Thomas R Müller

Thomas R Müller
Karolinska Institutet | KI · Center for Infectious Medicine

Dr. rer. nat.
Postdoctoral Researcher at Karolinska Institutet - Biologist, Immunologist and Cell Engineer

About

25
Publications
6,750
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
869
Citations
Additional affiliations
March 2013 - August 2013
Umeå University
Position
  • Researcher
January 2016 - present
Technical University of Munich
Position
  • PhD Student
Education
September 2013 - December 2015
Technical University of Munich
Field of study
  • Biology
September 2013 - June 2015
Ludwig-Maximilians-Universität in Munich
Field of study
  • Environmental Studies
September 2009 - May 2012

Publications

Publications (25)
Article
Full-text available
Therapeutic T cells with desired specificity can be engineered by introducing T-cell receptors (TCRs) specific for antigens of interest, such as those from pathogens or tumour cells. However, TCR engineering is challenging, owing to the complex heterodimeric structure of the receptor and to competition and mispairing between endogenous and transgen...
Article
Suboptimal immunity to SARS-CoV-2 mRNA vaccination has frequently been observed in individuals with various immunodeficiencies. Given the increased antibody evasion properties of emerging SARS-CoV-2 subvariants, it is necessary to assess whether other components of adaptive immunity generate resilient and protective responses against infection. We...
Article
Full-text available
Adoptive transfer of T cells expressing a transgenic T cell receptor (TCR) has the potential to revolutionize immunotherapy of infectious diseases and cancer. However, the generation of defined TCR-transgenic T cell medicinal products with predictable in vivo function still poses a major challenge and limits broader and more successful application...
Article
Mucosal-associated invariant T (MAIT) cells are unconventional T cells that recognize microbial riboflavin pathway metabolites presented by evolutionarily conserved MR1 molecules. We explored the human MAIT cell compartment across organ donor–matched blood, barrier, and lymphoid tissues. MAIT cell population size was donor dependent with distinct t...
Article
Full-text available
Introduction Human Cytomegalovirus (HCMV) is a betaherpesvirus that causes severe disease in immunocompromised transplant recipients. Immunotherapy with CD8 T cells specific for HCMV antigens presented on HLA class-I molecules is explored as strategy for long-term relief to such patients, but the antiviral effectiveness of T cell preparations canno...
Preprint
Full-text available
Human Cytomegalovirus (HCMV) is a betaherpesvirus that causes severe disease in immunocompromised transplant recipients. Immunotherapy with CD8 T cells specific for HCMV antigens presented on HLA class-I molecules is explored as strategy for long-term relief to such patients, but the antiviral effectiveness of T cell preparations cannot be efficien...
Preprint
Full-text available
Immunotherapy using TCR and especially CAR transgenic T cells is a rapidly advancing field with the potential to become standard of care for the treatment of multiple diseases. While all current FDA approved CAR T cell products are generated using lentiviral gene transfer, extensive work is put into CRISPR/Cas mediated gene delivery to develop the...
Article
Restricted immune responses to SARS-CoV-2 mRNA vaccination have been observed frequently in individuals suffering from various immunodeficiencies. With increased antibody evasion properties of rising Omicron subvariants, there is a need to assess if other components of adaptive immunity generate resilient responses against SARS-CoV-2 across immunod...
Article
The unprecedented spread of mpox (previously known as monkeypox) in several countries worldwide has led the WHO to declare the mpox outbreak a global health emergency in 2022. T cell responses are likely to play a central role in the resolution of the mpox infection. However, the prevalence and phenotype of mpox-specific T cells have not been inves...
Article
Full-text available
Many immunocompromised patients mount suboptimal humoral immunity after SARS-CoV-2 mRNA vaccination. Here, we assessed the single-cell profile of SARS-CoV-2-specific T cells post-mRNA vaccination in healthy individuals and patients with various forms of immunodeficiencies. Impaired vaccine-induced cell-mediated immunity was observed in many immunoc...
Article
Full-text available
Adoptive T cell therapy using T-cell receptor (TCR)-engineered T cells allows to redirect T cell specificity and to target any antigen of interest. Here, we apply advanced genetic engineering using clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) for simultaneous editing of TCR α- and β-chains in primar...
Article
Full-text available
The emergence of the SARS-CoV-2 variant-of-concern Omicron (B.1.1.529) has destabilized global efforts to control the impact of COVID-19. Recent data have suggested that B.1.1.529 can readily infect people with naturally acquired or vaccine-induced immunity, facilitated in some cases by viral escape from antibodies that neutralize ancestral SARS-Co...
Preprint
Full-text available
The emergence of the SARS-CoV-2 variant-of-concern Omicron (B.1.1.529) has destabilized global efforts to control the impact of COVID-19. Recent data have suggested that B.1.1.529 can readily infect people with naturally acquired or vaccine-induced immunity, facilitated in some cases by viral escape from antibodies that neutralize ancestral SARS-Co...
Article
Viral infections cause life-threatening disease in immunocompromised patients and especially following transplantation. T-cell receptor (TCR) engineering redirects specificity and can bring significant progress to emerging adoptive T-cell transfer (ACT) approaches. T-cell epitopes are well described, whereas knowledge is limited which TCRs mediate...
Preprint
Full-text available
Here, we show that conventional genetic engineering by viral transduction leads to unpredictable TCR expression and functionality as a result of variable transgene copy numbers and untargeted transgene integration. In contrast, CRISPR/Cas9-mediated TCR replacement enables defined, targeted TCR transgene insertion into the TCR gene locus. Thereby, T...
Article
Full-text available
Objective Transgenic re‐expression enables unbiased investigation of T‐cell receptor (TCR)‐intrinsic characteristics detached from its original cellular context. Recent advancements in TCR repertoire sequencing and development of protocols for direct cloning of full TCRαβ constructs now facilitate large‐scale transgenic TCR re‐expression. Together,...
Article
Full-text available
Natural adaptive immunity co-evolved with pathogens over millions of years, and adoptive transfer of non-engineered T cells to fight infections or cancer so far exhibits an exceptionally safe and functional therapeutic profile in clinical trials. However, the personalized nature of therapies using virus-specific T cells, donor lymphocyte infusion,...
Article
Full-text available
Adaptive evolution is a key feature of T cell immunity. During acute immune responses, T cells harboring high-affinity T cell antigen receptors (TCRs) are preferentially expanded, but whether affinity maturation by clonal selection continues through the course of chronic infections remains unresolved. Here we investigated the evolution of the TCR r...
Article
Peptide-MHC (pMHC) multimers have become a valuable tool for immunological research, clinical immune monitoring, and immunotherapeutic applications. Biotinylated tetramers, reversible Streptamers, or dye-conjugated pMHC multimers are distinct pMHC reagents tailored for T cell identification, traceless T cell isolation, or TCR characterization, resp...
Article
Full-text available
Abstract We show that defined lymphocytes can be rapidly purified by immunoaffinity chromatography starting directly from whole blood. The method relies on low-affinity Fab-fragments attached to a column-matrix combined with the reversible Strep-tag technology. Compared to established cell enrichment protocols, the Strep-tag affinity chromatography...

Network

Cited By