Thomas Parr

Thomas Parr
University College London | UCL · Wellcome Department of Imaging Neuroscience

PhD

About

148
Publications
41,055
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
4,323
Citations
Citations since 2017
148 Research Items
4321 Citations
201720182019202020212022202302004006008001,0001,200
201720182019202020212022202302004006008001,0001,200
201720182019202020212022202302004006008001,0001,200
201720182019202020212022202302004006008001,0001,200
Introduction
Thomas Parr currently works at the Wellcome Department of Imaging Neuroscience, University College London. Thomas does research in Neuroscience.

Publications

Publications (148)
Preprint
Bistable perception follows from observing a static, ambiguous, (visual) stimulus with two possible interpretations. Here, we present an active (Bayesian) inference account of bistable perception and posit that perceptual transitions between different interpretations (i.e., inferences) of the same stimulus ensue from specific eye movements that shi...
Preprint
Full-text available
This paper describes a path integral formulation of the free energy principle. The ensuing account expresses the paths or trajectories that a particle takes as it evolves over time. The main results are a method or principle of least action that can be used to emulate the behaviour of particles in open exchange with their external milieu. Particles...
Article
Full-text available
A growing body of evidence highlights the intricate linkage of exteroceptive perception to the rhythmic activity of the visceral body. In parallel, interoceptive inference theories of affective perception and self-consciousness are on the rise in cognitive science. However, thus far no formal theory has emerged to integrate these twin domains; inst...
Article
Full-text available
Computational models of visual attention in artificial intelligence and robotics have been inspired by the concept of a saliency map. These models account for the mutual information between the (current) visual information and its estimated causes. However, they fail to consider the circular causality between perception and action. In other words,...
Chapter
Humans constantly search for and use information to solve a wide range of problems related to survival, social interactions, and learning. While it is clear that curiosity and the drive for knowledge occupies a central role in defining what being human means to ourselves, where does this desire to know the unknown come from? What is its purpose? An...
Preprint
This article details a scheme for approximate Bayesian inference, which has underpinned thousands of neuroimaging studies since its introduction 15 years ago. Variational Laplace (VL) provides a generic approach for fitting linear or non-linear models, which may be static or dynamic, returning a posterior probability density over the model paramete...
Preprint
Full-text available
Computational models of visual attention in artificial intelligence and robotics have been inspired by the concept of a saliency map. These models account for the mutual information between the (current) visual information and its estimated causes. However, they fail to consider the circular causality between perception and action. In other words,...
Article
Full-text available
Under the Bayesian brain hypothesis, behavioral variations can be attributed to different priors over generative model parameters. This provides a formal explanation for why individuals exhibit inconsistent behavioral preferences when confronted with similar choices. For example, greedy preferences are a consequence of confident (or precise) belief...
Article
Full-text available
This article considers the evolution of brain architectures for predictive processing. We argue that brain mechanisms for predictive perception and action are not late evolutionary additions of advanced creatures like us. Rather, they emerged gradually from simpler predictive loops (e.g. autonomic and motor reflexes) that were a legacy from our ear...
Preprint
This paper provides a concise description of the free energy principle, starting from a formulation of random dynamical systems in terms of a Langevin equation and ending with a Bayesian mechanics that can be read as a physics of sentience. It rehearses the key steps using standard results from statistical physics. These steps entail (i) establishi...
Article
Full-text available
While machine learning techniques have been transformative in solving a range of problems, an important challenge is to understand why they arrive at the decisions they output. Some have argued that this necessitates augmenting machine intelligence with understanding such that, when queried, a machine is able to explain its behaviour (i.e., explain...
Article
In this paper, we introduce a new generative model for an active inference account of preparatory and selective attention, in the context of a classic 'cocktail party' paradigm. In this setup, pairs of words are presented simultaneously to the left and right ears and an instructive spatial cue directs attention to the left or right. We use this gen...
Article
Traditionally, short-term memory (STM) has been assessed by asking participants to remember words, visual objects, or numbers for a short amount of time before their recall or recognition of those items is tested. However, this focus on memory for past sensory input might have obscured potential theoretical insights into the function of this cognit...
Preprint
Full-text available
Active inference, a corollary of the free energy principle, is a formal way of describing the behavior of certain kinds of random dynamical systems that have the appearance of sentience. In this chapter, we describe how active inference combines Bayesian decision theory and optimal Bayesian design principles under a single imperative to minimize ex...
Article
Full-text available
In this treatment of random dynamical systems, we consider the existence—and identification—of conditional independencies at nonequilibrium steady-state. These independencies underwrite a particular partition of states, in which internal states are statistically secluded from external states by blanket states. The existence of such partitions has i...
Article
Full-text available
In theoretical biology, we are often interested in random dynamical systems—like the brain—that appear to model their environments. This can be formalized by appealing to the existence of a (possibly non-equilibrium) steady state, whose density preserves a conditional independence between a biological entity and its surroundings. From this perspect...
Article
Full-text available
Biehl et al. (2021) present some interesting observations on an early formulation of the free energy principle. We use these observations to scaffold a discussion of the technical arguments that underwrite the free energy principle. This discussion focuses on solenoidal coupling between various (subsets of) states in sparsely coupled systems that p...
Article
Full-text available
Human social interactions depend on the ability to resolve uncertainty about the mental states of others. The context in which social interactions take place is crucial for mental state attribution as sensory inputs may be perceived differently depending on the context. In this paper, we introduce a mental state attribution task where a target-face...
Article
Full-text available
Delusions are, by popular definition, false beliefs that are held with certainty and resistant to contradictory evidence. They seem at odds with the notion that the brain at least approximates Bayesian inference. This is especially the case in schizophrenia, a disorder thought to relate to decreased – rather than increased – certainty in the brain'...
Preprint
Full-text available
Under the Bayesian brain hypothesis, behavioural variations can be attributed to different priors over generative model parameters. This provides a formal explanation for why individuals exhibit inconsistent behavioural preferences when confronted with similar choices. For example, greedy preferences are a consequence of confident (or precise) beli...
Article
Full-text available
There is a steadily growing literature on the role of the immune system in psychiatric disorders. So far, these advances have largely taken the form of correlations between specific aspects of inflammation (e.g. blood plasma levels of inflammatory markers, genetic mutations in immune pathways, viral or bacterial infection) with the development of n...
Article
Full-text available
An interesting inference drawn by some COVID-19 epidemiological models is that there exists a proportion of the population who are not susceptible to infection—even at the start of the current pandemic. This paper introduces a model of the immune response to a virus. This is based upon the same sort of mean-field dynamics as used in epidemiology. H...
Article
Full-text available
Active inference is an increasingly prominent paradigm in theoretical biology. It frames the dynamics of living systems as if they were solving an inference problem. This rests upon their flow towards some (non-equilibrium) steady state—or equivalently, their maximisation of the Bayesian model evidence for an implicit probabilistic model. For many...
Article
Full-text available
The active visual system comprises the visual cortices, cerebral attention networks, and oculomotor system. While fascinating in its own right, it is also an important model for sensorimotor networks in general. A prominent approach to studying this system is active inference—which assumes the brain makes use of an internal (generative) model to pr...
Preprint
In this paper, we introduce a new generative model for an active inference account of preparatory and selective attention, in the context of a classic ‘cocktail party’ paradigm. In this setup, two talkers speak simultaneously and an instructive spatial cue directs attention to the left or right talker. We use this generative model to test competing...
Article
Full-text available
Active inference is a normative framework for explaining behaviour under the free energy principle—a theory of self-organisation originating in neuroscience. It specifies neuronal dynamics for state-estimation in terms of a descent on (variational) free energy—a measure of the fit between an internal (generative) model and sensory observations. The...
Article
Full-text available
We recently described a dynamic causal model of a COVID-19 outbreak within a single region. Here, we combine several instantiations of this (epidemic) model to create a (pandemic) model of viral spread among regions. Our focus is on a second wave of new cases that may result from loss of immunity—and the exchange of people between regions—and how m...
Article
Full-text available
We propose a computational neurology of movement based on the convergence of theoretical neurobiology and clinical neurology. A significant development in the former is the idea that we can frame brain function as a process of (active) inference, in which the nervous system makes predictions about its sensory data. These predictions depend upon an...
Article
Full-text available
Active inference offers a first principle account of sentient behavior, from which special and important cases-for example, reinforcement learning, active learning, Bayes optimal inference, Bayes optimal design-can be derived. Active inference finesses the exploitation-exploration dilemma in relation to prior preferences by placing information gain...
Article
Full-text available
By equipping a previously reported dynamic causal modelling of COVID-19 with an isolation state, we were able to model the effects of self-isolation consequent on testing and tracking. Specifically, we included a quarantine or isolation state occupied by people who believe they might be infected but are asymptomatic—and could only leave if they tes...
Article
Full-text available
By equipping a previously reported dynamic causal modelling of COVID-19 with an isolation state, we were able to model the effects of self-isolation consequent on testing and tracking. Specifically, we included a quarantine or isolation state occupied by people who believe they might be infected but are asymptomatic—and could only leave if they tes...
Article
Full-text available
We recently described a dynamic causal model of a COVID-19 outbreak within a single region. Here, we combine several instantiations of this (epidemic) model to create a (pandemic) model of viral spread among regions. Our focus is on a second wave of new cases that may result from loss of immunity—and the exchange of people between regions—and how m...
Article
Full-text available
We recently described a dynamic causal model of a COVID-19 outbreak within a single region. Here, we combine several instantiations of this (epidemic) model to create a (pandemic) model of viral spread among regions. Our focus is on a second wave of new cases that may result from loss of immunity—and the exchange of people between regions—and how m...
Article
Full-text available
Recent characterisations of self-organising systems depend upon the presence of a ‘Markov blanket’: a statistical boundary that mediates the interactions between the inside and outside of a system. We leverage this idea to provide an analysis of partitions in neuronal systems. This is applicable to brain architectures at multiple scales, enabling p...
Article
Full-text available
Active inference is a first principle account of how autonomous agents operate in dynamic, nonstationary environments. This problem is also considered in reinforcement learning, but limited work exists on comparing the two approaches on the same discrete-state environments. In this letter, we provide (1) an accessible overview of the discrete-state...
Article
Full-text available
We recently described a dynamic causal model of a COVID-19 outbreak within a single region. Here, we combine several instantiations of this (epidemic) model to create a (pandemic) model of viral spread among regions. Our focus is on a second wave of new cases that may result from loss of immunity—and the exchange of people between regions—and how m...
Article
At the inception of human brain mapping, two principles of functional anatomy underwrote most conceptions – and analyses – of distributed brain responses: namely functional segregation and integration. There are currently two main approaches to characterising functional integration. The first is a mechanistic modelling of connectomics in terms of d...
Article
Full-text available
Active inference is a normative principle underwriting perception, action, planning, decision-making and learning in biological or artificial agents. From its inception, its associated process theory has grown to incorporate complex generative models, enabling simulation of a wide range of complex behaviours. Due to successive developments in activ...
Article
Full-text available
The positive-negative axis of emotional valence has long been recognized as fundamental to adaptive behavior, but its origin and underlying function have largely eluded formal theorizing and computational modeling. Using deep active inference, a hierarchical inference scheme that rests on inverting a model of how sensory data are generated, we deve...
Article
We formalize the Gaia hypothesis about the Earth climate system using advances in theoretical biology based on the minimization of variational free energy. This amounts to the claim that non-equilibrium steady-state dynamics-that underwrite our climate-depend on the Earth system possessing a Markov blanket. Our formalization rests on how the metabo...
Preprint
Full-text available
The perceptual experience of architecture is enacted by the sensory and motor system. When we act, we change the perceived environment according to a set of expectations that depend on our body and the built environment. The continuous process of collecting sensory information is thus based on bodily affordances. Affordances characterize the fit be...
Article
Full-text available
Adaptive agents must act in intrinsically uncertain environments with complex latent structure. Here, we elaborate a model of visual foraging-in a hierarchical context-wherein agents infer a higher-order visual pattern (a "scene") by sequentially sampling ambiguous cues. Inspired by previous models of scene construction-that cast perception and act...
Article
Full-text available
This technical report addresses a pressing issue in the trajectory of the coronavirus outbreak; namely, the rate at which effective immunity is lost following the first wave of the pandemic. This is a crucial epidemiological parameter that speaks to both the consequences of relaxing lockdown and the propensity for a second wave of infections. Using...
Article
Full-text available
Relations between task elements often follow hidden underlying structural forms such as periodicities or hierarchies, whose inferences fosters performance. However, transferring structural knowledge to novel environments requires flexible representations that are generalizable over particularities of the current environment, such as its stimuli and...
Preprint
Full-text available
Active inference is a normative framework for generating behaviour based upon the free energy principle, a theory of self-organisation. This framework has been successfully used to solve reinforcement learning and stochastic control problems, yet, the formal relation between active inference and reward maximisation has not been fully explicated. In...
Preprint
Full-text available
An interesting inference drawn by some Covid-19 epidemiological models is that there exists a proportion of the population who are not susceptible to infection -- even at the start of the current pandemic. This paper introduces a model of the immune response to a virus. This is based upon the same sort of mean-field dynamics as used in epidemiology...
Preprint
Full-text available
We introduce a unified objective for action and perception of intelligent agents. Extending representation learning and control, we minimize the joint divergence between the world and a target distribution. Intuitively, such agents use perception to align their beliefs with the world, and use actions to align the world with their beliefs. Minimizin...
Article
Full-text available
This technical report addresses a pressing issue in the trajectory of the coronavirus outbreak; namely, the rate at which effective immunity is lost following the first wave of the pandemic. This is a crucial epidemiological parameter that speaks to both the consequences of relaxing lockdown and the propensity for a second wave of infections. Using...
Article
Full-text available
This paper offers a formal account of policy learning, or habitual behavioral optimization, under the framework of Active Inference. In this setting, habit formation becomes an autodidactic, experience-dependent process, based upon what the agent sees itself doing. We focus on the effect of environmental volatility on habit formation by simulating...
Article
Full-text available
This technical report addresses a pressing issue in the trajectory of the coronavirus outbreak; namely, the rate at which effective immunity is lost following the first wave of the pandemic. This is a crucial epidemiological parameter that speaks to both the consequences of relaxing lockdown and the propensity for a second wave of infections. Using...
Article
Full-text available
This technical report describes a dynamic causal model of the spread of coronavirus through a population. The model is based upon ensemble or population dynamics that generate outcomes, like new cases and deaths over time. The purpose of this model is to quantify the uncertainty that attends predictions of relevant outcomes. By assuming suitable co...
Article
Full-text available
This technical report describes a dynamic causal model of the spread of coronavirus through a population. The model is based upon ensemble or population dynamics that generate outcomes, like new cases and deaths over time. The purpose of this model is to quantify the uncertainty that attends predictions of relevant outcomes. By assuming suitable co...
Preprint
Full-text available
At the inception of human brain mapping, two principles of functional anatomy underwrote most conceptions - and analyses - of distributed brain responses: namely functional segregation and integration. There are currently two main approaches to characterising functional integration. The first is a mechanistic modelling of connectomics in terms of d...
Article
Full-text available
This paper presents a biologically plausible generative model and inference scheme that is capable of simulating communication between synthetic subjects who talk to each other. Building on active inference formulations of dyadic interactions, we simulate linguistic exchange to explore generative models that support dialogues. These models employ h...
Article
Full-text available
Paradoxical lesions are secondary brain lesions that ameliorate functional deficits caused by the initial insult. This effect has been explained in several ways; particularly by the reduction of functional inhibition, or by increases in the excitatory-to-inhibitory synaptic balance within perilesional tissue. In this article, we simulate how and wh...