Thomas J. Mozdzer

Thomas J. Mozdzer
Bryn Mawr College | BMC · Department of Biology

PhD

About

63
Publications
34,241
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,027
Citations
Additional affiliations
July 2012 - present
Bryn Mawr College
Position
  • Professor (Assistant)
May 2009 - June 2012
Smithsonian Environmental Research Center (SERC)
Position
  • Secretary’s Distinguished Research Fellow,
August 2002 - May 2009
University of Virginia
Position
  • PhD Student

Publications

Publications (63)
Article
There is increasing evidence that global change can alter ecosystems by eliciting rapid evolution of foundational plants capable of shaping vital attributes and processes. Here we describe results of a field-scale exposure experiment and multilocus assays illustrating that elevated CO2 (eCO2) and nitrogen (N) enrichment can result in rapid shifts i...
Article
Tidal marsh plant species commonly zonate along environmental gradients such as elevation, but it is not always clear to what extent plant distribution is driven by abiotic factors vs. biotic interactions. Yet, the distinction has importance for how plant communities will respond to future change such as higher sea level, particularly given the dis...
Preprint
Plants can cultivate soil microbial communities that affect subsequent plant growth through a plant-soil feedback (PSF). Strong evidence indicates that PSFs can mediate the invasive success of exotic upland plants, but many of the most invasive plants occur in wetlands. In North America, the rapid spread of European Phragmites australis cannot be a...
Article
Full-text available
Litter decomposition is a key process for carbon and nutrient cycling in terrestrial ecosystems and is mainly controlled by environmental conditions, substrate quantity, and quality as well as microbial community abundance and composition. In particular, the effects of climate and atmospheric nitrogen (N) deposition on litter decomposition and its...
Article
Full-text available
Elevation is a major driver of plant ecology and sediment dynamics in tidal wetlands, so accurate and precise spatial data are essential for assessing wetland vulnerability to sea-level rise and making forecasts. We performed survey-grade elevation and vegetation surveys of the Global Change Research Wetland, a brackish microtidal wetland in the Ch...
Article
Premise: Biological invasions increasingly threaten native biodiversity and ecosystem services. One notable example is the common reed, Phragmites australis, which aggressively invades North American salt marshes. Elevated atmospheric CO2 and nitrogen pollution enhance its growth and facilitate invasion because P. australis responds more strongly...
Article
Full-text available
Excess reactive nitrogen (N) flows from agricultural, suburban, and urban systems to coasts, where it causes eutrophication. Coastal wetlands take up some of this N, thereby ameliorating the impacts on nearshore waters. Although the consequences of N on coastal wetlands have been extensively studied, the effect of the specific form of N is not ofte...
Article
Full-text available
We collected and analyzed morphological characteristics and tissue nutrient concentrations of common reed (Phragmites australis) populations from Denmark, USA, and China, harvested late summer at the peak of the biomass production. The aim was to estimate the suitability of the biomass for different bioenergy purposes. The potential of reed as bioe...
Article
Full-text available
Blue carbon (C) ecosystems are among the most effective C sinks of the biosphere, but methane (CH 4) emissions can offset their climate cooling effect. Drivers of CH 4 emissions from blue C ecosystems and effects of global change are poorly understood. Here we test for the effects of sea level rise (SLR) and its interactions with elevated atmospher...
Article
Full-text available
The position of tidal wetlands at the land-sea interface makes them especially vulnerable to the effects of nutrient discharges and sea level rise (SLR). Experimental studies of coastal wetland nutrient additions report conflicting results among and within habitats, highlighting the importance of site-specific factors, and how spatial and temporal...
Article
Full-text available
Classical biocontrol constitutes the importation of natural enemies from a native range to control a non-native pest. This is challenging when the target organism is phylogenetically close to a sympatric non-target form. Recent papers have proposed and recommended that two European moths (Archanara spp.) be introduced to North America to control no...
Article
Full-text available
Introduction: Nitrogen enrichment of coastal salt marshes can induce feedbacks that alter ecosystem-level processes including primary production and carbon sequestration. Despite the rising interest in coastal blue carbon, the effects of chronic nutrient enrichment on blue carbon processes have rarely been measured in the context of experimental fe...
Article
Full-text available
Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litt...
Article
Full-text available
Tidal wetlands, such as tidal marshes and mangroves, are hotspots for carbon sequestration. The preservation of organic matter (OM) is a critical process by which tidal wetlands exert influence over the global carbon cycle and at the same time gain elevation to keep pace with sea-level rise (SLR). The present study assessed the effects of temperatu...
Article
Full-text available
Coastal wetlands are important carbon sinks globally, but their ability to store carbon hinges on their nitrogen (N) supply and N uptake dynamics of dominant plant species. In terrestrial ecosystems, uptake of nitrate (NO3−) and ammonium (NH4+) through roots can strongly influence N acquisition rates and their responses to environmental factors suc...
Article
1.Elevated atmospheric carbon dioxide (eCO2) concentrations and nitrogen (N) enrichment frequently enhance plant productivity and invasion. However, the implications of their interactive effects for plant productivity are not well understood, especially at the stand scale, presumably because morphological and physiological responses to these global...
Article
Full-text available
Through litter decomposition enormous amount of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litte...
Article
Full-text available
Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to under-stand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litt...
Article
Full-text available
Tidal wetlands, such as tidal marshes and mangroves, are hotspots for carbon sequestration. The preservation of organic matter (OM) is a critical process by which tidal wetlands exert influence over the global carbon cycle and at the same time gain elevation to keep pace with sea-level rise (SLR). The present study provides the first global-scale f...
Article
Full-text available
Phragmites australis is a cosmopolitan grass and often the dominant species in the ecosystems it inhabits. Due to high intraspecific diversity and phenotypic plasticity, P. australis has an extensive ecological amplitude and a great capacity to acclimate to adverse environmental conditions; it can therefore offer valuable insights into plant respon...
Article
Full-text available
Much has been done to address the challenges of biological invasions, but fundamental questions (e.g., which species invade? Which habitats are invaded? How can invasions be effectively managed?) still need to be answered before the spread and impact of alien taxa can be effectively managed. Questions on the role of biogeography (e.g., how does bio...
Article
Full-text available
Background and aims: Temperate deciduous forest understoreys are experiencing widespread changes in community composition, concurrent with increases in rates of nitrogen supply. These shifts in plant abundance may be driven by interspecific differences in nutrient foraging (i.e. conservative vs. acquisitive strategies) and, thus, adaptation to con...
Article
Full-text available
Invasive plants can influence ecosystem processes such as greenhouse gas (GHG) emissions from wetland systems directly through plant-mediated transfer of GHGs to the atmosphere or through indirect modification of the environment. However, patterns of plant invasion often co-vary with other environmental gradients, so attributing ecosystem effects t...
Article
Full-text available
Abiotic global change factors, such as rising atmospheric CO2, and biotic factors, such as exotic plant invasion, interact to alter the function of terrestrial ecosystems. An invasive lineage of the common reed, Phragmites australis, was introduced to North America over a century ago, but the belowground mechanisms underlying Phragmites invasion an...
Article
Full-text available
Plants are expected to respond to global environmental change through shifts in functional traits and in their ranges. These shifts could alter productivity and interactions among species or genetic lineages, ultimately leading to changes in distributions and abundance. In particular, cosmopolitan species are predicted to increase growth with decre...
Article
Full-text available
Coastal marshes are highly valued for ecosystem services such as protecting inland habitats from storms, sequestering carbon, removing nutrients and other pollutants from surface water, and providing habitat for fish, shellfish, and birds. Because plants largely determine the structure and function of coastal marshes, quantifying plant biomass is e...
Article
Carbon (C) buried deep in soil (below 1 m) is often hundreds to thousands of years old, though the stability and sensitivity of this deep C to environmental change are not well understood. We examined the C dynamics in three soil horizons and their responses to changes in substrate availability in a coarse-textured sandy spodosol (0.0-0.1, 1.0-1.3,...
Article
In saltmarsh plant communities bottom-up pressure from nutrient enrichment is predicted to increase productivity, alter community structure, decrease biodiversity, and alter ecosystem functioning. Previous work supporting these predictions has been based largely on short-term, plot-level (e.g., 1-300 m2) studies, which may miss landscape-level phen...
Article
Full-text available
The primary productivity of coastal wetlands is changing dramatically in response to rising atmospheric carbon dioxide (CO2) concentrations, nitrogen (N) enrichment, and invasions by novel species, potentially altering their ecosystem services and resilience to sea level rise. In order to determine how these interacting global change factors will a...
Article
North American Atlantic salt marshes are generally considered to be nitrogen (N) limited systems, and plants within these marshes were historically thought to use only inorganic forms of N, such as NH4+. Recent research has suggested that Spartina alterniflora may take up some organic nitrogen compounds directly. To determine the availability of di...
Article
Full-text available
Invasive species threaten biodiversity and incur costs exceeding billions of US$. Eradication efforts, however, are nearly always unsuccessful. Throughout much of North America, land managers have used expensive, and ultimately ineffective, techniques to combat invasive Phragmites australis in marshes. Here, we reveal that Phragmites may potentiall...
Article
Full-text available
Studies on invasive plant management are often short in duration and limited in the methods tested, and lack an adequate description of plant communities that replace the invader following removal. Here we present a comprehensive review of management studies on a single species, in an effort to elucidate future directions for research in invasive p...
Article
Full-text available
The energetic cost of plant organ construction is a functional trait that is useful for understanding carbon investment during growth (e.g. the resource acquisition vs. tissue longevity tradeoff), as well as in response to global change factors like elevated CO2 and N. Despite the enormous importance of roots and rhizomes in acquiring soil resource...
Data
Full-text available
Physiological ecology and plant functional traits are often used to explain plant invasion. To gain a better understanding of how traits influence invasion, studies usually compare the invasive plant to a native congener, but there are few conspecific examples in the literature. In North America, the presence of native and introduced genetic lineag...
Article
North American wetlands have been invaded by an introduced lineage of the common reed, Phragmites australis. Native lineages occur in North America, but many populations have been extirpated by the introduced conspecific lineage. Little is known about how subtle changes in plant lineage may affect methane (CH4) emissions. Native and introduced Phra...
Article
Elevated CO2 and nitrogen (N) addition directly affect plant productivity and the mechanisms that allow tidal marshes to maintain a constant elevation relative to sea level, but it remains unknown how these global change drivers modify marsh plant response to sea level rise. Here we manipulated factorial combinations of CO2 concentration (two level...
Article
Full-text available
Global change is predicted to promote plant invasions world-wide, reducing biodiversity and ecosystem function. Phenotypic plasticity may influence the ability of introduced plant species to invade and dominate extant communities. However, interpreting differences in plasticity can be confounded by phylogenetic differences in morphology and physiol...
Conference Paper
Background/Question/Methods Methane, a potent greenhouse gas, may contribute to climatic feedbacks that are currently difficult to predict given our poor understanding of the behavior of natural sources and sinks. Unmanaged wetlands are vulnerable to many global changes that may positively feedback on climate change by increasing methane emission...
Conference Paper
Background/Question/Methods Previous work has shown that elevated CO2 and nitrogen addition direct affect plant productivity and the mechanisms that allow tidal marshes to maintain a constant elevation relative to sea level. Furthermore, these two factors can drive changes in plant community composition that may other consequences for marsh viabi...
Article
Full-text available
The smooth cordgrass Spartina alterniflora is the foundation species in intertidal salt marshes of the North American Atlantic coast. Depending on its elevation within the marsh, S. alterniflora may be submerged for several hours per day. Previous ecosystem-level studies have demonstrated that S. alterniflora marshes are a net sink for nitrogen (N)...
Article
Physiological measurements were used to investigate the dependence of photosynthesis on light, temperature, and intercellular carbon dioxide (CO2) levels in the C4 marsh grass Spartina alterniflora. Functional relationships between these environmental variables and S. alterniflora physiological responses were then used to improve C4-leaf photosynth...
Article
Critical Zone (CZ) research investigates the chemical, physical, and biological processes that modulate the Earth's surface. Here, we advance 12 hypotheses that must be tested to improve our understanding of the CZ: (1) Solar-to-chemical conversion of energy by plants regulates flows of carbon, water, and nutrients through plant-microbe soil networ...
Conference Paper
Background/Question/Methods Wetlands throughout North America are under siege by an invasive genetic lineage of the common reed, Phragmites australis. Although populations of the native genetic lineages exist, they are becoming displaced along the North American Atlantic coast by a vigorous introduced lineage from Eurasia. A C3 plant and vigorous...
Article
Full-text available
We investigated if the success of the invasive common reed Phragmites australis could be attributed to a competitive ability to use dissolved organic nitrogen (DON) when compared to the dominant macrophyte Spartina alterniflora in tidal wetlands. Short-term nutrient uptake experiments were performed in the laboratory on two genetic lineages of Phra...
Article
1. Over the last century, native Phragmites australis lineages have been almost completely replaced along the North American Atlantic coast by an aggressive lineage originating from Eurasia. Understanding the mechanisms that facilitate biological invasions is critical to better understand what makes an invasive species successful. 2. Our objective...
Article
Full-text available
Salt marshes are among the most productive ecosystems on Earth, and play an important role in the global carbon cycle. Net carbon dioxide (CO2) ecosystem exchanges in coastal salt marshes remain poorly investigated. In Spartina alterniflora dominated North American Atlantic coast marshes, the lack of a clear understanding of how Spartina alterniflo...
Article
The cosmopolitan common reed (Phragmites australis) has been expanding into previously unoccupied wetland habitats throughout North America. This invasion by a non-native haplotype of Phragmites has become a major concern due to a reduction in plant diversity, reduction of faunal biodiversity, and changes in ecosystem structure. A randomized comple...
Article
Full-text available
Carabid beetles, like Pterostichus oblongopunctatus, living in metal contaminated areas may be exposed to elevated levels of metals within their diets. However, when compared to other second order consumers, they have one of the lowest observed levels of metals, indicating methods of detoxification to deal with such toxicants. In this study, we inv...
Article
In laboratory studies, the short-term response of Phragmites australis and Spartina alterniflora to root immersion in solutions of different salinity and sulfide concentration was measured as the rate of ammonium depletion (a proxy for root uptake) from an initial concentration of 20 μM. From 0 to 20 ppt in the absence of sulfide, ammonium uptake a...

Questions

Question (1)
Question
I have exposed an invasive plant to multiple globlal change factors and am looking for way to evaluate the stregnth of Biotic Resistance by the native community.  Thanks in advance!

Network