
Thomas B. Schön- PhD
- Professor (Full) at Uppsala University
Thomas B. Schön
- PhD
- Professor (Full) at Uppsala University
About
376
Publications
87,354
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
11,440
Citations
Introduction
Current institution
Publications
Publications (376)
This work presents a forward-only diffusion (FoD) approach for generative modelling. In contrast to traditional diffusion models that rely on a coupled forward-backward diffusion scheme, FoD directly learns data generation through a single forward diffusion process, yielding a simple yet efficient generative framework. The core of FoD is a state-de...
The success of unsupervised learning raises the question of whether also supervised models can be trained without using the information in the output $y$. In this paper, we demonstrate that this is indeed possible. The key step is to formulate the model as a smoother, i.e. on the form $\hat{f}=Sy$, and to construct the smoother matrix $S$ independe...
Extended abstract to be presented at Reglermöte 2025.
Popular safe Bayesian optimization (BO) algorithms learn control policies for safety-critical systems in unknown environments. However, most algorithms make a smoothness assumption, which is encoded by a known bounded norm in a reproducing kernel Hilbert space (RKHS). The RKHS is a potentially infinite-dimensional space, and it remains unclear how...
Computed tomography has revolutionised the study of the internal three-dimensional structure of fossils. Historically, fossils typically spent years in preparation to be freed from the enclosing rock. Now, X-ray and synchrotron tomography reveal structures that are otherwise invisible, and data acquisition can be fast. However, manual segmentation...
Finding a collision-free path is a fundamental problem in robotics, where the sampling based planners have a long line of success. However, this approach is computationally expensive, due to the frequent use of collision-detection. Furthermore, the produced paths are usually jagged and require further post-processing before they can be tracked. Due...
Computed tomography has revolutionised the study of the internal three-dimensional structure of fossils. Historically, fossils typically spent years in preparation to be freed from the enclosing rock. Now, X-ray and synchrotron tomography reveal structures that are otherwise invisible, and data acquisition can be fast. However, manual segmentation...
Computed tomography has revolutionised the study of the internal three-dimensional structure of fossils. Historically, fossils typically spent years in preparation to be freed from the enclosing rock. Now, X-ray and synchrotron tomography reveal structure that is otherwise invisible and data acquisition can be fast. However, manual segmentation of...
Adversarial training can be used to learn models that are robust against perturbations. For linear models, it can be formulated as a convex optimization problem. Compared to methods proposed in the context of deep learning, leveraging the optimization structure allows significantly faster convergence rates. Still, the use of generic convex solvers...
Image monitoring and guidance during medical examinations can aid both diagnosis and treatment. However, the sampling frequency is often too low, which creates a need to estimate the missing images. We present a probabilistic motion model for sequential medical images, with the ability to both estimate motion between acquired images and forecast th...
In neurointensive care, increased intracranial pressure (ICP) is a feared secondary brain insult in traumatic brain injury (TBI). A system that predicts ICP insults before they emerge may facilitate early optimization of the physiology, which may in turn lead to stopping the predicted ICP insult from occurring. The aim of this study was to evaluate...
Diffusion models have achieved remarkable progress in generative modelling, particularly in enhancing image quality to conform to human preferences. Recently, these models have also been applied to low-level computer vision for photo-realistic image restoration (IR) in tasks such as image denoising, deblurring, dehazing, etc. In this review paper,...
Generative diffusions are a powerful class of Monte Carlo samplers that leverage bridging Markov processes to approximate complex, high-dimensional distributions, such as those found in image processing and language models. Despite their success in these domains, an important open challenge remains: extending these techniques to sample from conditi...
Uncertainty estimation is a necessary component when implementing AI in high-risk settings, such as autonomous cars, medicine, or insurances. Large Language Models (LLMs) have seen a surge in popularity in recent years, but they are subject to hallucinations, which may cause serious harm in high-risk settings. Despite their success, LLMs are expens...
Safe Bayesian optimization (BO) algorithms promise to find optimal control policies without knowing the system dynamics while at the same time guaranteeing safety with high probability. In exchange for those guarantees, popular algorithms require a smoothness assumption: a known upper bound on a norm in a reproducing kernel Hilbert space (RKHS). Th...
In this report we investigate the use of the Tustin neural network architecture (Tustin-Net) for the identification of a physical rotary inverse pendulum. This physics-based architecture is of particular interest as it builds on the known relationship between velocities and positions. We here aim at discussing the advantages, limitations and perfor...
Imbalances in electrolyte concentrations can have severe consequences, but accurate and accessible measurements could improve patient outcomes. The current measurement method based on blood tests is accurate but invasive and time-consuming and is often unavailable for example in remote locations or an ambulance setting. In this paper, we explore th...
Given an unconditional diffusion model $\pi(x, y)$, using it to perform conditional simulation $\pi(x \mid y)$ is still largely an open question and is typically achieved by learning conditional drifts to the denoising SDE after the fact. In this work, we express conditional simulation as an inference problem on an augmented space corresponding to...
Simultaneous localization and mapping (SLAM) is the task of building a map representation of an unknown environment while at the same time using it for positioning. A probabilistic interpretation of the SLAM task allows for incorporating prior knowledge and for operation under uncertainty. Contrary to the common practice of computing point estimate...
The goal of this paper is to provide a system identification-friendly introduction to the Structured State-space Models (SSMs). These models have become recently popular in the machine learning community since, owing to their parallelizability, they can be efficiently and scalably trained to tackle extremely-long sequence classification and regress...
Recently, several direct Data-Driven Predictive Control (DDPC) methods have been proposed, advocating the possibility of designing predictive controllers from historical input-output trajectories without the need to identify a model. In this work, we show that these approaches are equivalent to an indirect approach. Reformulating the direct methods...
When deploying machine learning algorithms in the real world, guaranteeing safety is an essential asset. Existing safe learning approaches typically consider continuous variables, i.e., regression tasks. However, in practice, robotic systems are also subject to discrete, external environmental changes, e.g., having to carry objects of certain weigh...
Recently, several direct Data-Driven Predictive Control (DDPC) methods have been proposed, advocating the possibility of designing predictive controllers from historical input-output trajectories without the need to identify a model. In this work, we show their equivalence to a (relaxed) indirect approach, allowing us to reformulate direct methods...
Polycrystals illuminated by high-energy X-rays or neutrons produce diffraction patterns in which the measured diffraction peaks encode the individual single crystal strain states. While state of the art X-ray and neutron diffraction approaches can be used to routinely recover per grain mean strain tensors, less work has been produced on the recover...
Background
Worldwide, it is estimated that over 6 million people are infected with Chagas disease (ChD). It is a neglected disease that can lead to severe heart conditions in its chronic phase. While early treatment can avoid complications, the early-stage detection rate is low. We explore the use of deep neural networks to detect ChD from electroc...
This survey presents recent research on determining control-theoretic properties and designing controllers with rigorous guarantees and for nonlinear systems for which no mathematical models but measured trajectories are available. Data-driven control techniques have been developed to circumvent a time-consuming modelling by first principles and be...
We present the new Bokeh Effect Transformation Dataset (BETD), and review the proposed solutions for this novel task at the NTIRE 2023 Bokeh Effect Transformation Challenge. Recent advancements of mobile photography aim to reach the visual quality of full-frame cameras. Now, a goal in computational photography is to optimize the Bokeh effect itself...
Simultaneous localization and mapping (SLAM) is the task of building a map representation of an unknown environment while it at the same time is used for positioning. A probabilistic interpretation of the SLAM task allows for incorporating prior knowledge and for operation under uncertainty. Contrary to the common practice of computing point estima...
This work aims to improve the applicability of diffusion models in realistic image restoration. Specifically, we enhance the diffusion model in several aspects such as network architecture, noise level, denoising steps, training image size, and optimizer/scheduler. We show that tuning these hyperparameters allows us to achieve better performance on...
Event-based methods carefully select when to transmit information to enable high-performance control and estimation over resource-constrained communication networks. However, they come at a cost. For instance, event-based communication induces a higher computational load and increases the complexity of the scheduling problem. Thus, in some cases, a...
Kernel principal component analysis (kPCA) is a widely studied method to construct a low-dimensional data representation after a nonlinear transformation. The prevailing method to reconstruct the original input signal from kPCA -- an important task for denoising -- requires us to solve a supervised learning problem. In this paper, we present an alt...
Many important computer vision applications are naturally formulated as regression problems. Within medical imaging, accurate regression models have the potential to automate various tasks, helping to lower costs and improve patient outcomes. Such safety-critical deployment does however require reliable estimation of model uncertainty, also under t...
Deep learning is a topic of considerable current interest. The availability of massive data collections and powerful software resources has led to an impressive amount of results in many application areas that reveal essential but hidden properties of the observations. System identification learns mathematical descriptions of dynamic systems from i...
This paper presents a stochastic differential equation (SDE) approach for general-purpose image restoration. The key construction consists in a mean-reverting SDE that transforms a high-quality image into a degraded counterpart as a mean state with fixed Gaussian noise. Then, by simulating the corresponding reverse-time SDE, we are able to restore...
Background. Worldwide it is estimated that more than 6 million people are infected with Chagas disease (ChD). It is considered one of the most important neglected diseases and, when it reaches its chronic phase, the infected person often develops serious heart conditions. While early treatment can avoid complications, the condition is often not det...
Sequential Monte Carlo methods—also known as particle filters—offer approximate solutions to filtering problems for nonlinear state-space systems. These filtering problems are notoriously difficult to solve in general due to a lack of closed-form expressions and challenging expectation integrals. The essential idea behind particle filters is to emp...
This paper considers parameter estimation for nonlinear state-space models, which is an important but challenging problem. We address this challenge by employing a variational inference (VI) approach, which is a principled method that has deep connections to maximum likelihood estimation. This VI approach ultimately provides estimates of the model...
We present a continuous-time probabilistic approach for estimating the chirp signal and its instantaneous frequency function when the true forms of these functions are not accessible. Our model represents these functions by non-linearly cascaded Gaussian processes represented as non-linear stochastic differential equations. The posterior distributi...
We study the error of linear regression in the face of adversarial attacks. In this framework, an adversary changes the input to the regression model in order to maximize the prediction error. We provide bounds on the prediction error in the presence of an adversary as a function of the parameter norm and the error in the absence of such an adversa...
Kernel principal component analysis (kPCA) is a widely studied method to construct a low-dimensional data representation after a nonlinear transformation. The prevailing method to reconstruct the original input signal from kPCA—an important task for denoising—requires us to solve a supervised learning problem. In this paper, we present an alternati...
Objective: Imbalances of the electrolyte concentration levels in the body can lead to catastrophic consequences, but accurate and accessible measurements could improve patient outcomes. While blood tests provide accurate measurements, they are invasive and the laboratory analysis can be slow or inaccessible. In contrast, an electrocardiogram (ECG)...
Myocardial infarction diagnosis is a common challenge in the emergency department. In managed settings, deep learning-based models and especially convolutional deep models have shown promise in electrocardiogram (ECG) classification, but there is a lack of high-performing models for the diagnosis of myocardial infarction in real-world scenarios. We...
Data-driven control of nonlinear systems with rigorous guarantees is a challenging problem as it usually calls for nonconvex optimization and requires often knowledge of the true basis functions of the system dynamics. To tackle these drawbacks, this work is based on a data-driven polynomial representation of general nonlinear systems exploiting Ta...
Identification of nonlinear systems is a challenging problem. Physical knowledge of the system can be used in the identification process to significantly improve the predictive performance by restricting the space of possible mappings from the input to the output. Typically, the physical models contain unknown parameters that must be learned from d...
Myocardial infarction diagnosis is a common challenge in the emergency department. In managed settings, deep learning-based models and especially convolutional deep models have shown promise in electrocardiogram (ECG) classification, but there is a lack of high-performing models for the diagnosis of myocardial infarction in real-world scenarios. We...
We provide a proof-of-concept for a novel state-space modelling approach for predicting monthly deaths due to political violence. Attention is focused on developing the method and demonstrating the utility of this approach, which provides exciting opportunities to engage with domain experts in developing new and improved state-space models for pred...
State-of-the-art machine learning models can be vulnerable to very small input perturbations that are adversarially constructed. Adversarial training is one of the most effective approaches to defend against such examples. We show that for linear regression problems, adversarial training can be formulated as a convex problem. This fact is then used...
This article describes a memory efficient method for solving large-scale optimization problems that arise when planning scanning-beam lithography processes. These processes require the identification of an exposure pattern that minimizes the difference between a desired and predicted output image, subject to constraints. The number of free variable...
We present a probabilistic approach for estimating chirp signal and its instantaneous frequency function when the true forms of the chirp and instantaneous frequency are unknown. To do so, we represent them by joint cascading Gaussian processes governed by a non-linear stochastic differential equation, and estimate their posterior distribution by u...
As machine learning models start to be used in critical applications, their vulnerabilities and brittleness become a pressing concern. Adversarial attacks are a popular framework for studying these vulnerabilities. In this work, we study the error of linear regression in the face of adversarial attacks. We provide bounds of the error in terms of th...
This book introduces machine learning for readers with some background in basic linear algebra, statistics, probability, and programming. In a coherent statistical framework it covers a selection of supervised machine learning methods, from the most fundamental (k-NN, decision trees, linear and logistic regression) to more advanced methods (deep ne...
Machine learning models can be improved by adapting them to respect existing background knowledge. In this paper we consider multitask Gaussian processes, with background knowledge in the form of constraints that require a specific sum of the outputs to be constant. This is achieved by conditioning the prior distribution on the constraint fulfillme...
The modern world contains an immense number of different and interacting systems, from the evolution of weather systems to variations in the stock market, autonomous vehicles interacting with their environment, and the spread of diseases. For society to function, it is essential to understand the behavior of the world so that informed decisions can...
It has been widelydocumented that the sampling and resampling steps in particle filters cannot be differentiated. The
reparameterisation trick
was introduced to allow the sampling step to be reformulated into a differentiable function. We extend the
reparameterisation trick
to include the stochastic input to resampling therefore limiting the di...
This paper addresses the problem of computing fixed-interval smoothed state estimates of a linear time varying Gaussian stochastic system. There already exist many algorithms that perform this computation, but all of them impose certain restrictions on system matrices in order for them to be applicable, and the restrictions vary considerably betwee...
It has been widely documented that the sampling and resampling steps in particle filters cannot be differentiated. The {\itshape reparameterisation trick} was introduced to allow the sampling step to be reformulated into a differentiable function. We extend the {\itshape reparameterisation trick} to include the stochastic input to resampling theref...
Energy-based models (EBMs) have experienced a resurgence within machine learning in recent years, including as a promising alternative for probabilistic regression. However, energy-based regression requires a proposal distribution to be manually designed for training, and an initial estimate has to be provided at test-time. We address both of these...
The electrocardiogram (ECG) is the most commonly used exam for the evaluation of cardiovascular diseases. Here we propose that the age predicted by artificial intelligence (AI) from the raw ECG (ECG-age) can be a measure of cardiovascular health. A deep neural network is trained to predict a patient’s age from the 12-lead ECG in the CODE study coho...
This paper considers the problem of determining an optimal control action based on observed data. We formulate the problem assuming that the system can be modelled by a nonlinear state-space model, but where the model parameters, state and future disturbances are not known and are treated as random variables. Central to our formulation is that the...
We present an algorithm to estimate and quantify the uncertainty of the accelerometers’ relative geometry in an inertial sensor array. We formulate the calibration problem as a Bayesian estimation problem and propose an algorithm that samples the accelerometer positions’ posterior distribution using Markov chain Monte Carlo. By identifying linear s...
Deep state space models (SSMs) are an actively researched model class for temporal
models developed in the deep learning community which have a close connection to classic SSMs.
The use of deep SSMs as a black-box identification model can describe a wide range of dynamics
due to the flexibility of deep neural networks. Additionally, the probabilist...
In this paper we present a novel quasi-Newton algorithm for use in stochastic optimisation. Quasi-Newton methods have had an enormous impact on deterministic optimisation problems because they afford rapid convergence and computationally attractive algorithms. In essence, this is achieved by learning the second-order (Hessian) information based on...
We propose a model for hierarchical structured data as an extension to the stochastic temporal convolutional network (STCN). The proposed model combines an autoregressive model with a hierarchical variational autoencoder and downsampling to achieve superior computational complexity. We evaluate the proposed model on two different types of sequentia...
A Correction to this paper has been published: https://doi.org/10.1038/s42003-021-01922-8
This paper considers the problem of determining an optimal control action based on observed data. We formulate the problem assuming that the system can be modelled by a nonlinear state-space model, but where the model parameters, state and future disturbances are not known and are treated as random variables. Central to our formulation is that the...
We introduce an end-to-end unsupervised (or weakly supervised) image registration method that blends conventional medical image registration with contemporary deep learning techniques from computer vision. Our method downsamples both the fixed and the moving images into multiple feature map levels where a displacement field is estimated at each lev...
Spatiotemporal imaging is common in medical imaging, with applications in e.g. cardiac diagnostics, surgical guidance and radiotherapy monitoring. In this paper, we present an unsupervised model that identifies the underlying dynamics of the system, only based on the sequential images. The model maps the input to a low-dimensional latent space wher...
Statistical phylogenetic analysis currently relies on complex, dedicated software packages, making it difficult for evolutionary biologists to explore new models and inference strategies. Recent years have seen more generic solutions based on probabilistic graphical models, but this formalism can only partly express phylogenetic problems. Here, we...
The electrocardiogram (ECG) is the most commonly used exam for the screening and evaluation of cardiovascular diseases. Here we propose that the age predicted by artificial intelligence (AI) from the raw ECG tracing (ECG-age) can be a measure of cardiovascular health and provide prognostic information. A deep convolutional neural network was traine...
Machine learning practitioners invest significant manual and computational resources in finding suitable learning rates for optimization algorithms. We provide a probabilistic motivation, in terms of Gaussian inference, for popular stochastic first-order methods. As an important special case, it recovers the Polyak step with a general metric. The i...
The convolutional neural network (CNN) remains an essential tool in solving computer vision problems. Standard convolutional architectures consist of stacked layers of operations that progressively downscale the image. Aliasing is a well-known side-effect of downsampling that may take place: it causes high-frequency components of the original signa...