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Mathematics learning disability, or dyscalculia, is a specific learning dis-
ability that affects an individual’s ability to learn about and process nu-
merical or mathematical information. Although estimates vary, it is
thought to affect between 5 and 8 percent of the population. The purpose
of this article is to provide a brief review of the history of mathematics
learning disability as well as to present some competing hypotheses re-
garding the cognitive nature of mathematics learning disability. Finally,
we provide some recommendations for further reading.
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Mathematics learning disability (also known as devel-
opmental dyscalculia) is a specific learning disability
that is characterized by an impaired ability to learn
about and process numerical and mathematical infor-
mation that is not attributed to general intellectual
disabilities (American Psychiatric Association, 2013).
Although estimates vary widely, it is currently
thought that mathematics learning disability occurs
in approximately 5 and 8 percent of the population
(Butterworth, 2005; Shalev, 2007; Shalev, Manor, &
Gross-Tsur, 2005).

Whereas much research has been conducted on the
nature of mathematics learning disability, several is-
sues remain unclear. First, not much is known about
how mathematics learning disability develops (Geary
& Hoard, 2005). Furthermore, there are conflicting
hypotheses on what exactly goes wrong (cognitively
and neurologically speaking) when someone develops
mathematics learning disability (Ashkenazi, Black,
Abrams, Hoeft, & Menon, 2013). Finally, while there
are ample studies on mathematics learning disability
in children, relatively few studies approach the issue
in the context of adulthood.

The purpose of this review is twofold. First, we wish to
provide the reader with a brief, (but by no means com-
prehensive) history of mathematics learning disabil-
ity from a diagnosis standpoint. In addition, we talk at
length about some competing hypotheses regarding
the exact cognitive deficits that may underlie mathe-
matics learning disability. As such, we will also dis-
cuss the nature of numerical and mathematical cogni-
tion in general, particularly from the standpoint of
mental representations of number. Finally, we will
provide the reader with a short list of readings that we

consider fundamental in gaining a profound under-
standing of this important topic.

A Brief History

Historically, the concept of mathematics learning dis-
ability has been synonymous with the term dyscalcu-
lia. Although dyscalculia applies broadly to individu-
als with deficits in numerical representation and
processing, acalculia was the prevalent term in early
literature. Henschen (1925) used the term acalculia to
refer to an acquired weakness in computation that di-
rectly resulted from brain injury; the term dyscalculia
was reserved for weaknesses that resulted from ge-
netic or congenital defects. Calculation disturbances
were described in earlier literature, but most often as
a consequence of aphasia. In the 1920s, Josef
Gerstmann described a syndrome referring to a clus-
ter of deficits, including finger agnosia, right-left dis-
orientation, dysgraphia, and dyscalculia (Bakwin &
Bakwin, 1966). Hence, even though mathematics dis-
abilities were identified, they were often viewed as oc-
curring together with, or as a function of, other neuro-
logical impairments.

Later studies generally went against this trend.
Lewandowsky and Stadelmann (as cited in Boller &
Grafman, 1983), separated acalculia from language
deficits in a 1908 report describing a shipping clerk
who lost his ability to calculate after the removal of
hematoma from the left occipital lobe. Based upon
their study of 50 patients with brain lesions, Poeck
and Orgass (1966) argued that the disturbances in
Gerstmann’s syndrome were independent from other
neurological disorders. Similarly, subsequent re-
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searchers continued to establish that the mathemati-
cal deficits evident in patients with brain injuries
could exist independently, without deficits in other
domains. Going further, Berger (as cited in Ardila &
Rosseli, 2002) even distinguished between primary
and secondary acalculia, attributing the deficits in
primary acalculia to a “pure” loss of mathematical
ability and those in secondary acalculia to other cogni-
tive factors.

Much of this research in this period was focused on the
question of identifying the nature of dyscalculia from
a neurological standpoint. It was not until 1962 that
dyscalculia entered the realm of education. At this
time, as the education of atypical learners was moving
to the sociopolitical forefront, Samuel Kirk introduced
learning disability into the lexicon of special educa-
tors. From the standpoint of the special education
community, the primary interest in dyscalculia was in
its identification and remediation, not in understand-
ing its cause. It is at this point that one begins to see
dyscalculia labeled as mathematics learning disabil-
ity.

As an early definition, the notion of learning disabili-
ties encompassed the deficits of children who were de-
layed in specific domains without the presence of men-
tal retardation (Kirk & Bateman, 1962). In 1969, the
term specific learning disability became a federally
designated special education category through the
Specific Learning Disabilities Act (PL 91-230). This
was followed closely by the Education for All Handi-
capped Children’s Act (PL 94-142). Since the inception
of these acts, the federal definition of a specific learn-
ing disability has included the requirement of a dis-
crepancy between ability and achievement. This stip-
ulation was consistent with the research at that time
(see Rutter & Yule, 1975), thus bringing into practice
the use of intelligence (IQ) and achievement tests for
identification of learning disabilities, including math-
ematics learning disability.

Until the recent past, the discrepancy method has re-
mained the gold standard for diagnosis of mathemat-
ics learning disability. In order to meet diagnostic cri-
teria using this method, an individual’s mathematical
performance as measured by an achievement test
(e.g., the Woodcock Johnson) must be lower than ex-
pected based upon aptitude (e.g., as measured by a
Weschler intelligence scale). According to Sternberg
and Grigorenko (2002), there are numerous reasons to
abandon the discrepancy model, including the obvious
issues arising from the movement towards a more
multifaceted theory of intelligence (see Gardner,
1983).

As a result of the President’s Commission on Excel-
lence in Special Education, the most recent version
(2004) of the Individuals with Disabilities Act (IDEA)
requires the development of alternatives to the dis-
crepancy model in identifying children with learning

disabilities. Response to intervention (RTI) ap-
proaches call for the use of evidence-based
interventions for struggling students, with those not
responding to interventions being moved along a
three-tiered process towards diagnosis. Early indica-
tions are that RTI is improving services to children,
although there are issues with validity and reliability
in diagnosis (Sullivan & Castro-Villarreal, 2013).

In keeping with public policy and trends in education,
the American Psychiatric Association removed the
discrepancy requirement for diagnosis of a specific
learning disorder in the fifth edition of the Diagnostic
and Statistical Manual of Mental Disorders (DSM-5).
What remains, however, is the continued requirement
for deficit in at last one academic skill area. Scanlon
(2013) criticizes the definition, arguing that there is
little guidance for diagnosing learning disorders out-
side of a school setting. This is particularly problem-
atic for adults, for whom the impact of deficits in math
at home and work could be critical. Unfortunately,
there seems to be little agreement on what exactly
constitutes a diagnosis for mathematics learning dis-
ability, especially for adults. This is most certainly an
area for further research.

The Cognitive Factors Behind
Mathematics Learning Disability

Even though mathematics learning disability has
been subject to a rich history of inquiry over the last
century, its development and exact nature remain a
puzzle. However, most research indicates that the
source seems to stem from cognitive deficits in the sys-
tems that are crucial to processing numbers (Price,
Holloway, Rasanen, Vesterinen, & Ansari, 2007).
These core systems include domain-specific abilities,
such as the ability to form and manipulate mental
representations of quantity (Mazzocco, Feigenson, &
Helberda, 2011) and magnitude (Mussolin, Mejias, &
Noël, 2010) and to automatically convert between
symbols and numerical magnitudes (Rubinsten &
Henik, 2005; Rouselle & Noël, 2007). Other core sys-
tems that may be implicated in mathematics learning
disability involve domain-general abilities, in particu-
lar deficits in working memory and executive func-
tioning (Toll, Van der Ven, Kroesbergen, & Van Luit,
2011) and attentional capacity (Ashkenazi & Henik,
2010, 2012).

The purpose of the following section is to review these
different perspectives on the source of mathematics
learning disability. Particular attention will be paid to
the empirical methods used across these studies, as
they represent a standard battery of cognitive tests
that are often used in studies on numerical cognition.
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Deficits in the Processing of Quantity

One widely accepted view of how people mentally rep-
resent numbers fractionates our abilities into two dif-
ferent systems. One system is a precise, symbolic
number system that supports calculation and higher
mathematics (Dehaene, Spelke, Pinel, Stanescu, &
Tsivkin, 1999), and the other is an approximate,
nonsymbolic system that is used both in nonsymbolic
tasks (e.g., deciding which array of items is more nu-
merous) as well as in symbolic tasks that involve
Arabic numerals (Feigenson, Dehaene, & Spelke,
2004).

Each system is reflected by a unique psychophysical
effect that occurs in experimental settings. For exam-
ple, when people are asked to judge which of two num-
bers presented on a computer screen is larger (a sym-
bolic task), people tend to make the judgment more
quickly when the numbers are farther apart (e.g., 7 is
larger than 1) than when the numbers are closer to-
gether (e.g., 7 is larger than 6). This numerical dis-
tance effect (Moyer & Landauer, 1967) is widely found
across a large array of cognitive arithmetic tasks. Its
presence is typically taken as a marker for processing
of numerical magnitude. One hypothesis is that since
mental representations of numbers have some inher-
ent variability, numbers that are close together in
magnitude will have a degree of representational over-
lap, and the overlap results in a slower decision re-
garding which one is the larger number (Dehaene,
1992).

To put it more concretely, consider Figure 1. In this
figure, the bell-shaped curve centered over each num-
ber represents a mental representation of that num-
ber; that is, the amount of activation that each num-
ber of the number line receives when a person thinks
about a specific number, say 5. According to the figure,
5 receives the greatest activation, but so do the num-
bers 4 and 6, albeit to a lesser extent. That is, our men-
tal representation of the number 5 is a bit “fuzzy”.
When comparing numbers that are close together
(e.g., 8 and 9), their curves have a large amount of
overlap. Hence, it takes more time to resolve which
one is larger, compared to the situation when num-
bers are farther apart (e.g., 4 and 9) and have less
overlap.

In terms of individual differences, the size of the nu-
merical distance effect (as indexed by the correlation
between distance and reaction time) is thought to re-
flect the nature of an individual’s tendency to have
less precise representations of numerical magnitude
(Holloway & Ansari, 2009). For example, an individ-
ual with a larger numerical distance effect would es-
sentially have more overlap between their mental rep-
resentations of number, and hence, less precise
representations. This notion has proved to be valid on
a number of levels, particularly in the sense that indi-
viduals with larger numerical distance effects tend to
exhibit lower performance on simple arithmetic tasks
(Holloway & Ansari, 2009).

The functioning of the approximate number system
(ANS) is assessed in a fundamentally different way.
Being a nonsymbolic system, the ANS is typically as-
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Figure 1. Mental representations of number depicted as activation curves centered on each number with in-
creasing standard deviations. Adapted from www.panamath.org



sessed through a quantity comparison task in which
participants discriminate the relative numerosity of
two arrays of objects. In one variety of this task (the
Panamath task; www.panamath.org), an array of dots
in two different colors is presented on a computer
screen for a very short amount of time, and the partici-
pant is asked to judge which color represents the more
numerous (see Figure 2). Since the presentation time
is too short to allow counting, this task is thought to
rely on our approximate representation of number. As
a quantitative index of individual performance on this
task, a number called the Weber fraction w is com-
puted. While a detailed account of the Weber fraction
is beyond the scope of this review, it is enough to un-
derstand that w simply indexes an individual’s ap-
proximate number representation. More detailed, one
should note that as the ratio between two arrays ap-
proaches 1 (where the numerosities would be equal),
individuals tend to make more errors in their
numerosity judgements. The Weber fraction w is re-
lated to the rate of increase in these errors. Individu-
als with larger Weber fractions have “noisier” approx-
imate representations of number, and this has been
shown to be related to mathematics achievement
(Halberda, Mazzocco, & Feigenson, 2008). Particu-
larly, individuals with larger Weber fractions tend to
do worse in an array of mathematical tasks than those
individuals with smaller Weber fractions.

Two recent studies have lent considerable evidence to
the claim that mathematics learning disability results
from a core deficit in the ability to represent numeri-
cal magnitudes. Mussolin, Mejias, and Noël (2010)
ask 10- and 11-year old children to compare numbers
presented in a variety of formats (both symbolic and
nonsymbolic) to the reference quantity 5. Fifteen chil-
dren were diagnosed with a mathematics learning
disability if they scored normal with respect to verbal
and spatial IQ measures, but performed below the
15th percentile on a multiplication fluency test (as
compared to a normative sample of elementary school
children in the region of the study). These fifteen chil-
dren were age-matched with 15 children who served
as active controls. Mussolin et al. found that across all
tasks, the children with mathematics learning dis-
ability showed no difference in performance (indexed
by reaction time and error rates) compared to the con-
trol group. However, they did exhibit a larger numeri-
cal distance effect than did the children in the control
group. That is, when plotting reaction time as a func-
tion of the distance between numbers to be compared,
the children with mathematics learning disability ex-
hibited a steeper negative slope. Using the interpreta-
tion of Holloway and Ansari (2009), this steeper slope
implies that these children have a less developed
sense of numerical magnitude than the children in the
control group.
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Figure 2. The Panamath numerical discrimination task. As the numbers of dots get closer, the task becomes
more difficult. The Weber fraction w is related to an individual’s pattern of errors as numerosities become
more equal.



Whereas Mussolin et al. (2010) found that mathemat-
ics learning disability may stem from an underdevel-
oped sense of exact small number representation,
Mazzocco, Feigenson, and Halberda (2011) found evi-
dence that the impairment may lie in the approximate
number system. Mazzocco et al. had 71 ninth-graders
complete a nonsymbolic numerical discrimination
task, the nature of which is identical to the Panamath
task described above. That is, participants were asked
to discriminate within a display of yellow and blue
dots which color was more numerous. Since the pre-
sentation was very brief (200 ms), counting was ruled
out as a strategy to complete the task. Thus, all judge-
ments required an approximate sense of number
rather than an exact, symbolic sense of number. From
these numerosity judgements, a Weber fraction w was
computed for each participant. Mazzocco et al. (2011)
found that compared to students of varying achieve-
ment levels in mathematics (low achieving, typical
achieving, and high achieving), the children with
mathematics learning disability had a significantly
larger Weber fraction w. That is, these children pos-
sessed a much less acute notion of approximate
numerosity, lending evidence to the notion that math-
ematics learning disability stems from a deficiency in
the approximate number system.

Deficits in Ability to Automatically
Transform Symbols to Magnitudes

When people are asked to complete a numerical task,
most children as well as adults process the magnitude
of the underlying numbers automatically (Girelli,
Lucangeli, & Butterworth, 2000). Particularly strik-
ing is the notion of autonomous automatic activation
of number magnitudes (Tzelgov, Yehene, Kotler, &
Alon, 2000), in which the automatic activations that
occur are not part of the original task requirements. A
classic example of this type of automatic processing is
the Stroop effect (Stroop, 1935; MacLeod, 1991),
whereby a person is slower to report the color of a
word that itself is a color word. This slowdown in re-
sponse time is indicative of people’s tendency to auto-
matically read a presented word, even though actually
reading the word is not part of the task requirement.
The interference between the task requirement (say-
ing the color) and the automatically processed infor-
mation (the word itself) requires extra processing
time to resolve, and hence, the observable measure of
increased reaction time.

In the domain of numerical cognition, a similar auto-
matic processing effect occurs. In one common task,
participants are asked to compare the physical sizes of

two digits having different physical sizes (e.g., 2 and
9) and pick the digit that is presented in the larger
size. Particularly, participants are told to ignore the
numerical size of the digits (magnitude) and pay at-
tention only to the physical size. In general, people

tend to respond faster when the physically larger digit
is also the numerically larger digit (congruent trials,

e.g., 2 and 9) than they do when the physically smaller
digit is the numerically larger digit (incongruent tri-

als, e.g., 2 and 9). This Stroop-like effect, known as the
size congruity effect, indicates that the numerical
magnitudes associated with the Arabic symbols in the
task are automatically activated even though they are
actually irrelevant to the task. Furthermore, this ef-
fect doesn’t appear in children until somewhere be-
tween first grade (Rubinsten, Henik, Berger, &
Shahar-Shalev, 2002) and third grade (Girelli et al.,
2000), suggesting that the ability to automatically
convert symbols to mental representations of magni-
tude doesn’t develop until the early school years.

Several recent studies have yielded evidence that peo-
ple with mathematics learning disability may be lack-
ing in their ability to perform this automatic sym-
bols-to-magnitude conversion. Rubinsten and Henik
(2005) compared the size congruity effect between a
group of 19 college-aged adults with mathematics
learning disability and a group of 19 age- and gen-
der-matched control group of college-aged adults
without mathematics learning disability. The control
group exhibited the typical size congruity effect: they
were approximately 125 ms faster to judge the physi-
cal size of two digits when the size and numerical

magnitudes were congruent (e.g., 2 vs 8) compared to

the incongruent condition (e.g., 2 vs 8). However, the
mathematics learning disability group exhibited a
smaller size congruity effect (approximately 75 ms)
than did the control group. This difference led
Rubinsten and Henik (2005) to conclude that adults
with mathematics learning disability are not as apt to
automatically convert between symbols and magni-
tude. Similar results with children were found by
Rousselle and Noël (2007): children with mathematics
learning disability exhibited a smaller size congruity
effect than did a control group. Taken together, these
results indicate that the source of mathematics learn-
ing disability may not be a defect in the ability to rep-
resent number magnitudes per se, but rather a defect
in the conversion process between symbols and nu-
merical magnitudes.

Deficits in Executive Functioning

While much research indicates that there may be
number-specific impairments in people with mathe-
matics learning disability, there is a large body of re-
search concerning the role of domain-general cogni-
tive resources such as working memory and executive
functions. Recall that working memory is the cogni-
tive system responsible for storing and manipulating
information in the short term. As such, it is typically
thought to comprise three independent components:
the central executive, responsible for attentional con-
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trol and resource planning; the phonological loop, re-
sponsible for maintenance and rehearsal of
sound-based information; and the visuo-spatial
sketchpad, responsible for maintenance and rehearsal
of visual and spatial information (Baddeley, 1986).

Further work specified the structure of the central ex-
ecutive as consisting of three executive functions:
shifting, inhibition, and updating (Miyake, Friedman,
Emerson, Witzki, & Howerter, 2000). Shifting refers
to the ability to switch back and forth between multi-
ple tasks and is often referred to as task switching.
Shifting may be particularly useful in mathematical
thought by helping people switch between alternate
strategies and/or steps in a multi-step solution pro-
cess (Bull, Espy, & Wiebe, 2008). Inhibition refers to
one’s ability to deliberately suppress automatic re-
sponses when necessary, such as the name of the color
word in the Stroop task. Although lack of inhibition
has been found in children with lower mathematical
ability (Bull, Johnston, & Roy, 1999), other studies
have indicated that this relationship may be spurious
(Van der Sluis, De Jong, & Van der Leij, 2004). Fi-
nally, updating refers to monitoring and coding in-
coming information and appropriately revising out-
dated information with new, more relevant
information. For example, when solving multistep
arithmetic problems, one needs to be able to mentally
coordinate information from long term memory (basic
arithmetic facts, solution strategies) and update the
answer to the problem as each step commences. Gen-
erally, updating is thought to be of critical importance
to mathematical ability (see Raghubar, Barnes, and
Hecht, 2010, for a review).

Several recent studies have questioned whether exec-
utive function impairment may be responsible for
mathematics learning disabilities. In a two-year lon-
gitudinal study, Toll et al. (2011) administered mea-
sures of mathematical ability and of the three afore-
mentioned executive functions to children in first- and
second-grade. On the basis of performance on the
mathematical tasks throughout the two years, the
children were split into a typical achieving group and
a low achieving group. Toll et al. (2011) found no dif-
ferences between groups on measures of shifting and
inhibition (see also Censabella and Noël, 2008), but
they did find a significant group difference in mea-
sures of updating. Specifically, children who were
low-achieving scored lower on updating measures
than did typical-achieving children. Furthermore,
these updating measures were better at predicting
mathematics learning disabilities than were mathe-
matical abilities alone. In general, it seems that of the
three executive functions previously described, updat-
ing may be the only function implicated in the devel-
opment of mathematics learning disability.

Recently, Ashkenazi, and Henik (2010) addressed the
role of executive functions in mathematics learning

disability from the perspective of attentional net-
works. Whereas classical definitions of attention de-
fine it as a unitary cognitive process akin to
short-term memory, more recent research has viewed
attention as comprising three separate networks
(Posner & Peterson, 1990): the alerting network,
which activates and preserves attention; the orienting
network, which shifts attention to specific points in
space; and executive control, which is responsible for
monitoring and resolving conflict between task re-
quirements. Ashkenazi and Henik (2010) found that
college students with mathematics learning disability
were deficient with respect to the alerting network
and executive control. In an interesting followup, Ash-
kenazi and Henik (2012) had participants with math-
ematics learning disability complete a video-game
training task in hopes of boosting these attentional
network capabilities. They found that the training did
improve the attentional deficits of those with mathe-
matics learning disability, but no improvement was
noted in basic numerical processing. This led Ashke-
nazi and Henik (2012) to conclude that mathematics
learning disability results from domain-specific nu-
merical deficits and not domain-general disabilities.

Summary and Further Reading

In general, there are three main hypotheses about the
cognitive origins of mathematics learning disability.
One view holds that mathematics learning disability
stems from a core deficit in number sense, particularly
the ability to represent and process both exact and ap-
proximate numerical magnitudes. In this view, both
symbolic and nonsymbolic processing is affected. An-
other view holds that mathematics learning disability
is the result of a defective ability to automatically
transform symbols into their appropriate magnitude
representations. Here, symbolic processing is affect
whereas nonsymbolic processes are unaffected. Fi-
nally, the third view posits that mathematics learning
disability stems from a domain-general deficit in
working memory and attention rather than from
math-specific deficits. There is ample evidence for
each view, and the field is not yet to a point where
enough is known to be able to separate these hypothe-
ses from each other. This is still a very active field of
research that will continue to flourish in the near fu-
ture.

For the reader who wishes to learn more about mathe-
matics learning disabilities or mathematical cognition
in general, we recommend an article and two gen-
eral-audience books below:

• Butterworth, B. (1999). What counts: How every
brain is hardwired for math. New York, NY: The
Free Press.

• Dehaene, S. (2011). The number sense (2nd ed.).
New York, NY: Oxford University Press.
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• Geary, D. C. (2004). Mathematics and learning
disabilities. Journal of Learning Disabilities, 37,
4–15. doi: 10.1177/00222194040370010201

In conclusion, mathematics learning disability is an
impaired ability to learn and do mathematics that af-
fects a small, but significant portion of the population.
Even though it has been studied for the better part of
a century, its diagnosis is vague at best and its origins
are not well understood. It is, however, an important
area of study, and it likely will be for many years to
come.
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