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Abstract. L6J1 rat myoblasts and rat skeletal muscle 
were studied for expression of mRNAs encoding 
PDGF A-chain, PDGF B-chain, PDGF o~-receptor, 
and PDGF B-receptor during in vitro and in vivo myo- 
blast differentiation. RNA blot hybridizations demon- 
strated expression of the PDGF A-chain gene and the 
PDGF ~receptor gene in L6J1 myoblasts and in crude 
muscle tissue isolated from developing rats. Tran- 
scripts of the PDGF A-chain were identified at all ex- 
amined stages of in vitro and in vivo myogenic 
differentiation. Expression of the PDGF B-receptor 
gene decreased in differentiated myotubes of L6J1 cells 
and in rat adult muscle tissue. Receptor binding assays 
demonstrated specific binding of PDGF-BB, but not 

-AA, to exponentially proliferating L6J1 myoblasts and 
to terminally differentiated L6J1 myotubes. The bind- 
ing per cell nucleus was higher in exponentially 
proliferating myoblasts than in differentiated L6J1 
myotubes. In serum free medium PDGF-BB was 
shown to increase c-fos protooncogene immunoreac- 
tivity in L6J1 myoblasts. In the presence of 0.5% FCS, 
PDGF-BB increased DNA synthesis in L6J1 myo- 
blasts, while PDGF-AA showed no such effect. 
Differentiation, as monitored by myotube formation, 
was reduced in PDGF-BB-treated cultures. The possi- 
ble role of PDGF in myoblast proliferation and 
differentiation is discussed. 

M 
YOGENESIS is the differentiation of proliferating 
skeletal myoblasts to form contractile, multinu- 
cleated myotubes (for review, see Pearson and 

Epstein, 1982). This process involves cessation of DNA syn- 
thesis, cell surface changes, cell-cell recognition of Go myo- 
blasts and fusion of such cells into giant, multinucleated 
myotubes that synthesize contractile proteins typical for 
skeletal muscle. In the developing rat, this process occurs 
mainly at the time of birth (Yaffe, 1973). Already in 10-d-old 
rats, the majority of myoblasts have fused into myotubes. 
Thereafter, muscle growth occurs mainly from enlargement 
of preexisting myotubes. 

When myoblasts become confluent in culture, DNA syn- 
thesis is inhibited (Yaffe, 1971), and RNA synthesis is reduced 
(Yaffe and Fuchs, 1967). Several studies have suggested a 
causal relation between terminal myogenic differentiation 
and regulation of DNA synthesis in myoblasts. Deprivation 
of mitogens brings about precocious myogenic differentia- 
tion (Nadal-Ginard, 1978), and stimulation of DNA synthe- 
sis in mouse myoblasts by fibroblast growth factor delays the 
onset of myotube formation (Linkhart et al., 1980; Ewton 
and Florini, 1981). A variant mouse myoblast cell line re- 
sponds by proliferation and delayed fusion to treatment with 
epidermal growth factor as well (Lim and Hauschka, 1984), 
and more recently, type 13 transforming growth factor was 
also shown to inhibit myogenic differentiation (Massagu6 et 
al., 1986). On the other hand, glucocorticoids and members 

of the insulin family, such as insulin, insulin-like growth fac- 
tors I and II stimulate both proliferation and differentiation 
of rat myoblasts (Guerriero and Florini, 1980; Ewton and 
Florini, 1981). 

To study further the role of mitogens in myoblast prolifera- 
tion and differentiation, we analyzed the expression of 
PDGF genes and PDGF receptor genes during myogenesis. 
PDGF was originally observed in platelets as a cationic 30- 
kD protein with potent mitogenic effects on several mesen- 
chymal cell types, such as fibroblasts, gila cells, and smooth 
muscle cells (Heldin et al., 1985; Ross et al., t~;86). Struc- 
turally, PDGF is a dimer of two polypeptide chains linked 
by disulfide bonds. The PDGF polypeptides are encoded by 
the PDGF A-chain gene and the PDGF B-chain gene (c-sis). 
PDGF has been identified in all three possible isoforms; AA, 
AB, and BB (Stroobant and Waterfield, 1984; Heldin et al., 
1986; Hammacher et al., 1988). The PDGF isoforms were 
recently shown to bind with different affinities to two distinct 
types of cell surface receptors (Claesson-Welsh et al., 1988; 
Escobedo et at., 1988; Gronwald et al., 1988; Hart et al., 
1988; Heldin et al., 1988; Claesson-Welsh et al., 1989; Mat- 
sui et al., 1989). The PDGF a-receptor (also called A-type 
receptor) binds all three forms of PDGF with high affinity, 
while the PDGF /~-receptor (also called B-type receptor) 
binds PDGF-BB with high affinity and PDGF purified from 
human platelets with lower affinity, but does not bind PDGF- 
AA. We have previously demonstrated that secondary rat 
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embryo myoblasts and L6J1 rat myoblasts cultured in vitro 
express the PDGF A-chain gene, and that L6J1 myoblasts se- 
crete PDGF, most likely in the form of PDGF-AA (Sejersen 
et al., 1986a). We now present further results on the expres- 
sion of PDGF A- and B-chains and PDGF t~- and/3-receptors 
during myogenesis in the developing rat and in L6J1 cells 
undergoing spontaneous in vitro myogenic differentiation. 
Effects of PDGF on c-fos protooncogene expression, DNA 
synthesis, cell proliferation, and myogenic differentiation are 
also presented. 

Materials and Methods 

Cell Cultures 
Myoblasts of the cell line L6J1 (Yaffe, 1968; Ringertz et al., 1978) were cul- 
tured in DME, supplemented with 5% FCS, as described previously (Sejer- 
sen et al., 1986a). Medium was changed two or three times per week. For 
induction of myogenic differentiation, myoblasts were seeded at 6 x 103 
cells/era 2 in 60-cm 2 dishes and cultured for 10 d without replating. For 
analysis of the effect of PDGF on myoblast differentiation, cells were seeded 
in 20-cm 2 dishes for 24 b, before being switched to serum poor medium 
(DME/0.5% FCS) with or ~'ithout 25 ng/ml PDGF-BB. PDGF-BB was 
added to the culture on a daily basis for ten consecutive days, and the 
medium was changed every second day. 

For analysis of myoblast proliferation, cells were plated at 4 × 103 
cells/cm 2 in 7-cm 2 wells in DME/5% FCS. After serum deprivation for 
4 d, myoblasts were cultured in 0.5% FCS with or without 25 ng/ml of 
PDGF-BB. Cell numbers were counted each day in triplicate wells using 
an automatic cell counter (VDA 140; Analys Instrument AB, Sweden). 

Determination of Myoblast Fusion 
Cultures to be scored for cell fusion were washed with PBS, fixed with 
methanol, and stained with giemsa. The percentage of nuclei in myotubes 
was estimated by counting 1,200-1,500 nuclei/plate in 8-10 fields chosen 
at random. Only structures containing three or more nuclei were scored as 
representing fused cells. 

Rat Skeletal Muscle Isolation 
Crude muscle tissues were isolated from thighs of Sprague-Dawley rats of 
the following ages: 15-, 17-, 18-, and 20-d-old rat embryos; 1-, 7-, 14-, and 
21-d-old rats, and from a 5-too-old (adult) rat. Whole hind legs of 15- and 
17-d-old rat embryos were used. For comparative purposes, whole 13-d-old 
rat embryos were used. Isolated tissues were minced by scissoring, immedi- 
ately frozen and kept in liquid nitrogen until RNA extraction. Crude muscle 
preparations may contain a small fraction of nonmuscte cells, mainly fi- 
broblasts. 

Purification and Blot Analysis of Poly(A ) + RNA 
Purifications of total RNA, selections of poly(A) + RNA, gel fractiona- 
tions, RNA blottings, RNA hybridizations, washing procedures, and deter- 
minations of sizes of transcripts and intensities of hybridization signals were 
performed essentially as described earlier (Sejersen et al., 1986b; Rahm et 
al., 1989). Concentrations of poly (A) + RNA were measured and normal- 
ized by both ethidium bromide-agarose plates and ultraviolet spectro- 
photometry. 

D NA Probes 
The following probes were used: the 1.3-kb eDNA fragment of human 
PDGF A-chain clone D1 (Betsholtz et al., 1986), human c-sis clone pSM-I 
(Clarke et al., 1984), and human c-sis clone PDGF-B-17 (Betsholtz, C., un- 
published observations), the 1.5-kb cDNA fragment of human PDGF tz-re- 
ceptor clone 15.3 pUC (Claesson-Welsh et al., 1989), the 1.0-kb Pst I eDNA 
fragment of human PDGF preceptor (Claesson-Welsh et al., 1988), Psi l 
DNA fragments of mouse fast myosin heavy chain MHC 32 (Weydert et al., 
1983), mouse ct-actin pAM 91 (Minty et al., 1981), and chicken glyceralde- 
hyde-3-phosphate dehydrogenase eDNA clone pGAD-28 (Dugaiczyk et 
al., 1983). 

PDGF 
PDGF-AA (short form) and PDGF-BB were recombinant human forms 
purified from a Saccharomyces cerevisiae expression system (Ostman et al., 
1989), and were used for studies of PDGF binding and DNA synthesis. 
PDGF-AA and PDGF-BB were t~SI-labeled using the Boiton and Hunter 
protocol (BoRon and Hunter, 1973) to specific activities of 13,000 (PDGF- 
AA) and 21,000 (PDGF-BB) cpm/ng. 

Porcine PDGF-BB (Boehringer Mannheim OmBh, FRO) was used for 
studies of c-fos induction, cell proliferation, and cell differentiation. 

Receptor Binding Assays 
Binding experiments were performed on L6Jl myoblasts cultured in 2-cm 2 
wells. Each well contained ~70,000 myoblasts or 500,000 nuclei of myo- 
tubes. Cells, with or without pretreatment of 500/.,g/ml of suramin (Bayer 
AG, Wuppertal, FRG) for 30 min at 4°C, were rinsed with binding buffer 
(PBS containing 0.1% BSA, 0.9 mM CaCI2 x 2H20, and 0.8 mM MgSO4 
x 7H20). Myoblast cultures were then incubated for 3 h at 4°C in 0.5 ml 
binding buffer containing 4 ng/ml of 1251-labeled PDGF isoforms, with or 
without 300 times excess of the corresponding unlabeled ligand. Cultures 
were thereafter washed five times in ice-cold binding buffer. Myoblasts with 
associated 1251-radioactivity were lysed by incubation in 0.5 ml of lysis 
buffer 0% Triton X-lO0/iO% glycerol/20 mM "Iris, pH 7.4) for 30 min at 
room temperature, and radioactivity was determined in a gamma spectrom- 
eter (1282 CompoGamma, LKB Wallac, Sweden). L6JI cell numbers were 
determined in parallel cultures by counting giemsa-stained cell nuclei using 
a Zeiss light microscope. 

c-fos lmmunofluorescence Assay 
c-fos immunofluorescence assay was performed as described previously 
(Rahm et al., 1989). xfos-3 rabbit polyclonal antibodies against amino acid 
residues 2-17 of human/mouse p55 c-fos (Hunt et al., 1987), provided by 
Dr. G. Evan, were used at 1:500 dilution in PBS/0.5% Triton X-100. For 
specific blocking of c-fos immunofluorescence xfos-3 antibodies were 
preincubated for 3 h at room temperature with an excess of synthetic pep- 
tides covering amino acid sequence 2-17 of human/murine c-fos (OP-I 1- 
3210; Cambridge Research Biochemicals, UK). The nuclear fluorescence 
was visualized using a Zeiss ultraviolet microscope, and the optical density 
of the fluorescence was scanned using a Zeiss/Kontron IBAS 2000 interac- 
tive image analysis computer. 

DNA Synthesis Assay 
Fractions of cells undergoing DNA synthesis were measured by studying 
incorporation of bromodeoxyuridine (BrdU) I in proliferating myoblasts. 
L6JI myoblasts were seeded on coverslips and serum-deprived in DME/0% 
FCS for 4 d. Thereafter, 10 #M of BrdU was added, with or without various 
concentrations of PDGF-AA or -BB, for 24 h. After fixation in 70 % ethanol 
for l0 d at 4°C, cells were treated with 0.07N NaOH and 0.01M NazB407 
(pH 8.5) for 2 rain. Thereafter, mouse monoclonal anti-BrdU antibodies 
(Becton Dickinson Immunocytometry Systems, Mountain View, CA) were 
applied for 30 min at room temperature, followed by rhodamine-conjugated 
anti-lgG antibodies (Dakopatts a/s, Denmark), diluted t:10 in PBS, for 15 
rain at room temperature. Coverslips were mounted in PBS/glycerol (!:1), 
and fractions of BrdU-incorporating nuclei were determined counting 
500-1,000 nuclei in randomly selected fields of vision, using a Zeiss 
ultraviolet microscope. 

Results 

PDGF A-Chain mRNA Expression in Differentiating 
Rat Myoblasts 
PDGF A-chain gene expression has previously been reported 
in L6JI myoblasts and in primary culture of rat embryo 
skeletal myoblasts (Sejersen et al., 1986a). To elucidate fur- 
ther the expression pattern of the PDGF A-chain gene in 

I. Abbreviations used in this paper: BrdU, bromodeoxyuridine; GAPDH, 
glyceraldehyde-3-phosphate debydrogenase; MHC, myosin heavy chain. 
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Figure 1. RNA blot illustrating PDGF A-chain, PDGF/3-receptor, 
MHC, actin, and GAPDH transcripts in L6JI myoblasts at day 2 
to day 10 of spontaneous myogenic in vitro differentiation. 15/zg 
of poly A ÷ selected RNA was analyzed in each lane. The same 
filter was sequentially hybridized to various DNA probes. Sizes of 
transcripts are shown in kilobase. Autoradiograph exposure times 
were 12 h for MHC and actin, 48 h for PDGF A-chain and PDGF 
~receptor, and 96 h for GAPDH. 

muscle development, we analyzed messenger RNA from 
L6Jl cells and from rat skeletal muscle tissue at various time 
points of the differentiation process. 

In L6J1 myoblasts, expression of the PDGF A-chain gene 
was identified at all stages of the 10-d spontaneous in vitro 
differentiation process, although most abundantly at day 7, 
when the cells had undergone density-dependent arrest of 

DNA synthesis and fused actively to form multinucleated 
myotubes. Myotube formation took place in parallel with the 
increase of 1.6-kb c~-aetin and 6.9-kb myosin heavy chain 
(MHC) transcripts (Fig. 1). No myotubes were present at day 
O, ,x,5-10% of the nuclei were present in myotubes at day 5, 
40-50% at day 7, and 70-80% after 10 d in culture. Expres- 
sion of PDGF A-chain gene 2.8-, 2.3-, and 1.9-kb transcripts 
increased almost six times from day 2 to 7 of the differentia- 
tion process before returning to lower levels in day 10 myo- 
tubes (Fig. 1). 

Expression of the PDGF A-chain gene was also demon- 
strated in crude muscle tissue obtained from developing rats. 
Transcripts were barely detectable in 13-d-old whole em- 
bryos but appeared clearly in hind legs of 15-d-old rat em- 
bryos (Fig. 2). The abundance of the PDGF A-chain gene 
2.3- and 1.9-kb transcripts then remained fairly constant 
throughout muscle development, including adult rat muscle 
(Fig. 2). Some variations were seen in the less abundantly 
expressed 2.8 kb transcript. 

Expression of the PDGF B-chain gene (c-sis) was not de- 
tected in L6J1 myoblasts or in crude muscle tissue obtained 
from developing rats at any stage of the differentiation pro- 
cess, although the rat, genome did contain DNA sequences 
that hybridized to a human c-sis probe (not shown), support- 
ing previous results (Sejersen et al., 1986a). 

PDGF l~-Receptor mRNA Expression during Rat 
Myoblast Differentiation 

Hybridizing RNA filters bearing materials from in vitro and 
in vivo differentiating rat myogenic cells with DNA probes 
specific for the PDGF or- and B-receptors, we identified a 
5.3-kb PDGF/3-receptor gene transcript both in L6J1 myo- 
blasts and in rat muscle tissue. The relative abundance of 5.3- 
kb PDGF/t-receptor transcripts in L6J1 cells was inversely 
related to the appearance of the myogenic markers ot-actin 
and MHC (Fig. 1). Maximum expression was observed at 
day 3-4 of the spontaneous differentiation process when the 
growth rate of L6JI myoblasts was exponential. The abun- 
dance rapidly declined when the cells became confluent. In 
day 10 L6J1 myotubes, PDGF/3-receptor mRNA was barely 
detectable, the relative abundance being nine times lower 
than at day 4 (Fig. 1). 

In crude muscle tissue obtained from developing rats, ex- 
pression of the PDGF ~-receptor gene showed kinetics com- 
parable to that of the PDGF A-chain gene (Fig. 2). The ex- 
pression was extremely low in 13-d-old whole embryos and 
in adult muscle tissue. Within the accuracy of the Northern 
technique used, a downregulation was seen around birth. Ex- 
pression of PDGF c~-receptor transcripts was not detected 
with the techniques employed, except for marginal levels in 
crude muscle tissue obtained from late stage rat embryos, 
which remains to be further confirmed (data not shown). 

RNA filters were hybridized also with a glyceraldehyde-3- 
phosphate dehydrogenase (GAPDH) gene probe (Dugaiczyk 
et al., 1983). Expression of this gene was constant during 
L6JI in vitro myoblast differentiation but appeared to be de- 
velopmentally regulated in crude muscle tissue obtained 
from developing rats in vivo (Figs. 1 and 2). 

L6J1 Myoblasts Bind PDGF-BB 

'25I-iabeled recombinant PDGF-AA and -BB were used to 
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Figure 3. Binding of 125I-labeled recombinant human PDGF-AA 
and -BB to exponentially proliferating (Prolif) L6JI myoblasts and 
differentiated (Diff) myotubes, respectively. Cells with (stippled 
bars) or without (open bars) pretreatment of suramin were rinsed 
with binding buffer, and then incubated for 3 h at 4°C in binding 
buffer supplemented with 4 ng/ml of tz~I-labeled PDGF-AA or -BB 
with (+) or without ( - )  300 times excess of the corresponding un- 
labeled ligand. Ceil densities were determined in parallel cultures 
by counting Giemsa-stained cell nuclei using a Zeiss light micro- 
scope. The results are shown as mean values of triplicate cultures. 

Figure 2. RNA blot illustrating PDGF A-chain, PDGF B-receptor, 
MHC, actin, and GAPDH transcripts in total embryo and crude 
muscle tissues isolated from thighs of Sprague-Dawley rats of dif- 
ferent ages. 9 #g of poly A ÷ selected RNA was analyzed in each 
lane. The same filter was sequentially hybridized to various DNA 
probes. Sizes of transcripts are shown in kilobase. Autoradiograph 
exposure times were 12 h for MHC, actin and GAPDH, and 48 h 
for PDGF A-chain and PDGF ~-receptor. (Lane 1) Whole 13-d- 
old embryos; (lanes 2-5) crude muscle from 15-, 17-, 18-, and 20- 
d-old embryos; (lanes 6--9) crude muscle from 1-, 7-, 14-, and 21-d- 
old rats; (lane 10) crude muscle from a 5-mo-old (adult) rat. 

detect binding of PDGF to exponentially proliferating and 
terminally differentiated L6Jl myoblasts. Specificity of the 
binding was determined in the absence and presence of 300 
times excess of the corresponding unlabeled ligand. Preincu- 
bation with suramin, which previously has been shown to 
dissociate PDGF from its receptors (Williams et al., 1984; 
Hosang, 1985), was used in parallel experiments to dissoci- 

ate binding of endogenously produced PDGE PDGF-BB 
specifically bound to L6Jl cells (Fig. 3). Exponentially 
proliferating myoblasts showed higher binding of PDGF-BB 
than did the differentiated myotubes, indicating a higher 
number of  PDGF/~-receptors  per nucleus on proliferating 
myoblasts than on myotubes. Suramin pretreatment did not 
influence the binding of PDGF-AA or -BB (Fig. 3). Separate 
binding studies of  PDGF purified from human platelets (Hei- 
din et al., 1987) showed results similar to that of PDGF-BB 
(not shown). PDGF purified from human platelets contains 
~70% PDGF-AB and 30% PDGF-BB. Specific binding of 
PDGF-AA to L6J1 myoblasts could not be demonstrated, in- 
dicating no or very tow amounts of  PDGF ct-receptors on 
these cells. Results similar to the above described were ob- 
tained in three separate experiments. 

PDGF-BB Transiently Induces c-fos lmmunoreactivity 

c-fos is an early response gene to PDGF treatment in various 
cell types (Kruijer et al., 1984; Miiiler et al., 1984). To see 
if this was the case also in L6J1 myoblasts, L6Jl cells, 
deprived of serum for 4 d, were treated with 25 ng/ml of 
PDGF-BB, and fixed after different times, c-fos proteinlike 
staining could be detected ! h after PDGF treatment (not 
shown), and maximal fluorescence was observed at 2 h (Fig. 
4). The nuclear fluorescence induced by PDGF could be 
blocked by preincubation of the c-fos antiserum with an ex- 
cess of c-fos synthetic peptides (not shown), indicating spe- 
cific c-fos antibody immunoreactivity. The intensity of the 
nuclear immunofluorescence was scanned using a Zeiss/ 
Kontron IBAS 2000 interactive image analysis computer. 
Mean values and standard deviations of  the optical densities, 
based on 250-300 nuclei for each sample, are shown in Fig. 
4 G. The experiment was repeated twice with similar results. 

DNA Synthesis and Differentiation in PDGF-Treated 
L6JI Myoblasts 
Having demonstrated the expression of the PDGF H-receptor 
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G Figure 4. Expression of c-fos 
immunoreactivity in L6JI myo- 
blasts deprived of serum for 
4 d (B), and in serum-deprived 
L6J1 myoblasts treated either 
with 25 ng/ml of porcine 
PDGF-BB (D), or 5 % FCS (F) 
for 2 h. Corresponding phase- 
contrast photographs are shown 
in A, C, and E. Cells were fixed 
with 4% paraformaldeh3xle and 
incubated with a rabbit anti- 
fos antibody (xfos-3) followed 
by a TRITC-conjugated swine 

antirabbit IgG antibody. Nuclear fluorescence was scanned using 
a Zeiss/Kontron IBAS 2000 interactive image analysis computer, 
setting background fluorescence to 1. Bar, 30 #m. (G) Mean values 
and standard deviations of the immunofluorescence intensities 
based on 250-300 nuclei for each sample. Significance level for 
comparison between 0 % FCS and 0 % FCS/PDGF-BB is indicated; 
***P < 0.01. 

gene, the specific membrane binding ability, and the induc- 
tion of c-fos protooncogene, it was of interest to study further 
the effects of PDGF on DNA synthesis, cell proliferation, 
and myogenic differentiation of L6J1 rat myoblasts. As 
shown in Fig. 5, low concentrations of PDGF-BB increased 
the percentage of BrdU-incorporating nuclei in the presence 
of 0.5% FCS. Half maximal stimulation of DNA synthesis 
was obtained with '~1 ng/ml of PDGF-BB. At 10 ng/ml of 
PDGF-BB, the mitogenic activity reached a maximum. No 
further increase could be observed with higher concentra- 
tions of PDGF-BB. PDGF-AA did not affect DNA synthesis, 
except for a marginal increase observed at 45 ng/ml of 

PDGF-AA, the highest concentration used (Fig. 5). The 
functional activity of the PDGF-AA preparation used has 
previously been shown (Heldin et al., 1988). PDGF purified 
from human platelets increased L6J1 myoblast DNA synthe- 
sis by 25% in the presence of 0.5% FCS (data not shown). 
PDGF-BB, PDGF-AA, and PDGF purified from human 
platelets were not mitogenic for rat myoblasts in the absence 
of FCS (data not shown). Essentially similar results were ob- 
tained in three consecutive experiments. 

To analyze possible effects of PDGF on L6JI myoblast 
proliferation, we studied proliferation of cells, deprived of 
serum for 4 d, in the absence or presence of 25 ng/ml of 
PDGF-BB in 0.5 % FCS. As shown in Fig. 6, no stimulation 
of cell proliferation was seen during 7 d in the PDGF-BB 
containing medium, as compared to proliferation in 0.5% 
FCS. The experiment was repeated once with similar results. 
A possible explanation of the above described findings could 
be that PDGF exerts its effects only during the first cell cycle 
after stimulation of serum-deprived myoblasts. To inves- 
tigate this possibility, we analyzed the increase in fractions 
of BrdU-incorporating nuclei during 0-24 h and 24-48 h af- 
ter addition of 25 ng/ml of PDGF-BB to the culture medium. 
As demonstrated in Fig. 7, the increase of cells present in the 
cell cycle after PDGF-BB treatment was markedly reduced 
during the 24-48-h time period as compared to the 0-24-h 
time period. 

To study possible effects of PDGF on L6JI myoblast spon- 
taneous in vitro differentiation, myoblasts were cultured in 
DME/0.5% FCS in the absence or presence of 25 ng/ml of 
PDGF-BB supplied daily. The percentage of nuclei present 
in myotubes was scored at different time points of the sponta- 
neous differentiation. In the PDGF-BB containing medium 
7 % of the nuclei were found in myotubes at day 4, corre- 
sponding to 13% in the control medium. At day 7, 24%, and 
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Figure 5. Increase in DNA synthesis in L6JI myoblasts treated with 
recombinant human PDGF-AA or PDGF-BB. Myoblasts were 
seeded in DME/5% FCS on coverslips at 6 x 103 cells/cm 2, and 
cultured in serum free DME for 4 d. The cells were then switched 
to DME/0.5 % FCS supplemented with 10/~M BrdU and various 
concentrations of either PDGF-AA or -BB for 24 h. Cell fixations 
and antibody reactions were carried out as described in Materials 
and Methods. Fractions of BrdU-incorporating nuclei were deter- 
mined by counting 500-1,000 cells in randomly selected fields of 
vision, using a Zeiss ultraviolet microscope. Mean values and stan- 
dard deviations of triplicate assays are shown. Levels of BrdU- 
incorporation in nuclei without PDGF treatment have been adjusted 
to zero. 
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Figure 7. Increase in DNA synthesis in L6J1 myoblasts treated with 
porcine PDGF-BB. Myoblasts were seeded in DME/5% FCS on 
coverslips at 6 x 10 3 cells/cm 2, and cultured in serum free DME 
for 4 d. After serum deprivation, cells were switched to DME/0.5 % 
FCS supplemented with various concentrations of PDGF-BB. 10 
/~M of BrdU was added to the medium either 0-24 h or 24--48 h 
thereafter. Cell fixations and antibody reactions were carried out 
as described in Materials and Methods. Increase in fractions of 
BrdU-incorporating nuclei were determined by counting 500-1,000 
cells in randomly selected fields of vision, using a Zeiss ultraviolet 
microscope. Levels of BrdU-incorporation in nuclei without PDGF 
treatment have been adjusted to zero. 

at day 10 41% of the nuclei were present in myotubes in 
PDGF-BB-treated cultures. These contrasted with 36% and 
61% in the control cultures at day 7 and day 10, respectively. 
Thus, the formation of myotubes in PDGF-BB-treated L6JI 
myoblasts was reduced by '~30% at day 10. This assay was 
repeated once with essentially similar results. 

Discussion 

The results presented here show that the genes coding for the 
PDGF A-chain and the PDGF/~-receptor are expressed in 
rat myoblasts, and that PDGF-BB is a partial mitogen for 
L6J1 rat myoblasts. Several polypeptide growth factors have 
in previous studies been shown to be mitogenic for estab- 
lished or primary rat myoblasts. These include insulin, in- 
sulin-like growth factors I and II, fibroblast growth factor, 
transferrin, and growth hormone (Florini et al., 1977; Ew- 
ton and Florini, 1981; Hayachi and Kobylecki, 1982; Nissley 
et al., 1984; Massagud et al., 1986). Insulin-like growth fac- 
tors I and II have been shown to be produced by rat myoblasts 
and to stimulate cell growth in an autocrine manner (Nissley 
et al., 1984). 
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Figure 6. Proliferation of L6J1 
myoblasts. Cells were seeded in 
DME/5% FCS at 4 x l@/cm 2 in 
7-cm 2 wells, and cultured in se- 
rum free DME for 4 d. Myoblasts 
were then maintained in DME/ 
0.5% FCS supplemented with 
(---f:y--) or without ( ~  25 ng/ 
ml of porcine PDGF-BB. At the 
indicated time points (days), myo- 
blasts were trypsinized, and cell 
numbers were determined in trip- 
licate wells using an automatic 
cell counter. 

At the RNA level, we found that the PDGF A-chain gene 
was expressed at all examined stages of rat myogenesis, in 
vitro and in vivo. However, the function of endogenously 
produced PDGF-AA on rat myoblasts is not clear, and ex- 
pression of its receptor remains to be examined using more 
sensitive methods. Our experiments showed that L6JI myo- 
blasts did not bind PDGF-AA, and only a marginal increase 
in DNA synthesis was observed with very high concentra- 
tions of PDGF-AA. 

Transcripts for the PDGF ~-receptor were present in 
undifferentiated L6J1 rat myoblasts in vitro and in crude rat 
muscle tissue in vivo. PDGF ~-receptor mRNA was down- 
regulated in differentiated L6JI myotubes and mature adult 
rat muscle in a manner different from the expression pattern 
of PDGF A-chain transcripts. This was reflected also at the 
protein level as decreased capacity of L6J1 myotubes to bind 
PDGF-BB, compared to the binding capacity of proliferating 
L6J1 myoblasts. It should further be commented on the 
PDGF binding experiments that the background binding, per 
nucleus, was consistently found to be much higher for 
proliferating than for differentiated myoblasts. This may 
partly be due to the large difference in cell density and free 
plastic surface area between the two states of differentiation 
analyzed, but other factors (e.g., altered membrane compo- 
sition) are also likely to have influenced the observed differ- 
ence in background binding. 

The presence of functional PDGF ~-receptors on L6J1 
myoblasts was further supported by the PDGF-BB induced 
increase of c-fos immunoreactivity and the DNA synthesis 
induced by PDGF-BB; this form of PDGF was previously 
shown to bind to and act through the PDGF/~-receptor (Hart 
et al., 1988; Heldin et al., 1988). PDGF-BB is also likely 
to induce DNA synthesis in developing rat myoblasts in vivo, 
since they express PDGF/~-receptor mRNA. Surprisingly, 
PDGF-BB did not increase the total cell number of L6J1 
myoblasts in proliferation assays, although it induced DNA 
synthesis. The lack of long term effect of growth factor on 
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L6J1 myoblasts may, at least partially, be explained by our 
finding that DNA synthesis was stimulated in serum-deprived 
myoblasts during the first 24 h after PDGF addition, but not 
during the next 24 h. The reason for this decreased respon- 
siveness to PDGF remains to be further analyzed. One fac- 
tor likely to contribute to the lack of proliferative effect is 
deficiency of other growth factors required by L6J1 myo- 
blasts. 

Myoblast differentiation has in previous studies been 
shown to be inhibited or stimulated by various growth factors 
(Yaffe, 1971; Linkhart et al., 1980; Ewton and Florini, 1981; 
Lim and Hauschka, 1984; Massagu6 et al., 1986). PDGF- 
BB partially inhibited myogenic differentiation in vitro, de- 
creasing myotube formation by ~30%. 

In conclusion, we have found that rat myoblasts express 
the PDGF A-chain gene and functional PDGF E-receptors. 
PDGF-BB induces c-fos immunoreactivity and DNA synthe- 
sis, but not cell proliferation in short term assays. Myogenic 
differentiation of L6J1 myoblasts was inhibited by the pres- 
ence of PDGF-BB in the culture medium. 
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