Thomas Portmann

Thomas Portmann
Circuit Therapeutics, Menlo Park, United States · Drug Discovery Program

PhD

About

11
Publications
2,995
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,916
Citations
Citations since 2017
0 Research Items
1564 Citations
2017201820192020202120222023050100150200250
2017201820192020202120222023050100150200250
2017201820192020202120222023050100150200250
2017201820192020202120222023050100150200250
Additional affiliations
May 2013 - November 2015
Circuit Therapeutics, Menlo Park, United States
Position
  • Researcher
October 2008 - May 2013
Stanford University School of Medicine, Stanford, United States
Position
  • PostDoc Position

Publications

Publications (11)
Article
Full-text available
Monogenic neurodevelopmental disorders provide key insights into the pathogenesis of disease and help us understand how specific genes control the development of the human brain. Timothy syndrome is caused by a missense mutation in the L-type calcium channel Ca(v)1.2 that is associated with developmental delay and autism. We generated cortical neur...
Article
Full-text available
Neurogenic transcription factors and evolutionarily conserved signalling pathways have been found to be instrumental in the formation of neurons. However, the instructive role of microRNAs (miRNAs) in neurogenesis remains unexplored. We recently discovered that miR-9* and miR-124 instruct compositional changes of SWI/SNF-like BAF chromatin-remodell...
Article
Full-text available
A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11(+/-)). We found elevated numbers of striat...
Article
Full-text available
Phelan-McDermid syndrome (PMDS) is a complex neurodevelopmental disorder characterized by global developmental delay, severely impaired speech, intellectual disability, and an increased risk of autism spectrum disorders (ASDs). PMDS is caused by heterozygous deletions of chromosome 22q13.3. Among the genes in the deleted region is SHANK3, which enc...
Article
Full-text available
Dravet Syndrome is an intractable form of childhood epilepsy associated with deleterious mutations in SCN1A, the gene encoding neuronal sodium channel Nav1.1. Earlier studies using human induced pluripotent stem cells (iPSCs) have produced mixed results regarding the importance of Nav1.1 in human inhibitory versus excitatory neurons. We studied a N...
Conference Paper
Full-text available
Background: Phelan-McDermid Syndrome (PMDS) is a complex neurodevelopmental disorder characterized by global developmental delay, severely impaired speech, intellectual disability, and an increased risk of Autism Spectrum Disorders (ASDs). PMDS is caused by heterozygous deletions of chromosome 22q13.3. Among the genes in the deleted region is SHANK...
Article
Full-text available
The C-terminus of the voltage-gated calcium channel Cav1.2 encodes a transcription factor, the calcium channel associated transcriptional regulator (CCAT), that regulates neurite extension and inhibits Cav1.2 expression. The mechanisms by which CCAT is generated in neurons and myocytes are poorly understood. Here we show that CCAT is produced by ac...
Conference Paper
Background: A recurrent copy number variation (CNV) on chromosome 16p11.2 resulting in a 550 kilobase genomic deletion is a high penetrance risk factor for autism spectrum disorder (ASD). Objectives: In order to understand the molecular mechanisms underlying ASD mouse models are a valuable tool. The human chromosome 16p11.2 CNV is amenable to mod...
Article
Full-text available
Two ETS transcription factors of the Pea3 subfamily are induced in subpopulations of dorsal root ganglion (DRG) sensory and spinal motor neurons by target-derived factors. Their expression controls late aspects of neuronal differentiation such as target invasion and branching. Here, we show that the late onset of ETS gene expression is an essential...

Network

Cited By