Thomas Jackson

Thomas Jackson
Plymouth Marine Laboratory | PML · Remote Sensing Group

MEarthSc, D.Phil

About

42
Publications
56,631
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,198
Citations
Additional affiliations
July 2018 - present
Plymouth Marine Laboratory
Position
  • Senior Researcher
September 2013 - July 2018
Plymouth Marine Laboratory
Position
  • Researcher
Education
September 2009 - July 2013
University of Oxford
Field of study
  • Earth Sciences
September 2008 - June 2009
University of Oxford
Field of study
  • Earth Sciences
September 2005 - July 2008
University of Oxford
Field of study
  • Earth Sciences

Publications

Publications (42)
Preprint
Full-text available
A global in-situ data set for validation of ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI) is presented. This version of the compilation, starting in 1997, now extends to 2021, which is important for the validation of the most recent satellite optical sensors such as Sentinel 3B OLCI and NOAA-20 VIIRS. The data s...
Article
Full-text available
The role of phytoplankton as ocean primary producers and their influence on global biogeochemical cycles makes them arguably the most important living organisms in the sea. Like plants on land, phytoplankton exhibit seasonal cycles that are controlled by physical, chemical, and biological processes. Nearshore coastal waters often contain the highes...
Article
Full-text available
Chlorophyll-a (Chl-a) underestimation by global satellite algorithms in the Southern Ocean has long been reported, reducing their accuracy, and limiting the potential for evaluating phytoplankton biomass. As a result, several regional Chl-a algorithms have been proposed. The present work aims at assessing the performance of both global and regional...
Preprint
Full-text available
Modern ocean datasets are large, multi-dimensional, and inherently spatiotemporal. A common oceanographic analysis task is the comparison of such datasets along one or several dimensions of latitude, longitude, depth, time as well as across different data modalities. Here, we show that the Wasserstein distance, also known as earth mover's distance,...
Article
Full-text available
Lagrangian analysis is becoming increasingly important to better understand the ocean's biological and biogeochemical cycles. Yet, biologists and chemists often lack the technical skills required to set up such analyses. Here, we present a new product of pre-computed ocean Lagrangian trajectories (OLTraj) targeting non-expert users, and demonstrate...
Preprint
Full-text available
Lagrangian analysis is becoming increasingly important to better understand the ocean's biological and biogeochemical cycles. Yet, biologists and chemists often lack the technical skills required to set up such analyses. Here, we present a new product of pre-computed ocean Lagrangian trajectories (OLTraj) targeting non-expert users, and demonstrate...
Article
Full-text available
Droughts and climate-change-driven warming are leading to more frequent and intense wildfires arguably contributing to the severe 2019–2020 Australian wildfires. The environmental and ecological impacts of the fires include loss of habitats and the emission of substantial amounts of atmospheric aerosols. Aerosol emissions from wildfires can lead to...
Article
Full-text available
Since the article “Primary Production, an Index of Climate Change in the Ocean: Satellite-Based Estimates over Two Decades” by Kulk et al. [1] was published, we discovered an error in the code of the primary production model, which crept in when the code was updated from the original version described by Platt and Sathyendranath (1988), Sathyendran...
Article
Full-text available
Subsurface chlorophyll maximum (SCM) layers are prevalent throughout the Arctic Ocean under stratified conditions and are observed both in the wake of retreating sea ice and in thermally stratified waters. The importance of these layers on the overall productivity of Arctic pelagic ecosystems has been a source of debate. In this study, we consider...
Article
Full-text available
Primary production by marine phytoplankton is one of the largest fluxes of carbon on our planet. In the past few decades, considerable progress has been made in estimating global primary production at high spatial and temporal scales by combining in situ measurements of primary production with remote-sensing observations of phytoplankton biomass. O...
Article
Full-text available
Primary production and photoacclimation models are two important classes of physiological models that find applications in remote sensing of pools and fluxes of carbon associated with phytoplankton in the ocean. They are also key components of ecosystem models designed to study biogeochemical cycles in the ocean. So far, these two classes of models...
Article
Full-text available
Nearshore coastal waters are among the most dynamic regions on the planet and difficult to sample from conventional oceanographic platforms. It has been suggested that environmental sampling of the nearshore could be improved by mobilising vast numbers of citizens who partake in marine recreational sports, like surfing. In this paper, we compared t...
Article
Full-text available
Ocean colour is recognised as an Essential Climate Variable (ECV) by the Global Climate Observing System (GCOS); and spectrally-resolved water-leaving radiances (or remote-sensing reflectances) in the visible domain, and chlorophyll-a concentration are identified as required ECV products. Time series of the products at the global scale and at high...
Article
Full-text available
Spectrally resolved water-leaving radiances (ocean colour) and inferred chlorophyll concentration are key to studying phytoplankton dynamics at seasonal and inter-annual scales, for a better understanding of the role of phytoplankton in marine biogeochemistry; the global carbon cycle; and the response of marine ecosystems to climate variability, ch...
Article
Full-text available
Coastal waters are optically diverse; studying their optical characteristics is an important application of satellite oceanography. In coastal ecosystems of the northern Indian Ocean, optical diversity has been little studied, except for the global analysis by Mélin and Vantrepotte (2015). This paper is a contribution toward identification and char...
Article
Full-text available
The photosynthetic performance of marine phytoplankton varies in response to a variety of factors, environmental and taxonomic. One of the aims of the MArine primary Production: model Parameters from Space (MAPPS) project of the European Space Agency is to assemble a global database of photosynthesis–irradiance (P-E) parameters from a range of ocea...
Article
Full-text available
Knowing the spatial and temporal distribution of the underwater light field, i.e., the spectral and angular structure of the radiant intensity at any point in the water column, is essential to understanding the biogeochemical processes that control the composition and evolution of aquatic ecosystems and their impact on climate and reaction to clima...
Article
Full-text available
The differences among phytoplankton carbon (Cphy) predictions from six ocean color algorithms are investigated by comparison with in situ estimates of phytoplankton carbon. The common satellite data used as input for the algorithms is the Ocean Color Climate Change Initiative merged product. The matching in situ data are derived from flow cytometri...
Article
Full-text available
An equation is derived to express the sensitivity of daily, watercolumn production by phytoplankton in the ocean to variations in irradiance at the sea surface. Assuming no spectral effects, and a vertically uniform chlorophyll profile, the sensitivity is a function only of the dimensionless irradiance. Spectral effects can be accounted for as a fu...
Article
Full-text available
Accurate observations of the Earth system are required to understand how our planet is changing and to help manage its resources. The aquatic environment—including lakes, rivers, wetlands, estuaries, coastal and open oceans—is a fundamental component of the Earth system controlling key physical, biological, and chemical processes that allow life to...
Article
Full-text available
A widely-used theory of the photoacclimatory response in phytoplankton has, until now, been solved using a mathematical approximation that puts strong limitations on its applicability in natural conditions. We report an exact, analytic solution for the chlorophyll-to-carbon ratio as a function of the dimensionless irradiance (mixed layer irradiance...
Article
Full-text available
Particulate Organic Carbon (POC) plays a vital role in the ocean carbon cycle. Though relatively small compared with other carbon pools, the POC pool is responsible for large fluxes and is linked to many important ocean biogeochemical processes. The satellite ocean-colour signal is influenced by particle composition, size, and concentration and pro...
Article
Full-text available
Sea surface temperature (SST) is an essential climate variable that can be measured routinely from Earth Observation (EO) with high temporal and spatial coverage. To evaluate its suitability for an application, it is critical to know the accuracy and precision (performance) of the EO SST data. This requires comparisons with co-located and concomita...
Article
Full-text available
The photosynthetic performance of marine phytoplankton varies in response to a variety of factors, environmental and taxonomic. One of the aims of the MArine primary Production: model Parameters from Space (MAPPS) project of the European Space Agency is to assemble a global database of photosynthesis-irradiance (P-E) parameters from a range of ocea...
Article
Full-text available
Oceanic phytoplankton respond rapidly to a complex spectrum of climate-driven perturbations, confounding attempts to isolate the principal causes of observed changes. A dominant mode of variability in the Earth-climate system is that generated by the El Niño phenomenon. Marked variations are observed in the centroid of anomalous warming in the Equa...
Article
Ocean-colour radiometry is recognised as an Essential Climate Variable (ECV) according to the Global Climate Observing System (GCOS), because of its capability to observe significant properties of the marine ecosystem at synoptic to global scales. Yet the value of ocean colour for climate-change studies depends to a large extent not only on the dec...
Article
Full-text available
In this work, trend estimates are used as indicators to compare the multi-annual variability of different satellite chlorophyll-a (Chla) data and to assess the fitness-for-purpose of multi-mission Chla products as climate data records (CDR). Under the assumption that single-mission products are free from spurious temporal artifacts and can be used...
Article
The Ocean Colour Climate Change Initiative (OC-CCI) has produced a climate-quality, error characterised, dataset of ocean-colour products (a designated Essential Climate Variable or ‘ECV’). The OC-CCI project uses an optical classification scheme based on fuzzy logic (Moore et al. 2001), to assign product uncertainties on a pixel-by-pixel basis. In...
Article
Over the past decade, techniques have been presented to derive the community structure of phytoplankton at synoptic scales using satellite ocean-color data. There is a growing demand from the ecosystem modeling community to use these products for model evaluation and data assimilation. Yet, from the perspective of an ecosystem modeler these product...
Article
Marine primary production influences the transfer of carbon dioxide between the ocean and atmosphere, and the availability of energy for the pelagic food web. Both the rate and the fate of organic carbon from primary production are dependent on phytoplankton size. A key aim of the Atlantic Meridional Transect (AMT) programme has been to quantify bi...
Article
Full-text available
The Atlantic Meridional Transect (AMT) series of twenty-five cruises over the past twenty years has produced a rich depth-resolved biogeochemical in situ data resource consisting of a wealth of core variables. These multiple core datasets, key to the operation of AMT, such as temperature, salinity, oxygen and inorganic nutrients, are often only use...
Article
Full-text available
[This corrects the article DOI: 10.1371/journal.pone.0127706.].
Article
Anthropogenically-induced global warming is expected to decrease primary productivity in the subtropical oceans by strengthening stratification of the water column and reducing the flux of nutrients from deep-waters to the sunlit surface layers. Identification of such changes is hindered by a paucity of long-term, spatially-resolved, biological tim...
Article
Full-text available
Assigning uncertainty to ocean-color satellite products is a requirement to allow informed use of these data. Here, uncertainty estimates are derived using the comparison on a 12th-degree grid of coincident daily records of the remote-sensing reflectance RRS obtained with the same processing chain from three satellite missions, MERIS, MODIS and Sea...
Article
We examine a model of the rate of phytoplankton production in the ocean and its dependence on depth. The model is analysed as a function of photosynthesis parameters and it is shown that: (i) production profiles with depth are determined uniquely by the parameter values; (ii) dailywater column production is not uniquely determined by the parameter...
Article
The Red Sea is a semi-enclosed tropical marine ecosystem that stretches from the Gulf of Suez and Gulf of Aqaba in the north, to the Gulf of Aden in the south. Despite its ecological and economic importance, its biological environment is relatively unexplored. Satellite ocean-colour estimates of chlorophyll concentration (an index of phytoplankton...
Article
Full-text available
The social and economic benefits of the coastal zone make it one of the most treasured environments on our planet. Yet it is vulnerable to increasing anthropogenic pressure and climate change. Coastal management aims to mitigate these pressures while augmenting the socioeconomic benefits the coastal region has to offer. However, coastal management...
Conference Paper
In the first phase of the ocean-colour component of the European Space Agency (ESA) Climate-Change Initiative (OC-CCI), atmospheric correction and in-water algorithms for use in the generation of ocean-colour products for climate-change studies were compared, prior to selection. A time series of ocean-colour products from 1997 to 2012 has now been...
Conference Paper
Ocean colour (OC) is an Oceanic Essential Climate Variable, which is used by climate modellers and researchers. The European Space Agency (ESA) Climate Change Initiative project, is the ESA response for the need of climate-quality satellite data, with the goal of providing stable, long-term, satellite-based ECV data products. The ESA Ocean Colour C...
Article
Full-text available
Jackson, T., Bouman, H. A., Sathyendranath, S., and Devred, E. 2011. Regional-scale changes in diatom distribution in the Humboldt upwelling system as revealed by remote sensing: implications for fisheries. – ICES Journal of Marine Science, 68: 729–736. A diatom-detection algorithm was parametrized for the Humboldt upwelling system using local cru...

Network

Cited By

Projects