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ABSTRACT

An accurate method for locating genes under tumor
suppressor p53 control that is based on a well-
established mathematical theory and built using
naturally occurring, experimentally proven p53 sites
is essential in understanding the complete p53
network. We used a molecular information theory
approach to create a flexible model for p53 binding.
By searching around transcription start sites in
human chromosomes 1 and 2, we predicted 16
novel p53 binding sites and experimentally demon-
strated that 15 of the 16 (94%) sites were bound by
p53. Some were also bound by the related proteins
p63 and p73. Thirteen of the adjacent genes were
controlled by at least one of the proteins. Eleven of
the 16 sites (69%) had not been identified previously.
This molecular information theory approach can be
extended to any genetic system to predict new sites
for DNA-binding proteins.

INTRODUCTION

p53 is a transcription factor that acts as a tumor
suppressor and modulates expression of genes related to
the cell cycle, DNA repair, apoptosis and angiogenesis (1).
More than half of the tumors in some cancer types have
mutations in p53 (2–4). Whole genome scanning for
transcription factor sites in conjunction with experimental
confirmation can fill the gaps in our understanding of gene
regulation networks (5,6).
El-Deiry et al. (7) proposed the p53 consensus sequence

50-PuPuPuC(A/T)(T/A)GPyPyPy-[0-13 bp]-PuPuPuC
(A/T)(T/A)GPyPyPy-30, which consists of two decameric
sequences separated by 0–13 bp. Microarray experiments
have established that hundreds of genes are controlled by
p53 (8–12). Attempts have been made to predict p53
binding sites using base frequency weight matrices (13–16)
and hidden Markov models (17).

We present a p53 DNA binding model, based on Claude
Shannon’s information theory (18,19), which sharply
distinguishes between specific and non-specific DNA-
binding sites (20,21). This theory has been applied to
genetic control systems including replication (22,23),
transcription (5,24–26), splicing (27) and translation
(28). It also has application beyond genetic control in
characterizing molecular states and patterns in general
(29,30). The information measure consistently accounts
for sequence variability and conservation in universal
units, bits of information (31). [A bit is a unit of
information that allows one to distinguish between two
states (19).] We analyzed binding sequences from two
earlier studies (7,32) and from a collection of proven
natural sites (i.e. naturally occurring experimentally
confirmed sites).

To identify p53 response elements (REs), El-Deiry et al.
selected more than 500 human genomic fragments and
tested them for p53 protein binding in vitro (7). Twenty
REs were identified. Since p53 binds a decameric site as a
dimer, both the sequences and their complementary
strands for the two decamers of the p53 RE were used
to construct an information theory model (Figure 1a).
Because tetrameric p53 binds to two dimeric sites, a total
of 80 sequences are available from the 20 REs.

Another attempt to identify p53 REs used cyclic
amplification and selection of targets (32). p53 was
incubated with DNA containing degenerate bases, the
p53–DNA complex was purified, the DNA was amplified
by PCR and this cycle was repeated. A decameric model
built from 17 sequenced DNAs is shown in Figure 1b.

METHODS

Methods are provided in the Supplementary Data.

RESULTS

To construct a natural model, we analyzed p53 decameric
sites from 35 previously identified p53-controlled
genes, containing the experimentally confirmed sites

*To whom correspondence should be addressed. Tel: +1 301 846 5581; Fax: +1 301 846 5598; Email: toms@ncifcrf.gov

� 2008 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



(Supplementary Materials, Table 1). Individual informa-
tion was calculated by themethod given previously (33) and
the sites with information less then zero were removed from
the list because these sites can not bind a protein
specifically, according to the second law of thermo-
dynamics (30). We aligned the remaining 66 decameric
sites and their complementary strands (34), created a
sequence logo (27) and generated an individual informa-
tion weight matrix with a range from �4 to þ5 (33).

We built a flexible p53 model containing two rigid
decameric sites (Figure 1c) and a flexible spacer
(Figure 1d) (25,28) (Supplementary Materials, Table 2).
The natural model (Figure 1c) is more accurate then the
consensus models of El-Deiry et al. (7) and Funk et al. (32)
because ignoring the base frequencies and instead counting
matches to a consensus inappropriately makes conserved
bases equally important for binding (35). Also, they used
artificially selected sets of sites (Figure 1a and b), but we

Figure 1. Decameric p53 models. The sequence logos (left) and individual information (Ri) distribution histograms (right) for individual binding sites
come from (a) El-Deiry et al. (7), (b) Funk et al. (32) and (c) our collection of proven natural sites (Supplementary materials, Table 1). Rs is the total
information (area of the sequence logo) and also the average of the Ri distribution. Error bars indicate the standard deviation of the information based on
sample size. The peaks of sine waves (wavelength of 10.6 bp) above the logos represent the DNAmajor groove facing the protein, as determined by X-ray
crystallography (48) and methylation interference (7). As with a number of other binding sites (22), the sequence logos of p53 follow the accessibility sine
wave, especially the Funk data, which are remarkably close. On the distribution histograms a Gaussian curve with the same mean and standard deviation
as the data is shown and a vertical line indicates 0 bits of information. (d) Histogram of the distance between natural decameric sites.
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used only naturally occurring experimentally confirmed
sites. SELEX and other artificial selectionmethods can give
inconsistent results (36).
The El-Deiry model (Figure 1a) is similar to the natural

one (Figure 1c). We suggest that the Funk model
(Figure 1b) has excess information because strong sites
were selected. According to molecular information theory,
Rs is the total information in the binding site model,
while Rf is the information required to locate the sites in a
genome (31). These two independently determined num-
bers are expected to converge during evolution (37). In the
natural p53 model, accounting for the variable distance
between the decamers reduces the total information of two
decamers to Rs=12:3� 3:1 bits (25,28). In comparison,
El-Deiry et al. (7) found 18 REs in 530 DNA fragments

ranging from 139 to 470 bp long, which requires
RF ¼ 13:1� 0:8 bits. Thus, the information Rs in our bin-
ding site model is close to the information Rf needed to find
the sites in the genome, as occurs for other genetic systems
(31,37), suggesting that the natural model is reasonable.

The average information content of the flexible p53
model is 12:3� 3:1 bits and 50% of the distances between
the natural p53 REs and their promoters are < 300 bp, so
we scanned genomic sequences around identified pro-
moters (range �300 to þ100) with the flexible p53 model,
using a 12-bit cutoff. Each decameric site was at least 5 bits.
We chose these parameters to identify the strongest sites.
The sequences of human chromosomes 1 and 2 [ftp://
ftp.ncbi.nih.gov/genomes/H_sapiens/ (38)] were scanned
and 16 sites were found (Table 1; SupplementaryMaterials,
Table 3).

There are two more proteins from the p53 family, p63
and p73, which are involved in cell cycle arrest and
apoptosis (39). These transcription factors have DNA-
binding domains, similar to p53, and, therefore, bind some
of the p53 REs that cause transcription activation of
p53-dependent genes. Because our initial data set may
contain binding sites for these additional proteins, the sites
predicted by the genomic scan were confirmed by electro-
phoretic mobility shift assays (EMSA) with p53, p63 and
p73 proteins (Figure 2). p53 bound all predicted sites except
S100A6. p63 does not bind the KCNA2-2, S100A6 and
BZW1 sites, and weakly binds LEPRE1, KCNA2-1. All
other sites form stable complexes with the p63 protein. p73
binds all sites except S100A6. Therefore, 15 out of the 16
sites show affinity to the p53, p63 or p73 proteins.

We used a luciferase reporter assay to confirm the
predicted sites in human cells. Promoters containing each
site were cloned upstream of the luciferase gene, the
plasmids were co-transfected with expression vectors for
p53, p63, p73 and a negative control into HEK293 cells,
and luciferase activity was measured (Figure 3). Seven
genes (CLCA2, FLJ43374, UGT1A6, FLJ38753, KCNA2,
PROM2 and H6PD) were activated>5-fold by at least one

Figure 2. Electrophoretic mobility shift assays (EMSA) with hairpin oligonucleotides containing predicted p53 binding sites (Supplementary
materials, Table 6) using the p53, p63 and p73 proteins. The bottom bands are unbound oligonucleotides, and the top bands are protein–
oligonucleotide complexes. Names of the predicted genes are marked on the top. The ‘PCNA’ oligonucleotide containing the p53 RE from the
promoter of the PCNA gene (49) is a positive control. The KCNA gene contains three close decameric p53 sites. Oligonucleotide ‘KCNA-1’ contains
sites 1 and 2, oligonucleotide ‘KCNA-2’ contains sites 2 and 3. The ‘Con’ oligonucleotide containing the consensus p53 binding site is a positive
control. ‘Anti-con’ has no p53 binding sites and is a negative control.

Table 1. Genes containing the predicted p53 response elements

Gene name Information
content, bits

Description

H6PD 12.5 Hexose-6-phosphate dehydrogenase
FLJ38753 12.0 Hypothetical protein
LEPRE1 12.2 Proteoglycan, potential growth

suppressor
MGC955 12.2 Hypothetical protein
RPS8 13.0 Ribosomal protein S8
CLCA2 12.1 Calcium-activated ion channel protein
KCNA2 14.2, 12.2 Potassium channel protein
S100A6 12.1 S100 calcium binding protein

A6 (calcyclin)
RDH14 13.5 Retinol dehydrogenase
DQX1 13.3 DEAQ box polypeptide 1

(RNA-dependent ATPase)
VPS24 14.6 Transmembrane protein sorting
PROM2 13.0 Prominin 2
U5-200KD 12.4 U5 snRNP-specific protein,

RNA helicase
BZW1 13.3 Basic leucine zipper protein
UGT1A6 13.9 UDP glycosyltransferase
FLJ43374 12.6 Hypothetical protein

The KCNA2 gene contains two p53 REs.
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of the proteins. Five genes (RPS8, DQX1, VPS24, RDH14
and U5-200KD) showed 2- to 5-fold activation by at least
one of the proteins. Two divergently expressed genes
(MGC955 and LEPRE1), which contain a common p53
RE, showed �2-fold repression by p53 but not by p63 or
p73. Two genes (S100A6 and BZW1) showed no regulation
by p53, p63 or p73. Therefore, by the luciferase reporter
assay, 14 genes out of the 16 were activated or repressed by
at least one of the proteins.

Total RNA from p53-, p63-, p73-transfected cells was
isolated and analyzed by qPCR using primers for
detection of the 16 predicted genes and the GAPDH and
actin controls (Supplementary Materials, Table 4).

The qPCR data (Supplementary Materials, Tables 5A–D)
are summarized in Figure 3. Four genes (CLCA2,
FLJ43374, KCNA2 and PROM2) were activated
>5-fold. Three genes (FLJ38753, DQX1 and VPS24)
showed 2- to 5-fold activation by at least one of the
proteins. Five genes (RPS8, RDH14, U5-200KD, S100A6
and LEPRE1) showed no activation by p53, p63 or p73.
The UGT1A6, MGC955 and BZW1 gene expression was
undetectable by qPCR. Although H6PD appears to be
repressed (Supplementary Materials, Table 5D), the
computed errors are larger than the averages, so we did
not report it in Figure 3. Therefore, by qPCR 7 out of the
16 genes showed regulation by the proteins.

Figure 3. Transcriptional regulation of genes containing the predicted binding sites by p53, p63 and p73. The charts show the ratio between induced
and non-induced luciferase signals (top chart) and qPCR signals (bottom chart). Rectangles at the left side represent promoter induction fold for p53,
p63 and p73 proteins. The white area in the rectangles means that the signals were undetectable. Error bars indicate the standard deviation of the
luciferase signal from two experiments.

Nucleic Acids Research, 2008, Vol. 36, No. 11 3831



Some of our findings are consistent with microarray
data: CLCA2 is p53-, p63- and p73-inducible by 40-fold or
more (40), VPS24 is p53-inducible by 2-fold (16), DQX1
and PROM2 in human mammary epithelial cells were
upregulated after expression of p53 (41). The S100A6 gene
was not induced by p53 (12), which is consistent with our
results. The other genes we found have not been analyzed
or did not show induction or repression in microarray
experiments. Our method located 11 previously unidenti-
fied REs.
The only exceptional gene, S100A6, was not bound by

any proteins in vivo or in vitro. We suggest that this site has
an unusual DNA structure that blocks binding.
We searched all transcription starts in the human

Reference Sequence [GenBank accessions NC_000001 to
NC_000024, 2006, build 36 version 2, (42)] using the same
parameters as before, and identified 198 potentially
controlled genes (Supplementary Materials, Table 8).
There were two missing RE compared to our previous
search. The transcription start of H6PD is now annotated
to be 10121 bp upstream, leaving the p53 site in the middle
of the gene just after the start of the second exon, yet it
activates luciferase expression in vivo (Figure 3). Genetic
controls inside genes are known, an example for p53 is in
the LIF gene (43). However, there are other possible
explanations for this activation. Therefore, only 13 of the
16 genes are clearly activated by p53. Likewise, in the new
sequence the annotated transcription start for S100A6 is
shifted 214 bp upstream (old: NT_086596 referring to the
mRNA NM_014624.2; new: NC_000001.9 referring to
NM_014624.3), placing the predicted p53 site outside the
searched region (�300 toþ100), which explains why it was
not located in the new search. This location does not
explain the lack of p53, p63 or p73 binding to the sequence.

DISCUSSION

We used a proven mathematical method, molecular
information theory, to measure DNA binding site
conservation in universal units, bits. Not all positions in
a site are equally important for protein binding (35).
Information content measures the conservation of bases
and allows for comparison of different positions
(Figure 1). Summing the information content of the
bases across the site gives the total information content of
the site, which is an important physiological parameter
(31,37). In contrast, summing any other function gives
inconsistent results, and the total site information cannot
be calculated (33). Because of its mathematical consis-
tency, the molecular information theory-based flexible p53
model gave accurate gene predictions.
p53, p63 and p73 are known to have different affinities to

different sequences (41,44) and they can be both activators
and repressors (45–47). This is consistent with our data.
Our model, built from experimentally proven, naturally
occurring sites, is a combined model for p53, p63 and p73
that does not distinguish between the proteins. In order to
build models specific for each particular protein, one would
have to have 3 sets of sites, one for each of p53, p63 and
p73. In contrast, the model built using El-Deiry’s set is a

pure p53 model. The differences in conservation pattern
between the models (Figure 1a versus 1c) may reflect the
contribution of p63 and p73 proteins in our natural model.
Even so, we used three different experimental methods with
all three proteins to test the sites predicted using the natural
model, and were able to show that all of the sites except one
have in vitro or in vivo activity. Such a precise and reliable
method for prediction of the p53 family response elements
will allow further discovery of cancer-related genes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank the Fulbright Program and the United States
Educational Foundation in India (USEFI) for supporting
AK. We also thank Dr Christian Klein (Roche
Diagnostics GmbH, Pharma Research, Penzberg,
Germany) for p53 protein and p53 expressing plasmid
p11435, Dr Hua Lu (Oregon Health Sciences University)
for pcDNA3-HA-p73b plasmid, Dr Satrajit Sinha (State
University of New York at Buffalo) for pColdIdNp63
plasmid, Dr Bimalendu Dasmahapatra (Schering-Plough
Research Institute) for GST-His p73DBD plasmid,
Dr Boopathy Ramakrishnan (SAIC-Frederick, Inc.) for
helpful advice regarding p53 protein isolation, Peter
Rogan, Danielle Needle and Peyman Khalichi for
editorial comments on the manuscript. This publication
has been funded in whole or in part with Federal funds
from the National Cancer Institute, National Institutes of
Health, under contract NO1-CO-12400. The content
of this publication does not necessarily reflect the views
or policies of the Department of Health and Human
Services, nor does mention of trade names, commercial
products, or organizations imply endorsement by the US
Government. This Research was supported [in part] by the
Intramural Research Program of the NIH, National
Cancer Institute, Center for Cancer Research. Funding
to pay the Open Access publication charges for this article
was provided by the National Cancer Institute.

Conflict of interest statement. None declared.

REFERENCES

1. Levine,A.J., Hu,W., and Feng,Z. (2006) The P53 pathway: what
questions remain to be explored? Cell Death Differ., 13, 1027–1036.

2. Petitjean,A., Mathe,E., Kato,S., Ishioka,C., Tavtigian,S.V.,
Hainaut,P. and Olivier,M. (2007) Impact of mutant p53 functional
properties on TP53 mutation patterns and tumor phenotype: lessons
from recent developments in the IARC TP53 database. Hum.
Mutat., 28, 622–629.

3. Soussi,T. (2000) The p53 tumor suppressor gene: from molecular
biology to clinical investigation. Ann. N. Y. Acad. Sci., 910,
121–137; discussion 137–139.

4. Soussi,T., Kato,S., Levy,P.P. and Ishioka,C. (2005) Reassessment of
the TP53 mutation database in human disease by data mining with
a library of TP53 missense mutations. Hum. Mutat., 25, 6–17.

5. Vyhlidal,C.A., Rogan,P.K. and Leeder,J.S. (2004) Development and
refinement of pregnane X receptor (PXR) DNA binding site model
using information theory: insights into PXR-mediated gene regula-
tion. J. Biol. Chem., 279, 46779–46786.

3832 Nucleic Acids Research, 2008, Vol. 36, No. 11



6. Kohn,K.W. (1999) Molecular interaction map of the mammalian
cell cycle control and DNA repair systems. Mol. Biol. Cell, 10,
2703–2734.

7. El-Deiry,W.S., Kern,S.E., Pietenpol,J.A., Kinzler,K.W. and
Vogelstein,B. (1992) Definition of a consensus binding site for p53.
Nat. Genet., 1, 45–49.

8. Wang,L., Wu,Q., Qiu,P., Mirza,A., McGuirk,M., Kirschmeier,P.,
Greene,J.R., Wang,Y., Pickett,C.B. and Liu,S. (2001) Analyses of
p53 target genes in the human genome by bioinformatic and
microarray approaches. J. Biol. Chem., 276, 43604–43610.

9. Zhao,R., Gish,K., Murphy,M., Yin,Y., Notterman,D.,
Hoffman,W.H., Tom,E., Mack,D.H. and Levine,A.J. (2000)
Analysis of p53-regulated gene expression patterns using oligo-
nucleotide arrays. Genes Dev., 14, 981–993.

10. Mirza,A., Wu,Q., Wang,L., McClanahan,T., Bishop,W.R.,
Gheyas,F., Ding,W., Hutchins,B., Hockenberry,T., Kirschmeier,P.
et al. (2003) Global transcriptional program of p53 target genes
during the process of apoptosis and cell cycle progression.
Oncogene, 22, 3645–3654.

11. Ohki,R., Kawase,T., Ohta,T., Ichikawa,H. and Taya,Y. (2007)
Dissecting functional roles of p53 N-terminal transactivation
domains by microarray expression analysis. Cancer Sci., 98,
189–200.

12. Wei,C.L., Wu,Q., Vega,V.B., Chiu,K.P., Ng,P., Zhang,T.,
Shahab,A., Yong,H.C., Fu,Y., Weng,Z. et al. (2006) A global map
of p53 transcription-factor binding sites in the human genome. Cell,
124, 207–219.

13. Bourdon,J.C., Deguin-Chambon,V., Lelong,J.C., Dessen,P.,
May,P., Debuire,B. and May,E. (1997) Further characterisation of
the p53 responsive element-identification of new candidate genes for
trans-activation by p53. Oncogene, 14, 85–94.

14. Quandt,K., Frech,K., Karas,H., Wingender,E. and Werner,T.
(1995) MatInd and MatInspector: new fast and versatile tools for
detection of consensus matches in nucleotide sequence data.
Nucleic Acids Res., 23, 4878–4884.

15. Hoh,J., Jin,S., Parrado,T., Edington,J., Levine,A.J. and Ott,J.
(2002) The p53MH algorithm and its application in detecting
p53-responsive genes. Proc. Natl Acad. Sci. USA, 99,
8467–8472.

16. Sbisa,E., Catalano,D., Grillo,G., Licciulli,F., Turi,A., Liuni,S.,
Pesole,G., De Grassi,A., Caratozzolo,M.F., D’Erchia,A.M. et al.
(2007) p53FamTaG: a database resource of human p53, p63 and
p73 direct target genes combining in silico prediction and
microarray data. BMC Bioinform., 8, (Suppl. 1), S20.

17. Li,W., Meyer,C.A. and Liu,X.S. (2005) A hidden Markov model for
analyzing ChIP-chip experiments on genome tiling arrays and its
application to p53 binding sequences. Bioinform., 21 (Suppl. 1),
i274–i282.

18. Shannon,C.E. (1948) A Mathematical Theory of Communication.
Bell System Tech. J., 27, 379–423, 623–656.

19. Pierce,J.R. (1980) An Introduction to Information Theory: Symbols,
Signals and Noise. Dover Publications, Inc., New York.

20. Shultzaberger,R.K., Roberts,L.R., Lyakhov,I.G., Sidorov,I.A.,
Stephen,A.G., Fisher,R.J. and Schneider,T.D. (2007) Correlation
between binding rate constants and individual information of E. coli
Fis binding sites. Nucleic Acids Res., 35, 5275–5283

21. Schneider,T.D. (2006) Claude Shannon: Biologist. IEEE
Engineering in Medicine and Biology Magazine, 25, 30–33.

22. Schneider,T.D. (2001) Strong minor groove base conservation in
sequence logos implies DNA distortion or base flipping during
replication and transcription initiation. Nucleic Acids Res., 29,
4881–4891.

23. Lyakhov,I.G., Hengen,P.N., Rubens,D. and Schneider,T.D. (2001)
The P1 phage replication protein RepA contacts an otherwise
inaccessible thymine N3 proton by DNA distortion or base flipping.
Nucleic Acids Res., 29, 4892–4900.

24. Chen,Z. and Schneider,T.D. (2006) Comparative analysis of tandem
T7-like promoter containing regions in enterobacterial genomes
reveals a novel group of genetic islands. Nucleic Acids Res., 34,
1133–1147.

25. Shultzaberger,R.K., Chen,Z., Lewis,K.A. and Schneider,T.D. (2007)
Anatomy of Escherichia coli s70 promoters. Nucleic Acids Res., 35,
771–788

26. Chen,Z., Lewis,K.A., Shultzaberger,R.K., Lyakhov,I.G., Zheng,M.,
Doan,B., Storz,G. and Schneider,T.D. (2007) Discovery of Fur
binding site clusters in Escherichia coli by information theory
models. Nucleic Acids Res., 35, 6762–6777.

27. Schneider,T.D. and Stephens,R.M. (1990) Sequence logos: a new
way to display consensus sequences. Nucleic Acids Res., 18,
6097–6100.

28. Shultzaberger,R.K., Bucheimer,R.E., Rudd,K.E. and
Schneider,T.D. (2001) Anatomy of Escherichia coli ribosome
binding sites. J. Mol. Biol., 313, 215–228.

29. Schneider,T.D. (1991) Theory of molecular machines. I. Channel
capacity of molecular machines. J. Theor. Biol., 148, 83–123.

30. Schneider,T.D. (1991) Theory of molecular machines. II. Energy
dissipation from molecular machines. J. Theor. Biol., 148, 125–137.

31. Schneider,T.D., Stormo,G.D., Gold,L. and Ehrenfeucht,A. (1986)
Information content of binding sites on nucleotide sequences.
J. Mol. Biol., 188, 415–431.

32. Funk,W.D., Pak,D.T., Karas,R.H., Wright,W.E. and Shay,J.W.
(1992) A transcriptionally active DNA-binding site for human p53
protein complexes. Mol. Cell Biol., 12, 2866–2871.

33. Schneider,T.D. (1997) Information content of individual genetic
sequences. J. Theor. Biol., 189, 427–441.

34. Schneider,T.D. and Mastronarde,D. (1996) Fast multiple alignment
of ungapped DNA sequences using information theory and a
relaxation method. Discrete Appl. Math., 71, 259–268.

35. Schneider,T.D. (2002) Consensus sequence Zen. Appl. Bioinform.,
1, 111–119.

36. Shultzaberger,R.K. and Schneider,T.D. (1999) Using sequence logos
and information analysis of Lrp DNA binding sites to investigate
discrepancies between natural selection and SELEX. Nucleic Acids
Res., 27, 882–887.

37. Schneider,T.D. (2000) Evolution of biological information. Nucleic
Acids Res., 28, 2794–2799.

38. Istrail,S., Sutton,G.G., Florea,L., Halpern,A.L., Mobarry,C.M.,
Lippert,R., Walenz,B., Shatkay,H., Dew,I., Miller,J.R. et al. (2004)
Whole-genome shotgun assembly and comparison of human
genome assemblies. Proc. Natl Acad. Sci. USA, 101, 1916–1921.

39. Murray-Zmijewski,F., Lane,D.P. and Bourdon,J.C. (2006) p53/
p63/p73 isoforms: an orchestra of isoforms to harmonise cell
differentiation and response to stress. Cell Death Differ., 13,
962–972.

40. Osada,M., Park,H.L., Nagakawa,Y., Begum,S., Yamashita,K.,
Wu,G., Kim,M.S., Trink,B. and Sidransky,D. (2006) A novel
response element confers p63- and p73-specific activation of the
WNT4 promoter. Biochem. Biophys. Res. Commun., 339,
1120–1128.

41. Perez,C.A., Ott,J., Mays,D.J. and Pietenpol,J.A. (2007) p63
consensus DNA-binding site: identification, analysis and application
into a p63MH algorithm. Oncogene, 26, 7363–7370.

42. International Human Genome Sequencing Consortium. (2004)
Finishing the euchromatic sequence of the human genome. Nature,
431, 931–945.

43. Hu,W., Feng,Z., Teresky,A.K. and Levine,A.J. (2007) p53 regulates
maternal reproduction through LIF. Nature, 450, 721–724.

44. Lokshin,M., Li,Y., Gaiddon,C. and Prives,C. (2007) p53 and p73
display common and distinct requirements for sequence specific
binding to DNA. Nucleic Acids Res., 35, 340–352.

45. Ho,J. and Benchimol,S. (2003) Transcriptional repression mediated
by the p53 tumour suppressor. Cell Death Differ., 10, 404–408.

46. Testoni,B. and Mantovani,R. (2006) Mechanisms of transcriptional
repression of cell-cycle G2/M promoters by p63. Nucleic Acids Res.,
34, 928–938.

47. Racek,T., Mise,N., Li,Z., Stoll,A. and Pützer,B.M. (2005)
C-terminal p73 isoforms repress transcriptional activity of the
human telomerase reverse transcriptase (hTERT) promoter. J. Biol.
Chem., 280, 40402–40405.

48. Cho,Y., Gorina,S., Jeffrey,P.D. and Pavletich,N.P. (1994) Crystal
structure of a p53 tumor suppressor-DNA complex: understanding
tumorigenic mutations. Science, 265, 346–355.

49. Morris,G.F., Bischoff,J.R. and Mathews,M.B. (1996)
Transcriptional activation of the human proliferating-cell nuclear
antigen promoter by p53. Proc. Natl Acad. Sci. USA, 93, 895–899.

Nucleic Acids Research, 2008, Vol. 36, No. 11 3833


