
Thomas MesnardResearch Assistant at DeepMind and PhD student at École Polytechnique
Thomas Mesnard
Research Assistant at DeepMind
About
13
Publications
3,320
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
106
Citations
Introduction
Skills and Expertise
Publications
Publications (13)
Consider the problem of exploration in sparse-reward or reward-free environments, such as in Montezuma's Revenge. In the curiosity-driven paradigm, the agent is rewarded for how much each realized outcome differs from their predicted outcome. But using predictive error as intrinsic motivation is fragile in stochastic environments, as the agent may...
Consider the problem of exploration in sparse-reward or reward-free environments, such as in Montezuma's Revenge. In the curiosity-driven paradigm, the agent is rewarded for how much each realized outcome differs from their predicted outcome. But using predictive error as intrinsic motivation is fragile in stochastic environments, as the agent may...
Consider the exploration in sparse-reward or reward-free environments, such as Montezuma's Revenge. The curiosity-driven paradigm dictates an intuitive technique: At each step, the agent is rewarded for how much the realized outcome differs from their predicted outcome. However, using predictive error as intrinsic motivation is prone to fail in sto...
Exploration is essential for solving complex Reinforcement Learning (RL) tasks. Maximum State-Visitation Entropy (MSVE) formulates the exploration problem as a well-defined policy optimization problem whose solution aims at visiting all states as uniformly as possible. This is in contrast to standard uncertainty-based approaches where exploration i...
Credit assignment in reinforcement learning is the problem of measuring an action influence on future rewards. In particular, this requires separating skill from luck, ie. disentangling the effect of an action on rewards from that of external factors and subsequent actions. To achieve this, we adapt the notion of counterfactuals from causality theo...
We consider the problem of efficient credit assignment in reinforcement learning. In order to efficiently and meaningfully utilize new data, we propose to explicitly assign credit to past decisions based on the likelihood of them having led to the observed outcome. This approach uses new information in hindsight, rather than employing foresight. So...
In the past few years, deep learning has transformed artificial intelligence research and led to impressive performance in various difficult tasks. However, it is still unclear how the brain can perform credit assignment across many areas as efficiently as backpropagation does in deep neural networks. In this paper, we introduce a model that relies...
The biological plausibility of the backpropagation algorithm has long been doubted by neuroscientists. Two major reasons are that neurons would need to send two different types of signal in the forward and backward phases, and that pairs of neurons would need to communicate through symmetric bidirectional connections. We present a simple two-phase...
We show that Langevin Monte Carlo Markov chain inference in an energy-based model with latent variables has the property that the early steps of inference, starting from a stationary point, correspond to propagating error gradients into internal layers, similar to backpropagation. The backpropagated error is with respect to output units that have r...
In machine learning, error back-propagation in multi-layer neural networks (deep learning) has been impressively successful in supervised and reinforcement learning tasks. As a model for learning in the brain, however, deep learning has long been regarded as implausible, since it relies in its basic form on a non-local plasticity rule. To overcome...
We introduce a predictive objective function for the rate aspect of
spike-timing dependent plasticity (STDP), i.e., ignoring the effects of
synchrony of spikes but looking at spiking {\em rate changes}. The proposed
weight update is proportional to the presynaptic spiking (or firing) rate times
the {\em temporal change} of the integrated postsynapt...