Thomas P Peacock

Thomas P Peacock
Imperial College London | Imperial · Division of Infectious Diseases

PhD

About

89
Publications
13,969
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,806
Citations
Additional affiliations
October 2012 - November 2016
The Pirbright Institute
Position
  • PhD Student
Education
October 2009 - October 2012
Imperial College London
Field of study
  • Biochemistry

Publications

Publications (89)
Preprint
Over the course of the pandemic variants have arisen at a steady rate. The most recent variants to emerge, BA.4 and BA.5, form part of the Omicron lineage and were first found in Southern Africa where they are driving the current wave of infection. In this report, we perform an in-depth characterisation of the antigenicity of the BA.4/BA.5 Spike pr...
Preprint
The second and third years of the SARS-CoV-2 pandemic have been marked by the repeated emergence and replacement of ‘variants’ with genetic and phenotypic distance from the ancestral strains, the most recent examples being Delta and Omicron. Here we describe a hamster contact exposure challenge model to assess protection conferred by vaccination or...
Article
To detect new and changing SARS-CoV-2 variants, we investigated candidate Delta-Omicron recombinant genomes from Centers for Disease Control and Prevention national genomic surveillance. Laboratory and bioinformatic investigations identified and validated 9 genetically related SARS-CoV-2 viruses with a hybrid Delta-Omicron spike protein.
Preprint
Full-text available
South Africa’s fourth COVID-19 wave was driven predominantly by three lineages (BA.1, BA.2 and BA.3) of the SARS-CoV-2 Omicron variant of concern. We have now identified two new lineages, BA.4 and BA.5. The spike proteins of BA.4 and BA.5 are identical, and comparable to BA.2 except for the addition of 69-70del, L452R, F486V and the wild type amino...
Article
Global sequencing and surveillance capacity for SARS-CoV-2 must be strengthened and combined with multidisciplinary studies of infectivity, virulence and immune escape, in order to track the unpredictable evolution of the ongoing COVID-19 pandemic.
Preprint
Full-text available
Two mutations occurred in SARS-CoV-2 early during the COVID-19 pandemic that have come to define circulating virus lineages 1 : first a change in the spike protein (D614G) that defines the B.1 lineage and second, a double substitution in the nucleocapsid protein (R203K, G204R) that defines the B.1.1 lineage, which has subsequently given rise to thr...
Article
Full-text available
Vaccines for SARS-CoV-2 have been hugely successful in alleviating hospitalization and deaths caused by the newly emerged coronavirus that is the cause of COVID. However, although the parentally administered vaccines are very effective at reducing severe disease, they do not induce sterilizing immunity. As the virus continues to circulate around th...
Article
Following the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in PR China in late 2019 a number of variants have emerged, with two of these - alpha and delta - subsequently growing to global prevalence. One characteristic of these variants are changes within the spike protein, in particular the receptor-binding domain (RBD...
Preprint
Recombination between SARS-CoV-2 virus variants can result in different viral properties (e.g., infectiousness or pathogenicity). In this report, we describe viruses with recombinant genomes containing signature mutations from Delta and Omicron variants. These genomes are the first evidence for a Delta-Omicron hybrid Spike protein in the United Sta...
Article
COG-UK Mutation Explorer (COG-UK-ME, https://sars2.cvr.gla.ac.uk/cog-uk/ - Last Accessed date 16/03/22) is a web resource that displays knowledge and analyses on SARS-CoV-2 virus genome mutations and variants circulating in the UK, with a focus on the observed amino acid replacements that have an antigenic role in the context of the human humoral a...
Preprint
The first SARS-CoV-2 variant of concern (VOC) to be designated was lineage B.1.1.7, later labelled by the World Health Organisation (WHO) as Alpha. Originating in early Autumn but discovered in December 2020, it spread rapidly and caused large waves of infections worldwide. The Alpha variant is notable for being defined by a long ancestral phylogen...
Preprint
Long-term SARS-CoV-2 infections in immunodeficient patients are an important source of variation for the virus but are understudied. Many case studies have been published which describe one or a small number of long-term infected individuals but no study has combined these sequences into a cohesive dataset. This work aims to rectify this and study...
Article
Full-text available
Background There is an ongoing global effort to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations in key proteins. Methods In this study we describe the generation and precli...
Article
Full-text available
SARS-CoV-2 has a broad mammalian species tropism infecting humans, cats, dogs and farmed mink. Since the start of the 2019 pandemic several reverse zoonotic outbreaks of SARS-CoV-2 have occurred in mink, one of which reinfected humans and caused a cluster of infections in Denmark. Here we investigate the molecular basis of mink and ferret adaptatio...
Article
Full-text available
Background : The human protein transmembrane protease serine type 2 (TMPRSS2) plays a key role in SARS-CoV-2 infection, as it is required to activate the virus’ spike protein, facilitating entry into target cells. We hypothesized that naturally-occurring TMPRSS2 human genetic variants affecting the structure and function of the TMPRSS2 protein may...
Preprint
Full-text available
At the end of 2021 a new SARS-CoV-2 variant, Omicron, emerged and quickly spread across the world. It has been demonstrated that Omicrons high number of Spike mutations lead to partial immune evasion from even polyclonal antibody responses, allowing frequent re-infection and vaccine breakthroughs. However, it seems unlikely these antigenic differen...
Preprint
Full-text available
SARS-CoV-2 variants threaten the effectiveness of tools we have developed to mitigate against serious COVID-19. This is especially true in clinically vulnerable sections of society including the elderly. Using sera from BNT162b2 (Pfizer-BioNTech) vaccinated individuals aged between 70 and 89 (vaccinated with two doses 3-weeks apart) we examined the...
Preprint
Full-text available
The Delta variant of concern of SARS-CoV-2 has spread globally causing large outbreaks and resurgences of COVID-19 cases. The emergence of Delta in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 Delta genomes from England in combination with 93,64...
Preprint
Full-text available
The Delta variant of concern of SARS-CoV-2 has spread globally causing large outbreaks and resurgences of COVID-19 cases. The emergence of Delta in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 Delta genomes from England in combination with 93,64...
Article
Full-text available
Vaccines are proving to be highly effective in controlling hospitalisation and deaths associated with SARS-CoV-2 infection but the emergence of viral variants with novel antigenic profiles threatens to diminish their efficacy. Assessment of the ability of sera from vaccine recipients to neutralise SARS-CoV-2 variants will inform the success of stra...
Preprint
Full-text available
Following the emergence of SARS-CoV-2 in China in late 2019 a number of variants have emerged, with two of these, Alpha and Delta, subsequently growing to global prevalence. One characteristic of these variants are changes within the Spike protein, in particular the receptor binding domain (RBD). From a public health perspective these changes have...
Article
Full-text available
The SARS-CoV-2 B.1.617.2 (Delta) variant was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is 6-fold less sensitive to serum neutralising antibodies from recovered individuals, and 8-fold less sensitive t...
Preprint
Full-text available
7 SARS-CoV-2 continues to evolve and adapt to humans. In this report, we describe RNA 8 insertions, particularly those in the SARS-CoV-2 Spike protein, and show how they mostly cluster in 9 the Spike N-terminal domain and at the S1/S2 cleavage site. While many insertion sequences appear 10 to be viral in origin, we find that a subset of insertions...
Article
The SARS-CoV-2 B.1.617.2 (Delta) variant was frst identifed in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1 . In vitro, B.1.617.2 is 6-fold less sensitive to serum neutralising antibodies from recovered individuals, and 8-fold less sensitive to...
Article
Full-text available
Viruses require host factors to support their replication, and genetic variation in such factors can affect susceptibility to infectious disease. Influenza virus replication in human cells relies on ANP32 proteins, which are involved in assembly of replication-competent dimeric influenza virus polymerase (FluPol) complexes. Here, we investigate nat...
Preprint
Full-text available
SARS-CoV-2 has a broad mammalian species tropism infecting humans, cats, dogs and farmed mink. Since the start of the 2019 pandemic several reverse zoonotic outbreaks of SARS-CoV-2 have occurred in mink, one of which reinfected humans and caused a cluster of infections in Denmark. Here we investigate the molecular basis of mink and ferret adaptatio...
Preprint
Full-text available
SARS-CoV-2 has a broad mammalian species tropism infecting humans, cats, dogs and farmed mink. Since the start of the 2019 pandemic several reverse zoonotic outbreaks of SARS-CoV-2 have occurred in mink, one of which reinfected humans and caused a cluster of infections in Denmark. Here we investigate the molecular basis of mink and ferret adaptatio...
Article
Full-text available
SARS-CoV-2 entry requires sequential cleavage of the spike glycoprotein at the S1/S2 and the S2ʹ cleavage sites to mediate membrane fusion. SARS-CoV-2 has a polybasic insertion (PRRAR) at the S1/S2 cleavage site that can be cleaved by furin. Using lentiviral pseudotypes and a cell-culture-adapted SARS-CoV-2 virus with an S1/S2 deletion, we show tha...
Preprint
Full-text available
Vaccines are proving to be highly effective in controlling hospitalisation and deaths associated with SARS-CoV-2 infection but the emergence of viral variants with novel antigenic profiles threatens to diminish their efficacy. Assessment of the ability of sera from vaccine recipients to neutralise SARS-CoV-2 variants will inform the success of stra...
Preprint
Full-text available
The SARS-CoV-2 B.1.617.2 (Delta) variant was first identified in the state of Maharashtra in late 2020 and has spread throughout India, displacing the B.1.1.7 (Alpha) variant and other pre-existing lineages. Mathematical modelling indicates that the growth advantage is most likely explained by a combination of increased transmissibility and immune...
Preprint
There is an ongoing global effort, to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations that negatively impact the role of neutralising antibodies. In this study we describe t...
Preprint
Full-text available
The SARS-CoV-2 spike (S) glycoprotein contains a suboptimal furin cleavage site at the S1/S2 junction with the sequence 681 PRRAR/S 686 . This cleavage site is required for efficient airway replication, transmission, and pathogenicity of the virus. The B.1.617 lineage has recently emerged in India, coinciding with substantial disease burden across...
Article
Full-text available
SARS-CoV-2 is thought to have originated in the human population from a zoonotic spillover event. Infection in humans results in a variety of outcomes ranging from asymptomatic cases to the disease COVID-19, which can have significant morbidity and mortality, with over two million confirmed deaths worldwide as of January 2021. Over a year into the...
Preprint
Full-text available
Infection with SARS-CoV-2 has a wide range of clinical presentations, from asymptomatic to life-threatening. Old age is the strongest factor associated with increased COVID19-related mortality, followed by sex and pre-existing conditions. The importance of genetic and immunological factors on COVID19 outcome is also starting to emerge, as demonstra...
Preprint
Full-text available
Lineage B.1.1.7 (Variant of Concern 202012/01) is a new SARS-CoV-2 variant which was first sequenced in the UK in September 2020 before becoming the majority strain in the UK and spreading worldwide. The rapid spread of the B.1.1.7 variant results from increased transmissibility but the virological characteristics which underpin this advantage over...
Article
Full-text available
Influenza A viruses encode several accessory proteins that have host- and strain-specific effects on virulence and replication. The accessory protein PA-X is expressed due to a ribosomal frameshift during translation of the PA gene. Depending on the particular combination of virus strain and host species, PA-X has been described as either acting to...
Article
Full-text available
Receptor recognition and binding is the first step of viral infection and a key determinant of host specificity. The inability of avian influenza viruses to effectively bind human-like sialylated receptors is a major impediment to their efficient transmission in humans and pandemic capacity. Influenza H9N2 viruses are endemic in poultry across Asia...
Preprint
Full-text available
Rationale The secondary thrombotic/vascular clinical syndrome of COVID-19 suggests that SARS-CoV-2 infects not only respiratory epithelium but also the endothelium activating thrombotic pathways, disrupting barrier function and allowing access of the virus to other organs of the body. However, a direct test of susceptibility to SARS-CoV-2 of authen...
Article
Full-text available
Influenza viruses have an error-prone polymerase complex that facilitates a mutagenic environment. Antigenic mutants swiftly arise from this environment with the capacity to 2 persist in both humans and economically important livestock even in the face of vaccination. Furthermore, influenza viruses can adjust the antigenicity of the haemagglutinin...
Preprint
Full-text available
SARS-CoV-2 enters cells via its spike glycoprotein which must be cleaved sequentially at the S1/S2, then the S2’ cleavage sites (CS) to mediate membrane fusion. SARS-CoV-2 has a unique polybasic insertion at the S1/S2 CS, which we demonstrate can be cleaved by furin. Using lentiviral pseudotypes and a cell-culture adapted SARS-CoV-2 virus with a S1...
Preprint
Full-text available
ANP32 proteins, which act as influenza polymerase co-factors, vary between birds and mammals. The well-known mammalian adaptation, PB2-E627K, enables influenza polymerase to use mammalian ANP32 proteins. However, some mammalian-adapted influenza viruses do not harbour this adaptation. Here, we show that alternative PB2 adaptations, Q591R and D701N...
Article
Full-text available
Detection of viral DNA by cyclic GMP-AMP synthase (cGAS) is a first line of defence leading to the production of type I interferon (IFN). As HIV-1 replication is not a strong inducer of IFN, we hypothesised that an intact capsid physically cloaks viral DNA from cGAS. To test this, we generated defective viral particles by treatment with HIV-1 prote...
Article
Full-text available
Avian influenza viruses, such as H9N2, cause huge economic damage to poultry production worldwide and are additionally considered potential pandemic threats. Understanding how these viruses evolve in their natural hosts is key to effective control strategies. In the Middle East and South Asia, an older H9N2 virus strain has been replaced by a new r...
Preprint
Full-text available
H9N2 avian influenza viruses circulate in poultry throughout much of Asia, the Middle East and Africa. These viruses cause huge economic damage to poultry production systems and pose a zoonotic threat both in their own right as well as in the generation of novel zoonotic viruses, for example H7N9. In recent years it has been observed that H9N2 viru...
Preprint
Full-text available
Influenza A viruses encode several accessory proteins that have host- and strain-specific effects on virulence and replication. The accessory protein PA-X is expressed due to a ribosomal frameshift during translation of the PA gene. Depending on the particular combination of virus strain and host species, PA-X has been described as either acting to...
Preprint
Full-text available
Receptor recognition and binding is the first step of viral infection and a key determinant of host specificity. The inability of avian influenza viruses to effectively bind human-like sialylated receptors is a major impediment to their efficient transmission in humans and pandemic capacity. Influenza H9N2 viruses are endemic in poultry across Asia...
Article
Full-text available
Avian influenza viruses occasionally infect and adapt to mammals, including humans. Swine are often described as ‘mixing vessels’, being susceptible to both avian and human origin viruses, which allows the emergence of novel reassortants, such as the precursor to the 2009 H1N1 pandemic. ANP32 proteins are host factors that act as influenza virus po...
Preprint
Full-text available
Viruses require host factors to support their replication, and genetic variation in such factors can affect susceptibility to infectious disease. Influenza virus replication in human cells relies on ANP32 proteins, which serve essential but redundant roles to support influenza virus polymerase activity. Here, we investigate naturally occurring sing...
Preprint
Full-text available
Avian influenza viruses occasionally infect and adapt to mammals, including humans. Swine are often described as mixing vessels, being susceptible to both avian and human origin viruses, which allows the emergence of novel reassortants, such as the precursor to the 2009 H1N1 pandemic. ANP32 proteins are host factors that act as influenza virus poly...
Preprint
Full-text available
Detection of viral DNA by cyclic GMP-AMP synthase (cGAS) is a first line of defence leading to the production of type-I interferon (IFN). As HIV-1 is not a strong inducer of IFN we have hypothesised that its capsid cloaks viral DNA from cGAS. To test this we generated defective viral particles by treatment with HIV-1 protease inhibitors or by genet...
Article
Influenza viruses are a leading cause of seasonal and pandemic respiratory illness. Influenza is a negative-sense single-stranded RNA virus that encodes its own RNA-dependent RNA polymerase (RdRp) for nucleic acid synthesis. The RdRp catalyzes mRNA synthesis, as well as replication of the virus genome (viral RNA) through a complementary RNA interme...
Article
Full-text available
H9N2 avian influenza viruses have become globally widespread in poultry over the last two decades and represent a genuine threat both to the global poultry industry but also humans through their high rates of zoonotic infection and pandemic potential. H9N2 viruses are generally hyperendemic in affected countries and have been found in poultry in ma...
Article
Full-text available
Influenza virus is the etiological agent behind some of the most devastating infectious disease pandemics to date, and influenza outbreaks still pose a major threat to public health. Influenza virus polymerase, the molecule that copies the viral RNA genome, hijacks cellular proteins to support its replication. Current anti-influenza drugs are aimed...
Article
Full-text available
H9N2 avian influenza viruses have become globally widespread in poultry over the last two decades and represent a genuine threat both to the global poultry industry but also humans through their high rates of zoonotic infection and pandemic potential. H9N2 viruses are generally hyperendemic in effected countries and have been found in poultry in ma...
Article
Full-text available
We characterized 55 influenza A(H9N2) viruses isolated in Pakistan during 2014-2016 and found that the hemagglutinin gene is of the G1 lineage and that internal genes have differentiated into a variety of novel genotypes. Some isolates had up to 4-fold reduction in hemagglutination inhibition titers compared with older viruses. Viruses with hemaggl...
Article
Full-text available
Avian influenza A(H9N2) viruses are an increasing threat to global poultry production and, through zoonotic infection, to human health where they are considered viruses with pandemic potential. Vaccination of poultry is a key element of disease control in endemic countries, but vaccine effectiveness is persistently challenged by the emergence of an...