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Abstract—While temporal lobe epilepsy (TLE) has been treat-
able with anti-seizure medications over the past century, there
still remain a large percentage of patients whose seizures remain
untreatable pharmacologically. To better understand and treat
TLE, our laboratory uses several in vivo analytical techniques to
estimate connectivity in epilepsy. This paper reviews two different
connectivity-based approaches with an emphasis on application
to the study of epilepsy. First, we present effective connectivity
techniques, such as Granger causality, that has been used to assess
the dynamic directional relationships among brain regions. These
measures are used to better understand how seizure activity initi-
ates, propagates, and terminates. Second, structural techniques,
such as magnetic resonance imaging, can be used to assess changes
in the underlying neural structures that result in seizure. This
paper also includes in vivo epilepsy-centered examples of both
effective and anatomical connectivity analysis. These analyses
are performed on data collected in vivo from a spontaneously
seizing animal model of TLE. Future work in vivo on epilepsy will
no doubt benefit from a fusion of these different techniques. We
conclude by discussing the interesting possibilities, implications,
and challenges that a unified analysis would present.

Index Terms—Connectivity, diffusion weighted imaging,
Granger causality (GC), magnetic resonance imaging (MRI),
temporal lobe epilepsy (TLE).
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I. INTRODUCTION: THE HIPPOCAMPAL FORMATION, A TEST

BED FOR NEURAL DYSFUNCTION AND EPILEPSY

E PILEPSY is the propensity to have seizures and is one
of the most common serious neurological conditions, af-

fecting 0.4%–1.0% of the world population [1]. Temporal lobe
epilepsy represents approximately 60% of all partial epilepsies
[2]. It is a well-established clinical observation that epileptic
patients exhibit a high frequency of temporal lobe foci, often
coupled with the neuropathological finding of mesial temporal
lobe hippocampal sclerosis. As a result, the hippocampus has
been a focus of interest in epilepsy research. Anatomically, the
hippocampus is functionally organized in a parallel feed-for-
ward fashion and contains several distinct layers [3]. The
hippocampus also contains several well-described neuronal
circuits such as the trisynaptic intrahippocampal pathway,
which is linked to seizure onset. This provides an interesting
structure for fundamental investigations into networks changes
associated with epileptogenesis and ictogenesis in temporal
lobe epilepsy. The trisynaptic pathway contains several co-
herent neuronal pathways such as Schaffer collaterals, perforant
and mossy fiber, that are significantly altered in temporal lobe
epilepsy.

The experimental and computational studies we present
herein are consistent with the view that the hippocampus cir-
cuitry is composed of functionally specialized local population
of neurons that are interacting dynamically during seizure along
reentrant anatomical loops and pathways, within and between
hippocampi. These large-scale patterns of temporal activity
generated by the dynamics of neuronal interactions across the
brain are often referred to as functional or effective connec-
tivity. Clearly, a system’s dynamics must strongly depend upon
the underlying structure of the network. In the case of the brain,
this structure is equivalent to its neuroanatomy. Functional
integration accompanying seizures and limbic network changes
are associated with patterns of functional and effective connec-
tivity expressed across distributed neuronal groups and areas.
Hence, there is an increasing amount of empirical evidence for
the importance of functional connectivity in limbic epilepsy.

In recent years, neurophysiological and neuroimaging ex-
periments, as well as detailed computer simulations, have
contributed to our understanding of the neural mechanism
generating functional connectivity [4]. Recently noninvasive
imaging of the living brain has created tremendous enthusiasm
for developing suitable methods. Of these methods, magnetic
resonance imaging (MRI) can provide a great deal of informa-
tion about anatomic structure (traditional imaging sequences),
structural connectivity (diffusion weighted imaging), and func-
tion (functional MRI and MR spectroscopy) information at the
same time on a single animal or human during the progression
of a disease. Thus MRI can be used to create longitudinal
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models in the four dimensions of time and space. In addition,
the possibility of integrating MRI with other measures of brain
function, like magnetoencephalography and high-resolution
scalp and cortical electroencephalography, will open a unique
“window” on the brain. Studies that have employed these
techniques in isolation have produced important findings about
nature of brain structure and function yielding important in-
sights into how neural circuits work and how they break down
in brain disorders. It is postulated that, anatomical and effective
connectivity tools used in parallel may result in more advanced
insights into the complex changes that occur during epilepsy.

In this paper, we review novel measurements of effective
and anatomical connectivity. We then demonstrate, with ex-
perimental results, the effective patterns of local circuits in
the hippocampus and pathways linking distinct subfields with
the hippocampus in an experimental rat model of spontaneous
limbic seizures. Subsequently, we present novel anatomical
tools, measures, and results, which reveal structural brain
connectivity through brain imaging. Finally, we discuss the
advantages and challenges of relating effective and structural
connectivity.

II. EFFECTIVE CONNECTIVITY METHODS IN EPILEPSY

One of the challenges facing neurologists in the study of
epilepsy is of understanding how structural changes in the
brain can lead to modifications in the behavioral output, i.e.,
activity, between different brain regions. Two broad categories
of algorithms, functional and effective connectivity, have been
used to extract these relationships from time series collected
from various brain regions [6]. The delineation between these
two types of connectivity is often unclear in the neuroscience
community [7]. However, we draw from the definitions summa-
rized by Sporns in a recent article on brain connectivity [8] to
help differentiate between these two classifications [6]. Quoting
directly from Sporns’ article, “functional connectivity captures
patterns of statistical dependence, while effective connectivity
attempts to extract networks of causal influences of one neural
element over another.” Correlation and coherence are com-
monly used examples of functional connectivity, while partial
directed coherence and Granger causality (GC) are examples
of effective connectivity measures. In the following section,
we will review specifically effective connectivity measures
with an emphasis on their use in the study of epilepsy. We will
also provide novel results from our application of an effective
connectivity analysis tool, GC, which provides a strong and
intuitive mathematical basis to determine causal influence and
direction of neural interactions.

A. Effective Connectivity in Epilepsy

GC is an increasingly popular tool to understand the dynamic
interactions of brain circuitry. New formulations have evolved
within the GC toolset to better address the complexity of the
neural systems being analyzed including pairwise, spectral, con-
ditional [5], and multivariate block [6] GC. Pairwise Granger
causality (PGC), considered to be the original GC formulation,
is used to investigate directional interactions specifically be-
tween two time series. (We will use PGC to refer to this specific
formulation and GC to describe the general family of Granger
formulations from this point forward). The basic idea behind
GC can be traced back to Wiener [7]. He proposed that, for two

simultaneously measured time series, one series can be called
causal to the other one if we can better predict the second series
by incorporating past knowledge of the first one. This concept
was later formalized by Granger in 1969 [8] for linear regres-
sion models of stochastic processes. Specifically, if the variance
of the prediction error for the second time series at the present
time is reduced by including past measurements from the first
time series in a linear regression model, then the first time series
can be said to have a causal (directional or driving) influence on
the second time series.

Autoregressive (AR) models [9] are the core of parametric
GC methods. A general form for the AR model is shown in (1),
where is a vector consisting of stationary time series from
channels, is a coefficient matrix and is the uncorrelated
noise vector with a covariance matrix of

(1)

A univariate AR model predicts the current value of the vari-
able from the past instances of the same variable. A multivariate
AR (MVAR) model uses the same framework to model the cur-
rent value of a variable using not only past instances of the same
variable, but also past instances of the other variables in that
multivariate system. The coefficient matrix and the noise co-
variance may be estimated by solving the Yule–Walker equa-
tions [10]. Model order to achieve a optimal model fit for the
data is typically estimated by minimizing the Akaike’s informa-
tion criterion (AIC) [11].

GC methods make use of the variance of prediction errors
[predictions errors are , and from (2) and
(3)] to determine causal relationships. Consider two time series

and where an AR model is fit to each time series to
predict current value of that time series say, from ( is a
previously determined AR model order) past values of

(2)

The variance of the error series , is a gauge of the linear
prediction accuracy of as is for . Now consider
a second AR model, a bi-variate autoregressive model, ,
where the current value of each time series say and
is predicted incorporating the (from to , same model
order as the first AR model) past values of both the and
time series, shown in (3). Here, , and are
the AR model coefficients

(3)
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The variance of the new error series is a gauge of the predic-
tion accuracy of the new expanded predictor

(4)

Based on Wiener’s idea, Granger [8] formulated that if the
prediction is improved by incorporating past knowledge of the

series, the time series can then be said to have a Granger-
causal influence on the time series. This is the basis for the
time domain version of PGC where the variance of the linear
prediction error of alone, , is compared to the variance of
linear prediction error of incorporating , , shown in

(5)

Essentially, is the ratio of prediction error variance
when only ’s past values are incorporated to the prediction
error variance when both and ’s past information are incor-
porated. Note that when (i.e., the linear prediction
error is not improved by including ) that this relationship will
yield a PGC value of zero. Thus, when improved the predic-
tion of X a causal relationship can be shown to exist. Causal
influences in the opposite direction ( to ) are addressed by
simply reversing the roles of the two time series. It is clear from
this definition that timing plays an essential role in directional
causal influences. For a more detailed exposition of AR mod-
eling and GC, please refer to a recent article [12] that discusses
several of the GC formulations.

GC is now increasingly being applied in various neuroscience
paradigms including in vivo plasticity [13], [14], functional con-
nectivity using fMRI [15], [16], human sleep analysis [17], and
connectivity within complex neural systems [18], [19]. Over the
years, the framework of GC has been extended to more than
two channels hence providing a true multivariate measure of
causality. More sophisticated effective connectivity analysis in
the frequency domain have also been introduced including ap-
proaches employing Geweke’s frequency domain representa-
tion of time domain GC [5], [12], [20]–[22], partial directed co-
herence (PDC) [23], and directed transfer function (DTF) [22],
[24] all of which fall under the framework proposed by Granger
[8]. Mathematically, a theorem proven by Geweke [20], [21]
promises deeper insights. It states that the total interdependence
between and can be decomposed into three contributing
factors: and ( . ). The arrow indi-
cates causality in the Granger sense and ( . ) signifies instan-
taneous causality or instantaneous correlation in the time se-
ries. The ability of Geweke’s framework to also decompose the
spectral density of the time series into an intrinsic part and a
causal part enabled to quantify linear causality in the frequency
domain for the first time. Given the predominance of oscilla-
tory activity in the brain, such a tool offers immense ability to
identify causal influences over functionally relevant frequency
bands. Simple pairwise GC measures discussed in the previous
section face a problem when considering more than two time
series, since it cannot differentiate between direct and medi-
ated (indirect) causal influence. Consider a simple network with
three nodes , , and with driving and in turn driving

. A simple PGC analysis on this network will yield the result

and a spurious causal influence .
In this case PGC cannot differentiate between a lack of direct
causal influence between and and a mediated or indirect
influence of on through . Geweke [21] proposed a ver-
sion of conditional GC in order to overcome the detection of
spurious causal patterns due to mediated influences from other
time series. More recently, alternative measures for identifying
causal interactions in neurobiological time series for multiple
channels in the frequency domain under the same framework of
GC are finding prevalence, which includes DTF, PDC, and di-
rect DTF.

Referring to multivariate autoregressive model in (1), trans-
forming this equation to the frequency domain yields

(6)

where

(7)

Rewriting (6)

(8)

is the transfer matrix of the system, where
. In the case of DTF, the measure of causal influence

from channel to channel is quantified in a normalized form
as

(9)

which is the ratio of causal influence of channel on to the
net influence from all other channels on channel . This quan-
tity has a desirable property of taking a value between 0, the
case of no causal influence, and 1, a case of strong causal in-
fluence. DTF being a multivariate approach has the advantage
of requiring only a single model fitting over all channels to be
analyzed in contrast to PGC which requires model fitting over
every pair of channels, however DTF has the same disadvantage
of PGC, in that distinction can not be made as to whether the
observed causal influence is direct or mediated, hence leading
to detection of spurious direct influence when only an indirect
influence exists. A recent study has suggested that this ambi-
guity may be mitigated by a simple operation of multiplying a
variant of the DTF measure (following a slightly different nor-
malization procedure where the denominator of (9) is summed
across all frequencies) by the corresponding partial coherence of
the channel pair and have named this approach the direct DTF
(dDTF) [25].

Another widely used measure for simultaneous connectivity
analysis of more than two channels in the frequency domain is
the PDC [26]. The PDC is based on the previously described
concept of partial coherence and may be thought of as a factor-
ization of the symmetric partial coherence measure into factors
quantifying the direct causal influence between the two time se-
ries (10), [23]

(10)

where is the partial coherence between channels and
and is the partial directed coherence factor. In order to
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remove the contribution of instantaneously correlation between
the channels from the direct causal influences, the factor terms
in (10) is simplified to

(11)

where is the element in the th row and th column of
in (7) and is defined as the PDC measure of

causal influence of channel on channel . It may be noticed
that the normalization factor in (11) is the net outflow of infor-
mation or coupling strength of the driving channel to all other
channels.

If the number of channels analyzed is two, then PDC and
DTF are equivalent to the PGC measure. Since PDC is based
on partial coherence it is inherently insensitive to mediated or
indirect causal influences from other channels in comparison to
DTF or PGC. Direct causality measures such as PDC, dDTF,
and conditional GC have been successfully used in several re-
cent studies and the results in terms of the direction of influence
have often been found to be in agreement with each other [12],
[23], [27]–[31]. For a comparison of the strengths, weaknesses,
and the performance of these three methods in various circum-
stances please refer to [28].

Several of these causality measures have proven to be useful
tools in the study of epilepsy. The first applications of the DTF
to seizure can be traced back to Franaszczuk et al. [32]–[34]
where seizure time series from subdural grids and depth elec-
trodes in humans were analyzed to determine seizure onset and
propagation patterns. Two recent articles [35], [36] demonstrate
the utility of the PDC for finding the focus of seizure onset in
human patients observed using the standard EEG system.
Such localizing ability may provide crucial information in the
selection of cortical/subcortical areas for resection, effectively
treating or ameliorating the occurrence of seizures in a patient.
Additionally in these studies, the causal flow during seizure was
observed before, during, and after seizure using 24 EEG chan-
nels sampled at 200 Hz in a single patient. It was observed that
during seizure the causal influence radiates away from areas that
may most likely represent the focus of seizure onset in the left
temporal lobe of the patient. PDC and the DTF have also pro-
duced meaningful results in the analysis of neural time series in-
cluding EEG [37]–[39], neural simulation [39], [40], and living
neural networks in vivo [41]–[43].

In the following section, we present preliminary results on
the use of PGC to explore the dynamic interactions between
different hippocampal areas during seizures recorded from in
vivo microwire arrays implanted into the hippocampus of spon-
taneously seizing rats.

B. Results: Spontaneous Temporal Lobe Seizure Analysis
Using GC

Animal Model: All experimental protocols and procedures
involving animals and their care were conducted in conformity
with NIH and IACUC committee at the University of Florida.
The animal model employed has been studied for the last two
decades [44], [45]. The main characteristic of this model is that
an initial seizure, induced by electrical stimulation from an elec-
trode placed in the hippocampus, eventually leads to sponta-
neous seizures in 4–6 weeks. This model closely resembles the

symptoms of human patients that have chronic mesial temporal
seizures [46]–[48]. 16-electrode microelectrode arrays were im-
planted in each brain hemisphere with the electrode tips located
within the CA1 and DG regions of the hippocampus. Our exper-
iment consisted of 63-day-old adult male Sprague Dawley rats

, weighing between 200–265 g, with 16 50-mm-diam-
eter microwire recording electrodes implanted bilaterally into
the CA1, CA3, and dentate gyrus regions of the hippocampus.
In addition, a bipolar pair of Teflon-coated, tungsten electrodes,
50 m in diameter, was implanted for acute electrical stimulation
into the right posterior ventral hippocampus. After one week
of baseline EEG recordings at a sampling rate of 12 kHz, rats
were electrically stimulated for 30 min until sustained behav-
ioral and electrographic seizures were observed. Rats stopped
seizing after approximately eight hours, after which they entered
a seizure-free latent period. Rats were then monitored with con-
tinuous video-EEG and screened for the occurrence of their first
spontaneous seizure at two to four weeks post status epilepticus.
At the end of the recording session, the rats were sacrificed and
the intact brains were excised. The isolated intact brains were
imaged with a high-field resonance microscopy to confirm the
location of the electrode placement within the hippocampus, as
is shown in Fig. 2.

The continuous EEG recordings were screened for seizures
using an offline automated seizure detection algorithm [49] and
verified by an expert epileptologist used this electrographic and
video evidence to detect seizure events. A 1-min window pre-
seizure and a similar window including the seizure was ex-
tracted from the raw recording and low pass filtered to 1 kHz.
PGC was then calculated between all combinations of the 32
channels for each of these windows to understand how gross ef-
fective connectivity differs between these two brain states. The
AR model order was optimized at using the AIC de-
scribed earlier. The Yule–Walker equations were solved using
Morf’s method [50]. An analysis where PGC was calculated
from four seizures (60 s pre- and during each seizure was used
a realization in the PGC analysis) as well as from interictal
epochs from the same subject is shown in Fig. 1. The causal
interactions between all electrodes immediately preseizure are
shown in panel A. During seizure interactions are shown in
panel B. Analysis of interictal epochs far removed from seizure
are shown in panel C. The statistical significance of these in-
teractions was addressed by creating a time shuffled surrogate
of the preseizure and seizure data that was also analyzed using
PGC, shown in panel D. Note that the patterns shown in panels
A and B are obliterated in panel D as the time shifted surro-
gate has no coherent causal structure. This surrogate analysis
yielded a significance threshold of 2.29 . Thus,
all values below 2.29 in both panel A and panel B are consid-
ered to be indistinguishable from noise and are not displayed. A
surrogate analysis was also carried out for the interictal epoch
shown in panel C yielding a significance threshold of 1.52

. Please note that panel C uses the same color scale as
the other panels so that the colors represent equivalent magni-
tudes in all panels. This analysis is similar to previous causal
analysis of in vivo seizure [35], [36]. However, higher spatial
resolution is achieved from the use of microelectrodes that are
implanted into the regions of interest rather EEG electrodes
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Fig. 1. Pairwise GC interactions between all electrodes for immediately pre-
seizure (A), during seizure (B), interictal (C), and surrogate (D) analyses. Each
pixel in these plots is described by three attributes; source electrode (y-axis),
destination electrode (x-axis), and magnitude of PGC interaction by color (PGC
magnitude shown in the color bars for each panel, dark blue is considered to
mean no significant interaction). Comparison of A and B indicates that there
is a significantly larger amount of directional synchronization during seizure
(panel B) than preseizure (panel A) �� � �����. Panel C shows the interictal
causal relationships when the animal is awake and freely exploring its environ-
ment. Panel D shows the surrogate analysis, created by time shifting the time
series used to create panels A and B. Notice that the patterns shown in panel
B have been obliterated. Surrogate analysis suggests a threshold value of 2.29
�� � ����� above which the interactions is significantly different than random.
The color scale begins at 2.29 in all plots (see online version to resolve colors)
to remove nonsignificant interactions from these plots.

placed on the brain surface. Each pixel in these plots is described
by three attributes; source electrode (y-axis location), response
electrode (x-axis location), and magnitude of PGC interaction
(represented by the color scale displayed with the panels where
dark blue represents no significant interaction and red repre-
senting the strongest interactions).

Comparison of panels A and B suggests that there is a
significantly larger amount of directional synchronization
during seizure (left panel) than preseizure (right panel)
( for all 1024 interactions, pre
versus during). Synchronization of neural units across a diffuse
excitable network is thought to be a possible mechanism that
initiates seizure in the limbic system. [51]. Also note that
in the preseizure panel there are no significant directional
influences between hemispheres (top left and bottom right
quadrants of panel A). The during-seizure panel on the right
clearly shows there are between hemisphere interactions during
seizure ( for the 512 between
hemisphere interactions, within top left and bottom right quad-
rants, panel A versus panel B, for all PGC values above and
below surrogate threshold). Also of interest is the substantial
preseizure synchronization from the R-CA1 to the R-DG shown
as bright red areas in the top right of panel A. These preseizure
interactions are not only anatomically unexpected, but may
indicate the beginnings of the synchronization process that
leads to full seizure. If this were true, this may indicate that
the seizure spread outward from the R-CA1. A general visual

Fig. 2. MR images (coronal T2-weighted) at 11.1 T from the same slice lo-
cation during the epileptogenic period. Part A is preimplant, preinjury (5 mm
length-scale bar, R on brain right side). Part B is three-day postsimulation, where
right-side arrow indicated the simulating electrodes and left-side arrow regions
of hyper-intensity in E/PC. Part C is at day 20, with regions of hyper-intensity
seen in the on both sides (arrows) in the region of the hippocampus and lateral
ventricles. Part D is at day 60 illustrate the increase in the hyper-intensity within
the E/PC and additional regions of hyper-intensity in the amygdala on both sides
of the brain (arrows).

comparison of panel C to panels A and B suggests that the
interactions during normal awake exploratory behavior, panel
C, are radically different from panels A and B. One reason may
be that the animal is usually still asleep during the preseizure
recordings, panel A. However, the causal interactions between
and within hemispheres during these interictal epochs appear
to be more balanced between hemispheres, as in panel C,
rather than dominated by higher synchronization in the right
hemisphere, as in panel A. Additionally, the dominant inter-
ictal influences are directed from the CA1 regions to the DG
regions within both hemispheres ( ,
when comparing CA1 to DG versus DG to CA1 over both
hemispheres). This result agrees with the expected structural
and anatomical pathways within the trisynaptic pathway of the
hippocampus [52].

The use of effective connectivity measures has lead to a
new understanding of the interactions within the hippocampus
during seizure. In future work, functional and effective con-
nectivity from causal analysis could be used in parallel with
structural imaging protocols such as MRI. This would provide
a strong linkage between observed functional changes and
anatomical changes during the latent phase of epileptogenesis.
In the following section, we discuss magnetic resonance based
structural connectivity methods used by our multidisciplinary
team in the study of temporal lobe epilepsy.

III. VISUALIZATION OF STRUCTURAL CONNECTIVITY

USING MR

Physiological measurements of brain function can be put into
the context of the evolving injury, during the epileptogenic pe-
riod, by visualizing brain structure with MRI. To accomplish
this, we have developed an MRI protocol to examine the rat
brain in vivo. At 11.1 T (470 MHz) we measure preinjury control
images, postelectrode-implant images, then images at 3, 5, 7, 10,
20, 40, and 60 days following injury. The animal is sacrificed
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Fig. 3. MR image of excised brain at 17.6 T. Part A is a view of three orthogonal
slices through the 3-D MR image. Part B is the coronal slice, from the image
in part A, showing the placement of two representative recording electrodes
(indicated by the arrow).

after day 60, the brain is fixed, then excised for further study.
MR images of the intact, fixed, excised brain are acquired in
very high-resolution MR images at 17.6 T (750 MHz). Finally,
the brain is destructively processed for histological analysis. For
both the MR images acquired in vivo and with the excised intact
brain, we measure anatomical images, quantify MR relaxation
times, and measure diffusion weighted images.

A. In Vivo Magnetic Resonance Imaging

MR images of each rat were measured in vivo at 11.1 T
(shown in Fig. 2) with a multiple-slice, multiple-spin-echo
sequence with segmented phase encoding and a field of view
30 mm 30 mm in 0.9 mm slices. These images were mea-
sured from the same slice locations during the period of
epileptogenesis. In part A, the coronal T2-weighted image
shows the normal appearing contrast in the rat brain prior
to electrode placement and simulation. White matter (e.g.,
corpus collosum) has a shorter transverse (T2) relaxation time
than the gray matter, so white matter appears darker, than the
surrounding gray matter, in these T2-weighted images. The
image in part B was taken three days after stimulation and
shows the location of the Teflon-coated bipolar simulation
electrodes and regions of hyper-intensity in entorhinal/piriform
cortex (E/PC), contra-lateral to the location of stimulation. The
hyper-intensity appears to results from edema, which resolves
after a few days (see Part C). Part C illustrates the continued
evolution of the injury at day 20. Regions of hyper-intensity are
seen on both sides of the brain in the region of the hippocampus
and lateral ventricles and appear to represent the early stages
of tissue loss and cavity formation. Part D shows the final
image at day 60 following injury and illustrate the increase
in the hyper-intensity (probably cavity formation) within the
E/PC and additional regions of hyper-intensity (also probably
cavities) in the amygdala on both sides of the brain.

After the final image in collected in vivo at day 60, the fixed
intact brain is extracted and imaged with very high-resolution
images at 17.6 T. Representative image data is shown in Fig. 3.
A gradient echo 3-D image has measured with a resolution of
75 m 75 m 75 m. In Part A, the complete image data is
visualized with three orthogonal slices and in part B, the tracts
of two recording electrodes are shown in the coronal slice from
part A. While the MR images of the rat brain in vivo and as ex-
cised tissue provide important information, the most informative
structural information is provided by the diffusion weighted im-
ages which can be modeled as either diffusion tensor images or
as images of water displacement probability maps.

B. Diffusion Weighted Imaging

Animal studies have shown that diffusion-weighted MRI
(DWI) can visualize the histo-pathological changes that re-
sult from seizures [53]. However it has become apparent that
knowledge of the white matter connections is crucial to the
understanding of normal and abnormal brain function [54].
With conventional MRI, variations in white matter signal are
subtle, and white matter tracts cannot be accurately parcellated.
But tissue structures restrict the diffusion of water [55], [56]
and this can be visualized with DWI. The effect of water
diffusion on MR images is modeled in two ways: 1) diffusion
tensor imaging (DTI), using a rank-2 tensor representation,
and 2) the calculation of a water displacement probability in
each voxel. In the DTI model, the direction and rate of water
diffusion are represented by a positive-definite rank-2 tensor
[57]. This approach allows a simple estimation of diffusion
anisotropy, through the calculation of orientation-independent
fractional anisotropy, and can be used to infer fiber orientation
[58], [59]. Despite the model simplicity, DTI can successfully
visualize regions of the central nervous system with substantial
white matter coherence and has allowed the mapping of many
anatomical connections [60]–[62].

In both animal models of TLE and in human patients with
TLE, DWI, and DTI have been used to describe structural
changes at different stages of epilepsy. In animal studies, the
rate of water diffusion has been observed to decrease within
the seizure foci during induced SE [63], probably due to the
redistribution of water from the extracellular to the intracellular
space resulting from an alteration of cell membrane perme-
ability brought about by long-term excitation of the cells [64],
[65]. This swelling of the neuronal cell bodies and processes
leads to an increase in the tortuousity of the water diffusion
path in the cortex and therefore results in a subsequent decrease
in measured diffusion rate. A decrease in the rate of diffusion
during and within a few hours after the onset of SE (in the
amygdala, and the piriform cortex) has been associated with
ongoing neuronal cell death that was observed 24 h post-SE
[64] and two weeks post-SE [66].

A chronic elevation of diffusion rate is observed in TLE pa-
tients with hippocampal sclerosis, which has been attributed
to neuronal necrosis, gliosis, and expanded extracellular space
[67]. Using DTI, increased diffusion rate and a decreased dif-
fusion anisotropy in the epileptic focus, compared to the con-
tralateral region, was observed by Assaf et al. [68] in patients
with TLE. Similar studies using DTI have reported a reduction
in diffusion anisotropy in the ipsilateral parahippocampal gyrus
and fornix [69], and also in extra-temporal white matter, such
as the internal capsule [70], the external capsule [71], the genu
[70], and the splenium [71] of the corpus callosum. The reduc-
tion in diffusion anisotropy has been suggested to result from
a loss of ordered structure, myelin degradation, and lowered
cell density [69], [70], [72]. Fiber tract maps generated from
DTI measurements have also shown a reduction in tract volume
of the fornix both pre- [73] and post- [74] resective surgery of
the epileptogenic focus, as well as an increase in diffusion rate
and a decrease in diffusion anisotropy, in patients with unilat-
eral TLE. The structural abnormalities in both gray and white
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matter in patients with TLE occur over a large number of re-
gions both within the temporal lobe and in regions associated
with the temporal lobe. Yet very few animal studies have looked
at both gray and white matter changes during the latent period
of epileptogenesis.

However DTI fails to accurately represent complex tissue
structure [58], [75], [76]. This limitation of the DTI approach
can be overcome by the acquisition of high angular resolution
diffusion images (HARDI) [77], [78], in which diffusion is mea-
sured at higher angular resolution along a large number of di-
rections. Using this approach, the complexity of tissue structure
can be visualized in each image voxel by determining the dis-
placement probability for water in the tissue.

Several approaches to modeling the HARDI data have been
proposed [75], [79]–[81]. As part of this effort, we have de-
veloped methods to visualize the diffusion displacement proba-
bility [79], [81]–[83] of fibrous structures in complex tissue re-
gions in excised rat brains [83] and human brains in vivo. As part
of this work, we developed a measure of displacement proba-
bility anisotropy, which provides a measure of tissue anisotropy
[82] in complex tissue regions similar to that of the DTI-based
factional anisotropy useful for simpler tissue regions. Using the
direct estimation of the water displacement probability, we can
visualize water-diffusion restriction in each voxel of an MR
image to infer the tissue structure.

C. Results: Structural Connectivity Using HARDI

As an example, recent investigations in our laboratory,
regarding the white matter structural changes following epilep-
togenesis, have revealed that MR HARDI methodology can
identify changes in limbic system connectivity following the
onset of epilepsy [81], [83]. The displacement probability maps
for a control and injured excised rat brain, sacrificed days
following injury, are shown in Fig. 4. The relaxation-weighted
images, in parts A and D, do not show much detail about the
structural changes. More structural information is suggested
in the fractional anisotropy images shown in parts B and E,
but no specific information on connectivity is provide in these
images. However, the displacement probability maps, shown
in part D and F (expansion of the region, red boxes, around
the hippocampus on the left side of the brain image), reveal
the underlying structural changes in the hippocampus and
surrounding structures. The displacement probability map in
each voxel depicts the orientations of the highly anisotropic and
coherent fibers. In the injured brain, the CA1-fimbria region
appears much more disorganized relative to control.

IV. CONCLUSION

Combining information about anatomy and function is crit-
ical for the development of a complete understanding of nervous
system processes [84]. Such structure-function information is
fundamental to all processes in the CNS (normal and patholog-
ical), since anatomical connections determine where informa-
tion is passed and how this information is processed in the brain.
An approach to determining structure-function information has
been demonstrated by Conturo et al. [60], who have used DWI
to provide connectivity information related to the functional re-
sponse of the brain during visual stimulation. They modeled

Fig. 4. MR diffusion weighted images and diffusion modeling are shown at
17.6 T. The relaxation-weighted images of a control rat brain are in part A and
an injured brain in part D. The fractional anisotropy image derived from the
rank-2 tensor model of diffusion is shown for a control brain in part B and an
injured brain in part E. The displacement probability density maps are shown
in part C for a control brain and an injured brain in part F. In part F, note both
the loss of fiber structure in CA1, CA3, and hilar region, as well as changes
in mossy fiber and Schaffer’s collateral in the epileptic hippocampus. Diffuse
reorientation of fibers is seen throughout and is most noticeable in the CA1 and
mossy fiber regions.

the fiber connectivity of the brain with DTI then related that
anatomical information to the measured functional response of
the brain using functional MRI. Their work illustrates the power
of the DWI methodology in determining structure information
that can be related to measures of function, like electrophys-
iology. This approach is particularly important for the study
of evolving pathology in the brain, such as epilepsy, where a
method is needed that correlates structural connectivity with a
measure of function.

The connectivity changes observed during epileptogenesis
using DWI should logically be accompanied by changes in the
electrophysiological behavior within our animal model of TLE.
Indeed, abnormal seizure behavior and effective connectivity
relationships are implied in our measurements over many
subjects. However, the weakness common to both of these
methods is that neither of them can independently elucidate the
mechanisms for seizure generation. Indeed these methods will
need to be combined to provide a complete description of the
in vivo mechanisms behind seizure. It is not known whether
the changes in anatomical connectivity occur before or after
changes in effective connectivity. Thus, it is unclear whether
abnormal function leads to structural changes or whether
structural changes lead to abnormal function. Clearly, this
paradox must be resolved in order to reveal the fundamental
mechanisms of epileptogenesis.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on September 15, 2009 at 17:56 from IEEE Xplore.  Restrictions apply. 



CADOTTE et al.: TEMPORAL LOBE EPILEPSY: ANATOMICAL AND EFFECTIVE CONNECTIVITY 221

Although significant changes in connectivity can be mea-
sured using the broad range of tools that we have reviewed
in the paper, several questions remain unanswered. The most
fundamental of these questions is how structural connectivity
changes relate to function over the epileptogenic period. Future
experiments would need to be carefully designed so that results
from these analyses can be integrated and evaluated rigorously.
But the underlying assumption, in the approach we have out-
lined here, is that the temporal relationship between functioning
“units,” as measured with GC, depends on a structural connec-
tivity that can be measured with DWI. Thus, these methods
should be able to elucidate the structure-function relationship in
pathological situations, such as epilepsy. Therefore, both mea-
surements will need to be performed in the same subject at the
same time during the evolution of this pathology.

However, recording electrophysiological activity during MRI
measurements is a formidable task made complex by the magnet
environment [85]. In experimental animal models, recording
electrodes (fabricated with materials currently in use) interfere
with image acquisition. But the development of magnetic-sus-
ceptibility-matched recording electrodes, with an appropriate
interface to the electrophysiological apparatus, may allow si-
multaneous EEG and MRI measurement in the magnetic fields
of MRI systems. We are working on these fundamental prob-
lems in order to facilitate future experiments.

Ultimately, the critical test of this, or any approach, is the
translation of these methods from the animal model to human
TLE patients. Combining advanced methods, such as high-res-
olution micro-electrode arrays, effective connectivity analysis
using GC, and DWI acquisition tools, for the study of the sponta-
neously seizing animal model of TLE will likely lead to a better
understanding of the fundamental mechanisms underlying TLE
and likely lead to new and innovated therapies for patients with
TLE.
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