Thomas Rosenau

Thomas Rosenau
University of Natural Resources and Life Sciences Vienna | boku · Department of Chemistry

Univ.Prof. Dipl.-Chem. Dr.rer.nat. Dr.h.c.

About

587
Publications
137,969
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
10,486
Citations
Introduction
Thomas Rosenau is professor at BOKU University Vienna at the Department of Chemistry, holding the chair of Wood, Pulp and Fiber Chemistry. He heads the Division of Chemistry of Renewable Resources, Chair of Wood, Pulp and Fiber Chemistry, University of Natural Resources and Life Science Vienna. Thomas does research in Organic Chemistry, Green Chemistry and Analytical Chemistry, focussing on the two biopolymers cellulose (structure, modification, aging and yellowing, paper, fibers) and lignin (structure, utilization, analytical method development), as well as on plant extractives and antioxidants.
Additional affiliations
November 1998 - March 2020
University of Natural Resources and Life Sciences Vienna
Position
  • Head of Department
Education
October 1997 - October 1998
North Carolina State University
Field of study
  • Cellulose / lignin chemistry
September 1995 - September 1997
TU Dresden / North Carolina State University Raleigh
Field of study
  • Chemistry
September 1989 - August 1994
Dresden University of Technology
Field of study
  • Chemistry

Publications

Publications (587)
Article
Full-text available
Direct fire, indirect heat, and extinguishing water cause great damage to cultural assets upon a fire disaster in a library or archive. Conservation and restoration of heat-damaged papers are particularly challenging due to the complexity and severity of the damage. Since valuable originals obviously cannot be used for the development of treatment...
Article
A novel method for fluorescence labeling and subsequent profiling of oxidized end groups along the molar mass distribution of cellulose has been developed. The notorious labeling reluctance of this group due to lactone (gluconolactone) formation was overcome by introducing amide-linked rather than ester-linked markers. A coupling method based on ca...
Article
Full-text available
Spinning of cellulosic fibers requires the prior dissolution of cellulose. 3-Alkyl-1-methylimidazolium ionic liquids have proven to be suitable solvents for that purpose, but the degradation of cellulose in the spinning dope can be severe. Suitable stabilizers are therefore required that prevent cellulose degradation, but do not adversely affect sp...
Article
Full-text available
Papyrus, produced from the white pith of Cyperus papyrus L., has been used for millennia as the major writing support by ancient cultures, but there was no continuous papyrus production until modern times. Therefore, papyrus production had to be rediscovered. Modern Egyptian papyrus producers claim that their sheets possess ‘the same physical and c...
Article
Full-text available
Correctness and reliability of molar mass data by viscometry in organometallic solvents (cuen, cuoxam, cadoxen) are compromised by the alkalinity of these solvents which causes immediate depolymerization especially in the case of pulps with higher carbonyl content (oxidative damage). The viscosity values thus correspond to the molar mass after the...
Article
Full-text available
The aging behavior of ancient papyri is not entirely understood, although such understanding is crucial for tailored conservation concepts to preserve these precious historical documents for the millennia to come. In a study on accelerated aging, the effect of light on papyrus sheets was studied, and the consequences were monitored by a combination...
Article
Full-text available
Nanoporous silica gels feature extremely large specific surface areas and high porosities and are ideal candidates for adsorption-related processes, although they are commonly rather fragile. To overcome this obstacle, we developed a novel, completely solvent-free process to prepare mechanically robust CNF-reinforced silica nanocomposites via the i...
Article
Full-text available
Oil-immersed paper insulation and paper pressboards for structural support are widely used in electrical power transformers. Cellulose thus fulfills an essential task for the smooth power supply of our societies. However, the prevailing temperatures in such equipment, combined with a targeted service life of several decades, pose a serious challeng...
Article
Gaseous acetic acid is formed under conditions of storage of historic paper objects. Its presence not only promotes hydrolytic cleavage of cellulose, but also causes acetylation of the cellulosic material to very small degree. The acetylation reaction proceeds under ambient conditions and without catalyst. Different analytical methods were used to...
Article
Full-text available
In technical lignins, functionality is strongly related to molar mass. Hence, any technical lignin exhibits concurrent functionality-type distribution (FTD) along its molar mass distribution (MMD). This study combined preparative size-exclusion chromatography with offline characterizations to acquire highly resolved profiles of the functional heter...
Article
Full-text available
Polyanionic cellulose carbamates were synthesized by rapid and efficient homogeneous aminolysis of cellulose carbonate half-esters in an ionic liquid/DMF medium. Cellulose bis-2,3-O-(3,5-dimethylphenyl carbamate), as a model compound, reacted with different chloroformates to cellulose carbonates. These intermediates were subjected to aminolysis, fo...
Article
Full-text available
The conservation of historical paper objects with high cultural value is an important societal task. Papers that have been severely damaged by fire, heat, and extinguishing water, are a particularly challenging case, because of the complexity and severity of damage patterns. In‐depth analysis of fire‐damaged papers, by means of examples from the ca...
Article
The implementation of cellulose as a green alternative to classical polymers sparks research on the synthesis of defined derivatives of this biopolymer for various high-tech applications. Apart from the scientific challenge, the in vitro synthesis of cellulose using a bottom-up approach provides specimens with absolutely accurate substituent patter...
Article
Full-text available
In this study, a cellulose membrane (CM) was chemically treated with phenolic (PF) resin to improve its performance as a polymeric insulator. The CM was prepared from kenaf pulp, and the PF was synthesized from oil palm empty fruit (EFB) fibre. Four different concentrations of synthesized PF resin (5, 10, 15, and 20 wt.%) were impregnated under wet...
Article
Full-text available
Million tons of cellulosic paper have been used for insulating coils in oil-filled electrical power transformers, thereby assuring the electricity supply for our societies. The high working temperatures in transformers constantly degrade paper insulators throughout their service life of up to 40 years. We approached the structural changes in oil-im...
Article
Lignosulfonates (LSs) are by-products of the pulp and paper industry from pulping of lignocellulosic biomass according to the sulfite process. This renewable material already plays a role in low-value applications, such as binding agents for fuel, pellets, as a feed additive, or as a dispersant. Another possible field of application of this technic...
Article
Full-text available
The work consists of primary and analysed data from rheological measurements of carbohydrate-hydroxymethylfurfural-amine adhesives. The studied adhesives are a bio-based alternative to conventional wood adhesives. The rheological properties were studied at different temperatures in isothermal (80, 90, 95 °C) and non-isothermal (20–120 °C) oscillato...
Article
Papyrus (Cyperus papyrus L.) is a plant with high productivity rate that is considered an interesting raw material for obtaining biofuels and biomaterials. In the present work, the composition and structural features of the lignins present in the rind and pith of papyrus culms have been studied. The analyses revealed that the lignins from both part...
Article
Full-text available
This dataset is related to the research article entitled "A fast method to measure the degree of oxidation of dialdehyde celluloses using multivariate calibration and infrared spectroscopy". In this article, 74 dialdehyde cellulose samples with different degrees of oxidation were prepared by periodate oxidation and analysed by Fourier-transform inf...
Article
Full-text available
Lignosulfonates are industrial biorefinery products that are characterized by significant variability and heterogeneity in their structural composition. Typically, they exhibit high dispersities in molar mass (molar mass distribution─MMD) and in functionalities (functionality-type distribution─FTD), which crucially affect their material usage. In t...
Article
31P nuclear magnetic resonance (NMR) spectroscopy is the most common and most accurate analytical method to quantitatively determine the hydroxy group contents of technical lignins. However, for lignosulfonates, liquid-state NMR analysis is often limited due to solubility problems in commonly used solvent systems, which may arise from the broad ran...
Article
Full-text available
Several literature reports describe the role of aqueous solutions of N -methylmorpholine- N -oxide monohydrate (NMMO) as a suitable medium for the generation of transition metal (nano)particles in or on cellulosic materials and further elaborate its role as a co-reactant of the transition metal salts that are reduced to the elemental metal. However...
Article
Full-text available
The properties of dialdehyde celluloses, which are usually generated by periodate oxidation, are highly dependent on the aldehyde content, i.e. the degree of oxidation (DO). Thus far, the established methods for determining the DO in dialdehyde celluloses lack simplicity or sufficient speed. More than 60 dialdehyde cellulose samples with varying al...
Article
Full-text available
In the process of screening for new bioactive microbial metabolites we found a novel ƴ-pyrone derivative for which we propose the trivial name luteapyrone, in a recently described microscopic filamentous fungus, Metapochonia lutea BiMM-F96/DF4. The compound was isolated from the culture extract of the fungus grown on modified yeast extract sucrose...
Article
Full-text available
Recent studies demonstrate that several polyphenolic compounds produced from beyond the canonical monolignol biosynthetic pathways can behave as lignin monomers, participating in radical coupling reactions and being incorporated into lignin polymers. Here, we show various classes of flavonoids, the chalconoid naringenin chalcone, the flavanones nar...
Article
Full-text available
Selective surface modification of biobased fibers affords effective individualization and functionalization into nanomaterials, as exemplified by the TEMPO-mediated oxidation. However, such a route leads to changes of the native surface chemistry, affecting interparticle interactions and limiting the development of potential supermaterials. Here we...
Article
Populations of Primula auricula L. subsp. auricula from Austrian Alps were studied for flavonoid composition of both farinose exudates and tissue of leaves. The leaf exudate yielded Primula-type flavones, such as unsubstituted flavone and its derivatives, while tissue flavonoids largely consisted of flavonol 3-O-glycosides, based upon kaempferol (3...
Article
Full-text available
Knowledge about the carbohydrate composition of pulp and paper samples is essential for their characterization, further processing, and understanding the properties. In this study, we compare sulfuric acid hydrolysis and acidic methanolysis, followed by GC-MS analysis of the corresponding products, by means of 42 cellulose and polysaccharide sample...
Article
Full-text available
Tocopherols are a mixture of antioxidants which are commonly referred to as vitamin E. Tocopheramines differ from tocopherols by an amino function in lieu of the phenolic OH group. They are potent antioxidants which are used in biomedical scenarios as well as stabilizers for polymers against aging. While in aqueous media α-tocopheramine is mainly o...
Preprint
Full-text available
Selective surface modification of bio-based fibers affords effective individualization and functionalization into nanomaterials, as shown by the TEMPO-mediated oxidation. However, such route leads to changes of the native surface chemistry, affecting interparticle interactions and limiting the full exploitation of the intrinsic supermaterial proper...
Preprint
Selective surface modification of bio-based fibers affords effective individualization and functionalization into nanomaterials, as shown by the TEMPO-mediated oxidation. However, such route leads to changes of the native surface chemistry, affecting interparticle interactions and limiting the full exploitation of the intrinsic supermaterial proper...
Article
Full-text available
α-Tocopheramine has shown great promises as a stabilizer for synthetic and natural polymers, but is also investigated in various biomedical scenarios. Many studies have been hampered by the fact that the oxidation products of α-tocopheramine have not yet been properly identified and their analytical data are still lacking. In the present study, we...
Article
Full-text available
Multistage fractionation of pine bark was performed using subcritical and supercritical CO2 at increasing pressures and temperatures. In total, seven fractions were collected, which demonstrated different enrichments of families of compounds. In particular, subcritical CO2 yielded 41% of the total extract in which unsaturated fatty acids represente...
Article
Full-text available
Carbohydrates as a component in adhesive formulations have been reported for many years. A rapid cure at moderate temperatures is a remaining challenge in the development of renewable adhesives. Rheology provides insight into all stages of structure formation of a cured polymer. This work analyses the curing of carbohydrate-amine adhesives with and...
Article
Full-text available
Papyri belong to the oldest writing grounds in history. Their conservation is of the highest importance in preserving our cultural heritage, which is best achieved based on an extensive knowledge of the materials’ constituents to choose a tailored conservation approach. Thermogravimetric Analysis (TGA) has been widely employed to quantify cellulose...
Article
Full-text available
Polysaccharides, oligosaccharides, and their derivatives, particularly of amylose, cellulose, chitosan, and β-cyclodextrin, are well-known chiral selectors (CSs) of chiral stationary phases (CSPs) in chromatography, because they can separate a wide range of enantiomers. Typically, such CSPs are prepared by physically coating, or chemically immobili...
Article
Full-text available
Abstract: Two new species, Penicillium krskae (isolated from the air as a lab contaminant in Tulln (Austria, EU)) and Penicillium silybi (isolated as an endophyte from asymptomatic milk thistle (Silybum marianum) stems from Josephine County (Oregon, USA)) are described. The new taxa are well supported by phenotypic (especially conidial ornamentatio...
Article
Full-text available
Chromophores, colored substances of rather high stability that reduce brightness, are present in all kinds of cellulosic products, such as pulp, fibers, aged cellulosic material, and even in very low concentrations in highly bleached pulps. Thus, they are the prime targets of industrial pulp bleaching. In this study, the three cellulosic key chromo...
Article
Ephedra herb extracts are being extensively investigated in terms of their antioxidative, antimicrobial and antiproliferative properties, with phenolic components being the general carriers of these bioactivities. Here we describe a comprehensive set of analytical methods employed to determine and characterize both the antioxidative activity and th...
Preprint
Full-text available
Selective surface modification of bio-based fibers affords effective individualization and functionalization into nanomaterials, as shown by the TEMPO-mediated oxidation. However, such route leads to changes of the native surface chemistry, affecting interparticle interactions and limiting the full exploitation of the intrinsic supermaterial proper...
Preprint
Selective surface modification of bio-based fibers affords effective individualization and functionalization into nanomaterials, as shown by the TEMPO-mediated oxidation. However, such route leads to changes of the native surface chemistry, affecting interparticle interactions and limiting the full exploitation of the intrinsic supermaterial proper...
Article
Full-text available
Carbohydrates and hexose-derived 5-hydroxymethylfurfural (5-HMF) are platform chemicals for the synthesis of sustainable binders. New, greener approaches aim at the development of production systems, which minimize process steps and avoid organic solvents or other auxiliaries that could interfere with subsequent resin synthesis. In our work, carboh...
Preprint
Selective surface modification of bio-sourced colloids affords effective fractionation and functionalization of polysaccharide-based nanomaterials, as shown by the classic TEMPO-mediated oxidation. However, such route leads to changes of the native surface chemistry, affecting interparticle interactions and limiting the full exploitation of the sup...
Article
The hazards of handling N-methylmorpholine-N-oxide (NMMO) cannot be described often enough, although it is a rather common (co-)solvent for cellulose. Inaccuracies in the literature regarding the chemistry of NMMO, such as its role in solvent systems and in redox systems involving transition metal ions, increase the risk of dangerous failure of the...
Article
Full-text available
The remarkable efficiency of chemical reactions is the result of biological evolution, often involving confined water. Meanwhile, developments of bio-inspired systems, which exploit the potential of such water, have been so far rather complex and cumbersome. Here we show that surface-confined water, inherently present in widely abundant and renewab...
Article
Thin-layer chromatography (TLC) allows the swift analysis of larger sample sets in almost any laboratory. The obtained chromatograms are patterns of coloured zones that are conveniently evaluated and classified by visual inspection. This manual approach reaches its limit when several dozens or a few hundred samples need to be evaluated. Methods to...
Article
Full-text available
As a prominent member of the vitamin E group, α-tocopherol is an important lipophilic antioxidant. It has a special oxidation chemistry that involves phenoxyl radicals, quinones and quinone methides. During the oxidation to the ortho-quinone methide, an intermediary zwitterion is formed. This aromatic intermediate turns into the quinone methide by...
Article
Full-text available
Cellulosic material is capable of permanently retaining nitrogen compounds (mostly having amino functions), which is reflected in a residual nitrogen content (in the low per mille range to the low percent range) of some pulps and certain lab samples. Merely adsorptively bound compounds can be removed by mild acidic washing, but part of the nitrogen...
Article
The Cover Feature shows how lignins and cellolignins (cellulose‐containing lignins) are paving the way to successful biorefineries. These variations of renewable raw materials have been largely overlooked as potential candidates for high‐value applications. In this Review, we highlight the importance of valorizing these lignins to make sugar‐based...
Article
Full-text available
Cellulosic pulp has been processed into insulation paper since the earliest days of electrical engineering. This polymer synthetized by nature has proved to be competitive to man-made plastics throughout the last century and is still widely used in electrical power transformers. The high working temperatures prevailing in such apparatuses and the d...
Article
Full-text available
The compositions of volatile components in the aerial parts of six Astragalus species, namely A. campylotrichus (Aca), A. chiwensis (Ach), A. lehmannianus (Ale), A. macronyx (Ama), A. mucidus (Amu) and A. sieversianus (Asi), were investigated using gas chromatograph-mass spectrometry (GC-MS) analysis. Ninety-seven metabolites were identified, accou...
Article
Biomass pretreatment with aqueous NMMO and digestion in GVL are common in biorefineries but their combination can lead to output loss, byproduct generation and uncontrollable reactions. The chemistry of the NMMO/GVL system is investigated in detail.