing
medical knowledge [33] through semantic annota-
tion is needed), and second, how we can demonstrate
that the support is relevant for clinical decisions
(as in [9]). Towards this goal, mobile radiology in-
teraction and decision support systems have been
discussed recently [52]; in the KDI project, their po-
tential is tried to be extended to data analytics on the
large scale by

– Methods for knowledge extraction and
personalisation via intelligent predictive analytics;

– Design of personalised care systems to disseminate
the discovered knowledge (and enable patients to
provide feedback to physicians about their ongoing
care);

– Supporting personalised care delivery by mod-
elling patient-focused workflows, supporting their
adaptation, and implementing extended facetted
search applications.

Currently available clinical data sets represent longi-
tudinal data selected by a physician for the purpose
of identifying risk factors. These data can also be
used to answer possible other questions on these
patients. Some example questions include “Are
the medications having the desired effect?”; “Is the
patient responding to treatment?”; “Is the patient
experiencing an adverse effect from medication X?”

Exploitation

Breast cancer use case
Breast cancer is the most frequently diagnosed solid
cancer in women and one of the leading causes



{ THE CLINICAL DATA INTELLIGENCE PROJECT

Fig. 6 Integrated mobile medical decision support example

of cancer deaths in the western world [49]. While
screening mammography has led to an earlier de-
tection of breast cancer [5], and guideline adherent
therapy has improved overall and recurrence-free
survival [63], the early detection of breast cancer
recurrence remains difficult [44]. Early detection
of loco-regional breast cancer recurrence is an
important issue because survival is improved if
treated adequately [30, 64]. Prediction of the risk
to develop breast cancer or cancer recurrence and
statements regarding the prognosis remain chal-
lenging. A variety of genetic factors and diverse
types of information from the clinical examination
and different imaging modalities (mammography,
sonography, MRI) are of clinical interest. This in-
formation is valuable regarding therapy planning

and the follow-up duration and intervals. Currently,
no reasonable linkage is implemented between the
different types of information. We make use of the
Bavarian Breast Cancer Cases and Controls database
which includes thorough clinical information, more
than 1,000,000 genotypes from the germ line DNA
and comprehensive image information from all pa-
tients and healthy controls. The objective of this use
case is to establish a user-friendly application that
allows the structured storage, linkage and evalua-
tion of the different data. This provides a unique
database for applications in the area of big data tech-
nologies and potentially improves patient care and
expedites personalised medicine. Figure 6 shows
DFKI’s intelligent user interface of an integrated de-
cision support system, where automatic labels are
combined with human expert annotations based
on [2, 17, 22, 24, 43, 58]. It should combine results
from (1) textual information extraction, (2) facetted
search and (3) medical guidelines. As a result (4), the
usability of integrated decision support components
should be increased.

Nephrology use case
Kidney diseases are causing a significant financial
burden for the German health system. It is estimated
that alone the treatment of end-stage renal disease
(ESRD) with chronic renal replacement therapies
account for more than 2.5 billion euros annually,
and the incidence of dialysis-dependent renal in-
sufficiency is rising by 5–8 % each year [31]. Despite
progress in diagnosis, prophylaxis and therapy of
chronic kidney diseases, renal transplantation re-
mains the therapy of choice for all patients with
ESRD. Kidney transplantation leads to a signifi-
cant improvement of quality of life, to substantial
cost savings and most importantly to a significant
survival benefit in relationship to other renal re-
placement therapies. 2272 kidney transplantations
were performed in Germany in 2013 but more than
8000 patients are registered on the waiting list for
a kidney transplant.5 The reduction of complica-
tions and the increase of long-term graft survival
are the main goals after transplantation, against the
background of current dramatic organ shortage. It is
not only important to reduce or avoid severe or life-
threatening complications such as acute rejection,

5 http://www.dso.de/organspende-undtransplantation/transplantation/nieren
transplantation.html.

http://www.dso.de/organspende-undtransplantation/transplantation/nierentransplantation.html
http://www.dso.de/organspende-undtransplantation/transplantation/nierentransplantation.html


malignancy and severe opportunistic infections,
but it is also of utmost importance to ameliorate
the many other serious side effects, which increase
cardiovascular risk, decrease renal function, neces-
sitate costly co-medication or hospitalisations and
also have an impact on the quality of life after suc-
cessful transplantation. In many ways, the follow-up
after renal transplantation is typical for the sup-
ply of chronically ill patients. First, typical complex
decisions (allocation of suitable donor organs, se-
lection of different therapeutic regimes etc.) have to
be made. Second, the long-term follow-up program
offers the possibility to gather long-term histories
of patients. This provides a unique data base for
applications in the area of big data technologies
[4, 6, 7, 23, 25, 29].

Discussion
Automatic procedures, in the sense of automatic
decision support systems, bring up the problem of
transparency in the knowledge, behaviour and as-
sumption change in the clinical decision process. The
clinical decision process is the responsibility of the
referring doctor. In addition, the intelligent modula-
tionofgranularityof thedecisionsupport “feedback”
poses a usability problem. KDI includes the testing
of the usability of integrated decision support soft-
ware and evaluation of how easily users learn and
use the software to achieve their goals. For example,
providing confidence intervals that allow the physi-
cian to choose which one of the different answers is
most applicable to the situation at hand potentially
biases his or her own decision process. In addition,
the role of the decision support system must be in-
cluded in a medical guideline. The starting point is
the formalisation of the support of a medical doctor’s
decision making process as not making decisions for
the physicians or the patient for that matter.

In addition, employing increased autonomy of
the decision support system poses a problem, espe-
cially in clinical application domains, because the
doctor’s trust in the system may be increased or de-
creased as a negative side effect. [20] argue that it
is difficult for users to trust and rely on complex in-
teraction systems, particularly when the underlying
knowledge, behaviour and assumptions of the sys-
tem are constantly changing and adapting through
the use of machine learning.

However, our very strong belief is that having
such a powerful tool can provide superior patient

care for the individual patient and also strengthen
the patient-caretaker relationship.

Conclusion
KDI is the first German medical data intelligence
initiative where clinical data is tried to be turned
into smart data for clinical decision support. Build-
ing a semantic model that can be used to answer
treatment-related questions requires human expert
knowledge. In this sense, model building requires
human expert intervention. In addition to an ac-
curate reasoning model (the semantic net together
with reasoning support) another important part
is the presentation of the results in specific en-
vironmental conditions. Well-integrated decision
support may communicate information quickly and
can make even complex decisions explorable and
understandable at a glance.
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