University of Paris 8-Vincennes-Saint-Denis

DOCTORAL SCHOOL CLI COGNITION LANGUAGE INTERACTION

Cognitions Humaine et Artificielle Laboratory (EA 4004 - CHArt) Technologies, Handicaps, Interfaces et Multimodalités Topic (THIM)

THESIS

To obtain the status of

European Doctor

of the University of Paris 8-Vincennes-Saint-Denis In Computer Science

> Presented by Thomas GARGOT

Algorithms and robotics allow to describe how we learn handwriting and how to better help children with difficulties

Thesis directed by Prof. David COHEN and Prof. Dominique ARCHAMBAULT defended on April 20th, 2021

Jury:

Rapporteurs:	Prof. Frédérique BONNET-BRILHAULT	- University of Tours, France					
	Prof. Ginevra CASTELLANO	- University of Uppsala, Sweden					
	Prof. Anna ESPOSITO	- University of Campania, Italy					
Examinateurs:	Dr. Salvatore M. ANZALONE	- University of Paris 8, France					
	Prof. Pierre DILLENBOURG	- EPFL, Lausanne, Switzerland					
Directeurs:	Prof. David COHEN	- University of Paris Sorbonne, France					
	Prof. Dominique ARCHAMBAULT	- University of Paris 8, France					

To my sister,

who left us during the preparation of this thesis. May one day the pain of having a mental disorder not doubled by the pain of not having a lesional disorder.

Abstract

Handwriting difficulties are frequent and impairing. However, the assessment of motor learning is difficult and limits early stage rehabilitation.

Electronic sensors and algorithms can help to measure motor difficulties more easily and objectively. Electronic tablets, for instance, give access to handwriting features that are not usually evaluated in classical assessments. We describe how such digital features (in static, dynamic, pressure, and tilt domains) allow diagnosing dysgraphia and how they evolve during children development. From a finer analysis, three different clusters of dysgraphia emerge. We hope that future longitudinal studies will allow to underline different patterns of development that seemingly require tailored remediation strategies.

However, those digital features are not used in the context of conventional pen and paper therapies. It is possible to engage typically developping children in handwriting exercises by asking them to teach a robot to write. We implemented a long-term case study (20 sessions, 500 minutes in total) observing a child with severe Developmental Coordination Disorder who did not progress anymore with a classic pen and paper approach by enriching this setup with various training activities using real-time feedback loops (on tilt, pressure, dynamic, pauses). We show how this new method tackles the child's previous behavior avoidances, boosting his motivation, and improving his motor and writing skills.

This thesis demonstrates how new writing digital features allow the implementation of innovative handwriting remediation interventions, which rely on fostering children's personal characteristics and adaptation skills.

Keywords: writing, dysgraphia, robotics, electronic tablets, machine learning, autism spectrum disorders, neurodevelopmental disorders, developmental coordination disorder

Résumé

Les difficultés d'écriture sont fréquentes et handicapantes. Cependant, les difficultés d'apprentissage moteur sont dans leur ensemble difficiles à évaluer, ce qui limite par conséquent une rééducation, nécessaire le plus précocement possible.

Des capteurs électroniques et des algorithmes peuvent aider à mesurer ces difficultés motrices plus facilement et plus objectivement. Les tablettes électroniques par exemple donnent accès à des caractéristiques qui ne sont pas utilisées dans les évaluations classiques. Nous décrivons comment ces caractéristiques (dans les domaines statiques, dynamique, de pression et d'inclinaison) permettent un diagnostic de dysgraphie et comment elles évoluent au cours du développement de l'enfant. Grâce à une analyse plus fine, trois différents clusters de dysgraphie émergent. Des études longitudinales, dans le futur, devraient permettre de mettre en évidence différents profils de développement, qui devraient nécessiter des prises en charges plus personnalisées.

Cependant, ces caractéristiques ne sont pas utilisées dans le contexte de la rééducation conventionnelle papier-crayon. Il est possible d'augmenter ma motivation des enfants ayant un développement typique en leur demandant d'enseigner l'écriture à un robot. Nous avons enrichi cette preuve de concept avec des activités permettant des boucles de rétrocontrôle en direct (inclinaison, pression, dynamique, pauses), et mis en place une étude de cas à long terme (20 sessions, 500 minutes au total) avec un enfant avec un trouble du développement de la coordination qui ne progressait plus avec une rééducation classique papier-crayon. Nous montrons comment cette nouvelle méthode permet de diminuer les comportements d'évitement de l'enfant, améliore sa motivation et ses compétences de motricité fine et d'écriture. Cette thèse décrit comment de nouvelles caractéristiques numériques permettent d'implémenter des interventions de rééducation de l'écriture, qui se basent sur une adaptation plus personnalisée aux caractéristiques de l'enfant.

Mots-clefs: écriture, dysgraphie, robotique, tablettes électroniques, apprentissage machine, troubles du spectre autistique, troubles neurodévelopmentaux, trouble développemental de la coordination

Résumé substanciel

Les algorithmes et la robotique permettent de décrire comment nous apprenons l'écriture manuscrite, et comment mieux aider les enfants avec des difficultés dans ce domaine

Dans le règne animal, le développement moteur est crucial. Pour Laborit, le mouvement est notre seule manière d'interagir avec le monde. Selon Wolpert « Nous avons un cerveau pour une raison, une seule et unique raison, pour produire des mouvements adaptés et complexes. [...] Le mouvement est la seule manière que [nous] avons d'affecter le monde autour de nous. [...]. [Notre] cerveau devient obsolète pour les organismes qui n'ont plus besoin de bouger ». Le développement moteur est un processus complexe. Il suit des étapes développementales bien précises et nécessite des expositions à des activités environnementales, qui permettent des apprentissages pratiques, à la fois basiques (par exemple manger, marcher) et culturels (par exemple écrire).

Certains enfants ont un développement moteur atypique. Dans l'introduction, nous présentons les prérequis cliniques nécessaires pour comprendre comment les cliniciens diagnostiquent et traitent actuellement les enfants ayant un développement moteur atypique, notamment dans le cas des difficultés d'écriture manuscrite. Nous nous focalisons sur deux types de troubles neurodéveloppementaux : le Trouble du Spectre Autistique (TSA) et le Trouble du Développement de la Coordination (TDC). Ces troubles sont fréquents et handicapants avec des enjeux de santé publique importants. Depuis longtemps, les pédopsychiatres, les ergothérapeutes et les psychomotriciens ont décrit de manière précise ces difficultés chez les enfants avec TSA et TDC, et les approches pour les rééduquer.

Cependant, l'évaluation des difficultés motrices de ces enfants est difficile. Les modèles diagnostics eux-mêmes sont complexes et limités. Cette évaluation est basée sur des instruments cliniques standardisés semi-quantitatifs qui nécessitent la formation d'experts. Ils peuvent être subjectifs et ne peuvent pas être utilisés dans un milieu écologique. Ces contraintes limitent la mise en place d'une rééducation la plus précoce possible, la plus adaptée aux enfants qui en ont le plus besoin, et la bonne mesure des progrès des enfants pour individualiser au maximum la prise en charge.

Quelles technologies de l'information et de la communication peuvent être utiles dans le suivi des difficultés motrices développementales de ces enfants ? Que peut-on en attendre et quelles en sont les limites ? Dans le second chapitre de cette thèse, nous avons conduit une revue systématique analysant 53 articles, qui montrent comment les capteurs électroniques peuvent mesurer et les algorithmes aider à classifier la variété des difficultés du mouvement chez les enfants avec TSA. Ces approches pourraient à terme être plus rapides, précises, accessibles et reproductibles qu'une évaluation humaine experte. De nombreuses expériences ont été faites en laboratoire mais n'atteignent pas encore les critères de qualité pour une diffusion clinique à large échelle. En effet, ces technologies sont encore récentes, émergentes, souvent peu intuitives ni utilisables en pratique courante pour les cliniciens ou les parents. Parmi les progrès récents, des analyses vidéo permettent le suivi de la posture avec de simples caméras. Cependant, des algorithmes complexes et lents d'apprentissage profond basés sur des réseaux de neurones artificiels sont nécessaires. Cet apprentissage profond est en pleine expansion en médecine mais il nécessite de grosses bases de données annotées qui sont encore rares. La compréhension et l'interprétabilité pour le spécialiste, et a fortiori, par un enseignant ou un clinicien sont encore un défi.

Cependant, il est probable que dans le futur, ces méthodes permettront aux praticiens de distinguer les difficultés motrices des TSA d'autres difficultés motrices (par exemple celles des TDC). Cette approche pourrait permettre de suivre les progrès des enfants dans des environnements plus écologiques (par exemple à l'école ou à la maison), ainsi qu'une meilleure compréhension du rôle que jouent les spécificités sensorimotrices dans le développement du TSA.

Les difficultés de développement moteur apparaissent de manière particulière à l'école quand l'enfant apprend à écrire. En effet, l'écriture manuscrite est une des capacités motrices les plus complexes à maîtriser durant notre vie. Les enfants ont besoin de nombreuses années pour la maîtriser. Peut-on utiliser des stylets et des tablettes électroniques pour évaluer la qualité et la vitesse de l'écriture manuscrite ? Celles-ci en effet donnent accès à des éléments factuels qui ne sont pas, ou très difficilement, étudiés actuellement par les évaluations expertes (par exemple la dynamique temporelle de l'écriture ou la pression exercée par le stylet). Comment mener l'analyse des données, de l'extraction de ces caractéristiques numériques reflétant ces éléments factuels à la classification avec un apprentissage machine, pour garder une procédure précise, mais aussi intelligible et aussi interprétable que possible ? La transparence et la confiance en ces algorithmes seront, in fine, aussi importantes que la précision de classification dans des contextes éducatifs et cliniques.

Dans le troisième chapitre, nous montrons comment nous pouvons utiliser les tablettes électroniques pour mesurer les difficultés d'écriture manuscrites (la dysgraphie) d'enfants, en extrayant des caractéristiques numériques. Nous avons analysé une base de données d'échantillons d'écriture de 298 enfants collectées sur des tablettes Wacom®. L'extraction de ces caractéristiques de l'écriture a permis une classification automatique très précise de la dysgraphie grâce à un algorithme de forêt aléatoire. Cet algorithme est bien plus simple à interpréter par le clinicien expert de l'écriture, et à implémenter que des algorithmes d'apprentissage profond qui automatisent l'extraction de caractéristiques mais de manière peu compréhensible pour un humain. Cette méthode utilisée sur des tablettes accessibles dans le commerce permet de classifier les difficultés d'écriture de manière plus reproductible avec moins de données que le test de référence actuel en France, le BHK.

Les caractéristiques et cet algorithme de forêt aléatoire peuvent encore être difficile à bien maîtriser. De plus, ces caractéristiques pourraient avoir un rôle différent pour classifier la dysgraphie au cours du développement. Quel est le rôle des caractéristiques les plus importantes (selon notre classificateur) dans les domaines statiques, dynamiques, d'inclinaison, de pression ? Est-ce qu'un simple modèle linéaire de ces caractéristiques pourrait expliquer l'acquisition de l'écriture au cours de l'éducation ? Après l'annotation des tracés d'écriture avec le test de référence (BHK), nous avons pu compléter l'analyse de cette base de données. Dans le 4ème chapitre de cette thèse, nous montrons comment ces caractéristiques évoluent en fonction du développement chez des enfants avec développement typique et chez des enfants avec dysgraphie. La dysgraphie est-elle un concept homogène avec des manifestations motrices similaires ? Nous avons utilisé ces mêmes caractéristiques pour réaliser une nouvelle classification de la dysgraphie. Nous avons identifié trois différents sous-types révélés par un algorithme de K-moyennes. Des études longitudinales, dans le futur, devraient permettre de faciliter des prises en charge plus personnalisées en fonction des spécificités du sous-type et du développement de l'enfant.

Est-ce que la robotique d'assistance peut être utilisée dans la réhabilitation de l'écriture ? Quel est l'impact de l'incarnation physique du robot dans l'interaction comparée à un simple un avatar ou un soutien vocal ? Dans le 5ème chapitre, nous décrivons le potentiel d'une approche basée sur un robot pour améliorer la motivation des participants. Dans ce scénario, un robot lui-même dysgraphique a besoin de l'aide du participant pour s'améliorer. L'enfant doit fournir des exemples au robot grâce à la tablette. Nous faisons l'hypothèse que l'enfant, en essayant d'améliorer l'écriture du robot, améliore sa propre écriture. Cette preuve de concept est utilisable dans une interaction à court terme avec des enfants au développement typique. L'interaction à court terme semble meilleure avec des participants qui interagissent avec un robot plutôt qu'avec l'avatar ou la voix seule. Est-ce que ce système est utilisable dans un contexte clinique ? Quel serait le scénario clinique de son usage ? Les caractéristiques d'écriture extraites par la tablette électronique ne sont pas utilisées actuellement dans le contexte de la rééducation conventionnelle papier-crayon.

Nous avons enrichi cette preuve de concept et réalisé une étude longitudinale sur un sujet, centré sur les besoins d'un utilisateur final potentiel. Celui-ci avait une dysgraphie et un TDC sévère dans le cadre d'un trouble du neurodéveloppement complexe. Il avait suivi d'autres thérapies classiques qui avaient échouées. Cet enfant a pu enseigner l'écriture au robot via une tablette et réaliser des jeux sérieux avec des boucles de rétrocontrôle en direct, basés sur certaines caractéristiques d'inclinaison, de pression, de dynamique, de pauses. Cette étude (20 sessions hebdomadaires, 500 minutes au total) a montré le potentiel de cette approche dans un contexte clinique. Cette méthode a permis de diminuer les comportements d'évitement de l'enfant. Elle a permis d'améliorer sa motivation et ses compétences en motricité fine et d'écriture. Cette étude de cas nous a permis de définir un modèle de réhabilitation, de tester des stratégies de réhabilitation sur tablette électronique, de proposer des caractéristiques d'écriture faciles à interpréter pour surveiller les progrès de l'enfants ainsi qu'une méthode pour mesurer l'évolution de la posture pendant la réhabilitation. Ces caractéristiques numériques pourraient permettre d'implémenter des interventions de rééducation de l'écriture, qui se basent sur une adaptation plus personnalisée aux spécificités de l'enfant.

Des études de cas préliminaires dans un contexte clinique ont permis d'affiner le rôle du robot et ses comportement sociaux. Est-il possible d'implémenter ces comportements avec une stratégie magicien d'Oz sur le robot ? Comment améliorer l'utilisabilité dans un contexte clinique ? Nous présentons cette conceptualisation théorique, les stratégies d'implémentation et leurs défis dans le chapitre 6. Ces comportements inspirés de la psychologie cognitive, sociale et clinique devraient ainsi pouvoir être évalués dans le futur lors d'une interaction enfant-robot contrôlée, à long terme.

En discussion, nous expliquons pourquoi bien maîtriser l'écriture manuscrite reste important malgré le développement des claviers. Elle est primordiale pour l'apprentissage des lettres et favorise la mémorisation. Nous allons présenter les enjeux de la généralisation et les aspects éthiques des études rapportées dans cette thèse. Cette thèse entre dans le cadre collectif du champ de la E-santé mentale. Ces approches computationnelles ouvrent de nouvelles perspectives dans la compréhension des TSA qui pourraient être expliqués par une cascade développementale avec un mécanisme commun, qui serait les difficultés sensorimotrices précoces, si fondamentales dans le développement de l'enfant et de son cerveau. Nous concluons par des projets qui visent à résoudre les défis techniques et méthodologiques que nous avons relevés pendant ce travail de thèse.

Un résumé à l'oral peut être trouvé à l'adresse https://youtu.be/eJOURvM-y-Q (à 1 h 23 min)

"Les animaux eux, donc l'homme, qui est un animal, ne peuvent se maintenir en vie qu'en consommant cette énergie solaire qui a donc été déjà transformée par les plantes. Et ça exige de se déplacer. Ils sont forcés d'agir à l'intérieur d'un espace. [...] Pour se déplacer dans un espace, il faut un système nerveux. Et ce système nerveux va agir, va permettre d'agir sur l'environnement et dans l'environnement. Et toujours pour la même raison, pour assurer la survie. [...]. Un cerveau, ça ne sert pas à penser, mais ça sert à agir."

Henri Laborit cité par Alain Resnais, Mon oncle d'Amérique, 1980

"

Cyrano.

Comme une bombe Je tombe de la lune !

De guiche, impatienté.

Ah çà ! Monsieur !

Cyrano, se relevant, d'une voix terrible.

J'en tombe !

De guiche, reculant.

Soit ! soit ! vous en tombez !... c'est peut-être un dément !

Cyrano, marchant sur lui.

Et je n'en tombe pas métaphoriquement !...

De guiche.

Mais...

Cyrano.

Il y a cent ans, ou bien une minute, — J'ignore tout à fait ce que dura ma chute ! — J'étais dans cette boule à couleur de safran !"

Edmond Rostand, Cyrano de Bergerac, IIIème acte E. Fasquelle, 1926, première édition, 1898.

Remerciements

Je remercie très chaleureusement les Pr David Cohen, Pr Dominique Archambault et Dr Salvatore Anzalone pour m'avoir, suivi conseillé tout au long de cette thèse.

Pr Cohen, merci de m'avoir fait confiance pour mon master en sciences cognitives et ma thèse d'exercice en médecine. Merci de m'avoir proposé ce thème pour cette thèse de sciences et ces collaborations riches, complémentaires et internationales dès le début. Vous avez toujours été là pour guider cette thèse avec un très grand pragmatisme tout en respectant les compétences de chacun, les aléas, la dynamique du projet. Vous m'avez aidé à trouver les ressources nécessaires. La valence interdisciplinaire est difficile, mais indispensable dans la clinique mais aussi la recherche en pédopsychiatrie si riche et exigente.

Pr Archambault, Dominique, tu m'as beaucoup inspiré. Ton œil affuté, critique et militant sur les opportunités et les risques apportés par les progrès de l'informatique m'a beaucoup fait réfléchir. Il a aussi été très motivant de voir que des projets compris que par des doctorants en informatique, et initialement confinés dans des laboratoires, (comme le développement d'internet il y a quelques années) ont pu devenir une nouvelle ressource pour le plus grand nombre. Il est important de voir comment ces outils peuvent aider, les personnes, notament celles qui en ont le plus besoin, avant d'être rentables économiquement.

Salvatore, merci pour ta présence intensive sur ces années et pour tes réponses toujours présentes pour faire face aux aléas techniques inévitables de cette travail. Tu as vraiment joué le jeu de l'interdisciplinarité. J'ai vraiment été obligé à la fois de réfléchir à mon rôle de psychiatre et jouer pleinement le rôle d'un doctorant en informatique. Etre roboticien, c'est être un touche-à-tout.

Merci au Pr Frédérique Bonnet-Brilhault, vous m'avez accueilli avec la Pr Barthelemy en stage de M1 et vous avez, toutes les deux, eu un rôle déterminant dans mon envie de faire de la recherche en pédopsychiatrie, avec toutes ses potentialités possibles et avec le plus haut niveau d'exigence scientifique et d'humanisme. Merci pour vos enseignements sur la recherche en train de se faire, et appliquée au plus près des besoins des patients.

Merci au Pr Dillenbourg de m'avoir si bien accueilli dans ton laboratoire. J'ai beaucoup appris sur le plan humain et scientifique. Dommage, par contre, j'aurai raté le skiminaire et vos conseils en ski.

Thank you Dr Ginevra Castellano, Anna Esposito, Pr Pierre Dillenbourg, Frédérique Bonnet-Brilhault for your availability and taking the time to evaluate this work.

Merci Wafa Johal de m'avoir permis de venir au CHILI lab. Tu m'as demandé un rôle très déroutant, réfléchir a un comportement de psychothérapeute pendant 3 mois, l'opérationaliser et le justifier. Merci pour ce défi !

Merci à Ingrid Zammouri de ton accueil et de m'avoir si bien transmis ta passion et la rigueur et la richesse de la clinique de la prise en charge des patients avec ces troubles si complexes. Tu as été un véritable soutien dans tous les rebondissements pratiques et organisationnels qu'a comporté cette thèse.

Merci Véronique Simmonet pour ta patience nécessaire pour permettre la scolarisation de tous. Tu as pu me montrer les besoins pratiques de ce travail et les défis auxquels nous devrions essayer de répondre.

Merci Thibault Asselborn, pour tous ces moments de travail et de détente intensifs. Merci pour ta curiosité, ta passion, ta patience et ton authenticité!

Merci Hugues Pellerin pour ta rigueur et ta pédagogie qui m'ont été très utiles.

Merci à Jean Zagdoun, Mohamed Chetouani, Barbara Bruno, Jauwairia Nasir, Caroline André, Caroline Jolly pour votre participation.

Merci à tous les stagiaires (Lucile Huet, Elodie Navarre, Jean Paul Saliba, Mathilde Bossert, Asma Boufenara) qui m'ont accompagné pendant ce projet, j'ai beaucoup appris grâce à vous.

Merci à ma famille qui a accepté cette idée saugrenue de m'accompagner pendant ces longues études. Merci à Alain et Florence qui ont rendu mon confinement COVID plus doux et une parfaite occasion pour finir ce long travail. Merci à Paule, mon amour pour ton impittoyable regard critique qui a permis de finaliser cette thèse dans une langue qui n'est pas la mienne et qui a été un vrai défi pour communiquer de façon claire au plus grand nombre. Merci à tous les autres relecteurs que j'ai beaucoup embêtées Shasha et Marianne.

Merci à Anne, Pauline et Samuel pour votre créativité et humour à toute épreuve!

Merci à ma professeur d'informatique européenne de lycée, Mme Rapnouil-Dunn, qui a inspiré beaucoup de réflexions pendant mes études qui ont permis de réfléchir à l'impact et l'utilisation de l'informatique dans notre vie quotidienne.

Thank you to all my friends from the European Federation of Psychiatric Trainees. How to mention all of you? You trusted me for both being the official geek and the chair of the psychotherapy working group. Such melange was weird and rich enough to allow me to get the confidence to apply for this PhD. I learned so much on how to do and inspire international cooperation in a pragmatic way! Thank you for all your diversity and confidence to shape the future of psychiatry.

Merci à tous mes collègues de laboratoire CHArt, ISIR, CHILI, des hôpitaux de la Pitié Salpêtrière et du Centre hospitalier universitaire vaudois, toutes leurs opportunités de discussion, de présentation de ce travail et du travail de chercheur.

Merci à Samantha, Soizic, Jianling pour leurs questions, leur intérêt pour ce travail et de continuer ce travail associant robotique et troubles du neurodéveloppement.

Merci aux petits débrouillards et aux CEMEA qui m'ont appris comment malgré tout continuer à se poser des questions, déconstruire des a priori et comment transmettre ce goût pour le questionnement.

Merci à Alexandra Assanovna Elbakyan qui permet à rendre le savoir scientifique plus accessible à tous les chercheurs.

Merci à la communauté Wikipédia, défenseurs de l'organisation de la désorganisation, de la pensée hors silos, et de la réfutation. Un beau projet rhizomatique. En espérant un jour l'existence de points WIKIGAPS.

Merci à mes parents, à tous les éducateurs, instituteurs, soignants et surtout patients que j'ai rencontré qui sèment tous les jours des petites graines en espérant qu'elles poussent le moment venu.

Contents

Ał	ostrac	t iv
Ré	sumé	vi
Ré	sumé	substanciel vii
Re	merc	iements xiv
Li	st of l	igures xviii
Li	st of]	lables xxii
1	Intr 1.1 1.2 1.3 1.4 1.5 1.6	Deduction1General objectives
2	Inno 2.1 2.2 2.3 2.4 2.5	vative assessment of motor disorders15Introduction16Methods18Results18Discussion28Conclusion33
3	An a 3.1 3.2 3.3 3.4 3.5	utomatic handwriting diagnosis42Introduction43Materials and methods44Results52Discussion55Conclusion60
4	Wri 4.1 4.2 4.3 4.4 4.5	ting development and a new classification of dysgraphia62Introduction63Materials and methods64Results68Discussion79Conclusion81

5	Tabl	ets to guide the rehabilitation of dysgraphia	84				
	5.1	Introduction	85				
	5.2	Materials and methods	89				
	5.3	Results	94				
	5.4	Discussion	95				
	5.5	Conclusion	99				
6	Enh	ancing the rehabilitation using social robotics 1	.01				
	6.1	Introduction	03				
	6.2	Materials and methods	.03				
	6.3	Rationale	.03				
	6.4	Reactions to the social behaviours	07				
	6.5	Discussion	08				
	6.6	Conclusion	10				
7	Disc	ussions and Perspectives 1	15				
	7.1	Writing and technologies	15				
	7.2	Generalisability	16				
	7.3	Mystification and ethical aspects	16				
	7.4	E-mental health	17				
	7.5	A better understanding of Autism Spectrum Disorder	20				
	7.6	Follow-up of the project	23				
	7.7	Conclusion	26				
8	Bibl	iography 1	.31				
Li	List of abbreviations 1						
Au	Author publications16						

List of Figures

1.1	Phenomenology and developmental lines in DSM-5 autism spectrum disorder and other complex developmental disorders. ASD DSM-5	
	autism spectrum disorder; ESSENCE, early symptomatic syndromes elic- iting neurodevelopmental clinical examinations; DAMP, deficit in atten- tion, motor control, and perception; MCDD, multicomplex developmen- tal disorder; S(P)CD, DSM-5 social (pragmatic) communication disorder (Retrieved from Xavier et al., 2020)	6
1.2	Matrix of the Research Domain Criteria (RDoC)	6
1.3	Functional analysis of writing difficulties maintenance . Vicious circles can appear due to anxiety (left) and lack of practice (right), that can worsen handwriting. Adapted from [79, 93]. A recent empirical network approach is trying to better conceptualize how differents psychological and biological factors are deeply intertwined in feedback loops [49, 50]. Below possible strategies to break the vicious circles	Q
1 /	Madel of disphility used by the International Classification of Eurotion	9
1.4	ing of the World Health Organization	13
2.1	Flowchart of studies inclusion	19
2.2	Number of publications found in PubMed (Medline) according to the search terms 'autism' AND 'movement' AND ('automatic' OR 'computational' OR 'engineering')	19
2.3	Sensors used to assess posture in ASD: Nintendo Wii balance board TM (A); Kinect TM (RGB-D sensor) (B).	20
2.4	The clinical stride analyser® (B & L Engineering, CA, USA)	23
2.5	Properties of motion sensors in terms of sampling frequency, spatial resolution and temporal scales of use	29
2.6	Properties of main machine learning methods in terms of interpretabil- ity and accuracy. Deep learning are the most recent machine learning methods based on Neural networks.	30
2.7	Screenshots from the use of Open Pose (A) and from the serious game Pictogram Room (B)	30
3.1	Quantiles of the TD dataset (x-axis) against the quantiles of the D dataset (y-axis). The points are closed from the diagonal dashed line and included in the confidence bounds, showing the similarity of the two distributions.	45

3.2	The whole process used to extract the frequency spectrum of our sig-	
	nal. (1) We first divided the BHK text into bins of 600 points. (2) For	
	each packet, the signal was extracted. (3) We then computed the Fourier	
	transform of the signal. (4) We took the average of all signals and finally	
	performed a normalization. At the top of the figure is presented an exam-	
	ple of a signal extracted from the data: the red dots are the point coordi-	
	nates recorded by the device during handwriting. The vectors in blue are	
	"local" vectors linking two consecutive points. The vector in green is the	
	"global" vector (average of the nine blue vectors) representing the global	
	direction of the handwriting. The cross product of these two vectors gives	
	us an indication of the smoothness/shakiness of the handwriting. The	
	image on the right comes from a writer with smoother/less shaky hand-	
	writing than the one on the left. The cross product operation will detect	
	this difference	48
33	The two angles (tilt_y and tilt_y) recorded for the new The black arrow	40
5.5	represents the pen, and the red segments represent its projection on the VZ	
	and VZ planas, respectively.	51
2.4	and 12 planes, respectively	51
3.4	Box plot representing the F1-score as a function of time period of the test used for training. We used Dandom Ecrest for electrification	
	and each model was trained following the same k fold process validation,	
	and each model was trained following the same k-fold, closs-validation proceeding with $k = 25$	51
25	procedure with $k = 25$	34
3.5	Distribution of the features of the children with dysgraphia (D	
	dataset) and the without dysgraphia (1D dataset). For static features:	
	Bandwidth of Tremors Frequencies and the Space Between words fea-	
	tures. For kinematic features: Median of Power Spectral of Speed Fre-	
	quencies and the In Air Time Ratio features. For tilt features: Median of	
	Power Spectral of Speed of Tilt-y change and the Bandwidth of Power	= (
• •	Spectral of Speed of Tilt-x change features	36
3.6	A comparison of different metrics for a without dysgraphia child	
	(left) and a child with dysgraphia (right)	57
41	Annotation of the database with the BHK test defining children with	
	dysgraphia (writing quality too bad. BHK quality score too high) and	
	children without dysgraphia	69
4.2	BHK quality and speed scores according to grade in children with	
	typical development and in children with dysgraphia Raw score (left)	
	and normalized score (right). Notice that the BHK quality score is a	
	degradation score. The higher the score is, the more the handwriting is	
	impaired The speed raw score is the number of letters written during 5	
	minutes	71
13	The impact of the 12 digital features on the RHK raw quality score	, 1
ч.5	(onnosite of handwriting quality) for children without dysgraphia	
	(TD dataset) and for all grades	72
11	Flow method to characterize the ontimal number of clusters	72
т.т 15	Comparisons of the SD of speed of prossure shange and Bandwidth	//
4.3	of Snood of Tilt y Change Frequencies for the shidron without due	
	graphic from the 3 different elustors. Examples of writing from a shild	
	graphia from the 5 unferent clusters. Examples of writing from a child	70
	with the most severe difficulties from cluster 2 and cluster 3 are snown.	19

4.6	Review of the automatic handwriting features analysis pipeline	82
5.1	The <i>CoWriter</i> set-up: the user teaches the robot how to write	87
5.2	with 3 different levels of embodiment.	88
5.3	Cognitive and affective processes and functional training involved in the <i>CoWriter</i> set up.	92
5.4	Screenshots from the tablet showing the different games used for handwriting training: A. <i>CoWriter</i> activity; B. Tracking; C. Pressure; D. Tilt; E. Rainbow; and F. Grasping.	93
5.5	Clinical BHK scores according to time during occupational therapy sessions with <i>CoWriter/Dynamico</i> . The z-score shows how many stan- dard deviation the handwriting quality/speed is compared to other chil- dren of the same gender and age. A child is diagnosed with dysgraphia when his score is below -1.8 (dot red line). Of note, during the 30 weeks of treatment, R. had 20 sessions in total because of during vacation reme- diation stops	05
5.6	Digital metrics according to time during occupational therapy ses- sions with <i>CoWriter/Dynamico</i> A. <i>CoWriter</i> activity. Average number of letters in the words written by R throughout the sessions. The blue line represents the evolution of the average number of letters computed with a linear regression. B. Tracking activity. In red, the Success Ratio (ra- tio between the number of points recorded outside and inside the path); in blue, child's speed computed as a number of pixel per seconds. The dash lines represent the linear interpolations of both the success ratio and child's speed. During weeks 10 and 20, the robot's speed was increased by the therapists. C. Pressure activity. In red, the time to reach the end of the maze; in blue, the width between the peaks (which is a proxy of the maze difficulty). The dash lines represent the linear interpolation of both the activity's difficulty and the time to reach the end of the maze. D. Tilt activity. In red, the time to finish the activity; the dash lines represent the linear interpolation of the time to finish the activity.	96
5.7	Distance between nose and right hand (cm) according to time during occupational therapy sessions with <i>CoWriter/Dynamico</i> . Mean (in dark blue), standard deviation (in light blue), linear regression (in dot red) = $[0.15 \text{ x} + 21.44]$ (R2=0.038)	97
6.1	The WoZ Interface. The therapist can connect to the robot (top-left), choose the activity to engage the child in (mid-left), and annotate the child's responses to the robot's behaviour (bottom-left). On the right side, buttons to trigger various robot behaviours.	104
7.1	Several E-mental health strategies with increasing hardware com- plexity and professional investment. Apps : applications on smart- phone, ICBT: Internet-based Cognitive Behavioural Therapy, SAR: So- cial Assistive Robotics	117
7.2	E-Goliah rehabilitation app targeting motor and social skills training for ASD	118

7.3	Preventing intrusive memories by reminders cues and visuo-spatial
	task with Tetris, in the golden hours just after a trauma (;72h), to
	prevent consolidation into a Post-Traumatic Stress Disorder 119
7.4	Cascade model connecting sensorimotor difficulties to impaired so-
	cial cognition and socialisation in ASD (inspired by [45])
7.5	Two sensorimotor rehabilitation strategies using information tech-
	nologies. A: The Cube: Virtual Reality system to habituate to sensory
	stimulation, B: Cellulo robot, developped in EPFL, to evaluate and train
	sensorimotor difficulties of upper arm
7.6	Screenshots of Dynamico exercices (from top left to bottom right),
	adapted games from chapter 5: pressure training game, tracking game,
	tilt training game, cowriter game and a new game: grasping game 124
7.7	Implementation of the wizard of Oz scenario on a QT
	robot. See a video demonstration of the implementation:
	https://youtu.be/hHuEMFIXCEo

List of Tables

Clinical classification of dysgraphia proposed by Deuel [113]	9
Resume of different tests used to diagnose dysgraphia. WT1: Copy a sentence several times, request of	
quality and speed, WT2: Copy a long text for 5 min, WT3: Copy a sentence several times, alphabet, geometric	
figures and composition, WT4: Copy a text containing all letters. *some pressure aspects of handwriting are	
assessed thanks to carbon paper. Ajuriaguerra scale (E scale): is a well spread test evaluating the quality of	
the writing depending on speed and precision. It had a special focus on the posture and style of pen grasping	
of the child. Concise Evaluation Scale for Children's Handwriting (BHK): is the gold standard test to	
diagnose dysgraphia in Latin alphabet based language [172, 219, 302]. BHK for teenagers: has also been	
created using the same principles. Detailed Assessment of Speed of Handwriting (DASH test): evaluates	
the quality and the speed of the writing in different conditions (quality, speed, writing with a free topic of the	
child choice). Hebrew Handwriting Evaluation (HHE): that examines Hebrew handwriting products and	11
assess the legibility through both global and analytic measures.	11
Automatic assessment of posture	35
Automatic assessment of Gait	36
Automatic assessment of Gait	37
Automatic assessment of motor coordination and hand dexterity	38
Automatic assessment of movement used in social interactions	39
Automatic assessment of movement used in social interactions	40
Automatic Assessments of movement based on ecological settings as-	
sessment (accelerometers and home movies)	41
Summary statistics of the participants	45
Mapping between the extracted features and the BHK items . *repre- sents features which are not mapped directly to the BHK item but which are likely to explain a similar concept. The category of the BHK features is written in the left column	46
A comparison between the two groups of writers (D detect and TD	10
A comparison between the two groups of writers (D dataset and 1D dataset) for every feature based on the static handwriting features	
For each feature, we report the mean and standard deviation in each group	
as well as the t-statistic and p-value from the comparison between the two	
groups	46
A comparison between the two groups of writers (D dataset and TD	10
dataset) for every feature based on the handwriting kinematics. For	
each feature, we report the mean and standard deviation of the two groups	
as well as the associated t-statistic and p-value for the t-test.	49
	Clinical classification of dysgraphia proposed by Deuel [113] Resume of different tests used to diagnose dysgraphia. WT1: Copy a sentence several times, request of quality and speed, WT2: Copy a long test for 5 min, WT3: Copy a sentence several times, alphabet, geometric figures and composition, WT4: Copy a test containing all letters. *some pressure aspects of handwriting are assessed thanks to carbon paper. Ajuriaguerra scale (E scale): is a well spread test evaluating the quality of the writing depending on speed and precision. It had a special focus on the posture and style of pen grasping of the child. Concise Evaluation Scale for Children's Handwriting (BHK): is the gold standard test to diagnose dysgraphia in Latin alphabet based language [172, 219, 302]. BHK for teenagers: has also been created using the same principles. Detailed Assessment of Speed of Handwriting (DASH test): evaluates the quality and the speed of the writing in different conditions (quality, speed, writing with a free topic of the child choice). Hebrew Handwriting Evaluation (HHE): that examines Hebrew handwriting products and assess the legibility through both global and analytic measures

3.5	A comparison between the two groups of writers (D dataset and TD	
	dataset) for every feature based on the pressure between the pen and	
	tablet surface. For each feature, we compute the mean and standard	
	deviation of the two groups as well as the t-statistic and p-value for the	
	t-test	50
3.6	A comparison between the two groups of writers (D dataset and TD	
	dataset) for every feature based on the tilt between the pen and tablet	
	surface. For each feature, we report the mean and standard deviation of	
	the two groups as well as the t-statistic and p-value	52
3.7	The most important features found by the Random Forest model, us-	
	ing Gini importance as a metric. We report the ranks, features cate-	
	gories and their importance averaged for the 25 folds and the standard	
	deviation of importance over all folds.	54
4.1	Diagnosis of children in the specialized clinic	64
4.2	Clinical-Gold Standard (BHK scores) and digital features on hand-	
	writing	65
4.3	Descriptive statistics of the participants (TD and D)	70
4.4	Multivariate models to predict the BHK quality raw score	73
4.5	Multivariate models to predict the BHK speed raw score for typically	
	developing children (TD dataset), and all children together (TD + D	
	dataset).	74
4.6	Multivariate models with interaction to predict the BHK quality raw	
	score	75
4.7	Multivariate models with interaction to predict the BHK speed raw score for typically developing children (TD dataset) and all children	
	together (TD + D dataset).	76
4.8	Mean digital features value of each features according to their clus-	
	tering. Demographic characteristics and BHK scores of children with	
	dysgraphia corresponding to the 3 clusters	78
5.1	Patient's characteristics	90
5.2	Digital metrics per <i>CoWriter</i> /Dynamico activities	94
6.1	Design framework used to implement the behaviours to sustain long-	
	term child-robot interaction	111

Chapter 1

Introduction

Electronic sensors and algorithms open new approaches to describe movement and especially handwriting. This could help to improve our understanding of how we learn handwriting. It would allow to develop new approaches for the rehabilitation of the children with the most severe difficulties to master handwriting.

1.1 General objectives

The objectives of this thesis are (1) to describe the state of the art in computational methods for the assessment of motor impairments in Autism Spectrum Disorder (ASD), a sub-type of neurodevelopmental disorder (NDD), (2) to develop new approaches to detect children with handwriting difficulties (dysgraphia) based on the assessment of their fine motor skills, and describe how children learn handwriting, with the help of electronic tablets and algorithms, (3) to propose new approaches for handwriting rehabilitation with electronic tablets and robotics that could be applied with children with dysgraphia found in several NDD.

1.2 Organisation

Motor development is very important. For some authors, movement is our only way to interact with the world (p. viii). According to Wolpert, "we have a brain for one reason and one reason only, it is to produce adaptable and complex movements, [...] Movement is the only way [we] have of affecting the world around [us] [...]. This brain becomes obsolete in organisms that don't need to move anymore"¹. Motor development is a complex endeavour. It follows timely organized developmental steps and exposures to environmental activities, allowing practical training, both basic (e.g., eating, walking) and cultural (e.g., writing).

Some children have an impaired motor development. In this introductory chapter, we will present the clinical background necessary to understand how clinicians diagnose and treat impaired motor development, especially handwriting difficulties, nowadays. We will focus on two types of neurodevelopmental disorders (NDD), i.e., Autism Spectrum Disorder (ASD) and Developmental Coordination Disorders (DCD). Child and adolescent

¹The real reason for brains https://www.ted.com/talks/daniel_wolpert_the_real_ reason_for_brains

psychiatry, occupational therapy and psychomotricity have extensively described the difficulties of development of children with ASD and DCD and ways to rehabilitate them. However, assessments of these motor abilities are based on clinical semi-quantitative standardised instruments that are time-consuming, require the training of experts and can be subjective.

How, and which technology, could be helpful to measure and monitor these motor development difficulties? In the second chapter of this thesis, we conducted a systematic review that shows how electronic sensors can measure and how algorithms can help to describe and classify the variety of these movement difficulties in children with ASD. A lot of these experiments were done in laboratory settings and do not reach clinical research standards yet. Indeed, these technologies are still recent, emerging, and often not user-friendly for clinicians and parents. However, it is likely that these methods, in the future, will enable practitioners to distinguish motor difficulties in ASD from other motors disorders (e.g., DCD). This approach would allow a better monitoring of children's progress in more ecological settings (e.g., at home or in school), and a better understanding of the role that sensorimotor specificities could play in the development of ASD.

Motor development difficulties specifically appear during school when the children need to learn handwriting. Actually, handwriting is one of the most difficult set of movements that we need to learn in our lifetime. Children need many years to master it. Can we use electronic tablets to assess the quality and speed of handwriting? How to drive the data analysis to keep an intelligible pipeline with accurate, but also, as interpretable as possible, feature extraction and machine learning classification? Transparency and trust-worthiness could be, at the end, as important as accuracy, in educational and clinical contexts. In the third chapter of this thesis, we will show, how we can use electronic tablets to measure handwriting difficulties (i.e., dysgraphia) of children by extracting computational features. We analyzed a database of 298 children handwriting samples collected on Wacom® tablets. These features allowed to classify dysgraphia automatically thanks to a random forest algorithm with a good accuracy.

These features and random forest algorithm could be still complex to master. Furthermore, they should have a different role to classify dysgraphia through child development. What are the role of theses most important features (according to our classifier) in kinematic, tilt, pressure and geometric categories? Can a simple linear model could explain the handwriting acquisition throughout education with these features? After the annotation with the reference test (the BHK) and some data cleaning, we could complete the analysis of our databases. In the fourth chapter, of this thesis, we will see how these features develop in both typically developing (TD) children and children with dysgraphia. Is dysgraphia an homogeneous concept with similar motor presentations? We used these same features to perform a new classification of dysgraphia with three different subtypes found revealed by a K-means algorithm.

Could social assistive robotics be used to guide rehabilitation of writing? What it the impact of the robot embodiment on the interaction compared with a simple vocal guidance or avatar? In the fifth chapter, we will describe the potential of a robot-based approach that can foster the motivation of the participants. Is this system usable in a clinical context? What would be the clinical scenario of its usage? We performed a longterm interaction single case, user-centered, study that shows the potential of this approach in clinical practice. It allowed to refine the rehabilitation model, to test rehabilitation strategies on electronic tablet, to propose easily interpretable features to track progress and a method measure posture progression during writing rehabilitation. Preliminary case studies in the clinical field allowed to refine the role of the robot and its social behaviours. Is it possible to implement such behaviours in a wizard of oz approach on the robot? How to improve usability in a clinical context? We will present this theoretical framework, these implementation strategies, and challenges in the sixth chapter.

In the discussion, we will explain why mastering handwriting is still important despite the development of keyboards. We will present the generalisability and ethical aspects of the studies reported in this thesis. This research is part of a collective effort to develop an E-mental health field. These computational approaches open new perspectives in the understanding of ASD. We will conclude by follow-up projects of this work that would enable to address technical and methodological limitations that we encountered during this work.

1.3 Neurodevelopmental Disorders

Neurodevelopemental disorders (NDD) are a group of impairing conditions with onset during the developmental period (i.e., during childhood). They manifest early in the life of children, often before children enter grade school [8]. Their diagnosis is clinical, supported by standardized scales. The Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5) [8] and the International Classification of Diseases (ICD)² of the World Health Organization propose consensual definitions based on observable clinical description aiming to foster research and communication in medical community and to facilitate medical decisions. The neurodevelomental disorders are characterized by developmental deficits that produces impairments of personal, social, academic, or occupational functioning. The range of difficulties varies widely from very specific limitation in learning or control of executive function [8] to global impairments of social skills and intelligence. Comorbidities (i.e., association of disorders) are frequent, and make the heterogeneity of description even larger.

In practice, NDD regroup intellectual disabilities, communication disorders, ASD, attention-deficit/hyperactivity disorder, specific learning disorder (e.g., for reading, mathematics), motor disorders (Developmental Coordination Disorder, Stereotypic Movement Disorder and Tic Disorders) and other neurodevelopmental disorders [8]. A recent systematic review showed that despise the lack of medico-economic studies in the field of NDD, the cost of NDD per subject is the highest especially for the most severe forms (with schizophrenia) among all the mental disorders [87].

In this thesis, we will describe the difficulties children have to learn movements and will specifically focus on the handwriting. These difficulties are often found in Autism Spectrum Disorder (ASD) and Developmental Coordination Disorder (DCD).

1.3.1 Autism Spectrum Disorder

Autism Spectrum Disorder (ASD) is among the most disabling and studied neurodevelopmental disorders (NDD) in children [47]. It is characterized by impairments in social interaction, communication (loneliness) and restricted and repetitive behaviours (sameness) [8]. The disorder is frequent with a prevalence estimated around 1.5% [251]. Although the onset of ASD symptoms occurs during the first three years of life, the mean age

²https://icd.who.int/en

of ASD diagnosis ranges from 38 to 120 months [98,327,346]. An early diagnosis allows to offer an early intervention, which takes advantage of a better neuroplasticity [102,270].

Males are affected 4.2 times more frequently than females [137]. Causes are not completely elucidated and include both genetic (e.g. chromosome 16p11.2, 1q21.1, 15q11q13, 22q13.3, or 22q11.21 deletion/duplication) and environmental factors (e.g. foetal valproate exposure) [380]. ASD is a lifetime disorder and its burden, for patients and their families, continues in adulthood as only a minority of them reach a good outcome and many remain highly dependent on others for support [187]. The cost of ASD for family and society has been estimated between 22,000 - 28,000 \in annualy [186, 226]. The management of ASD consists of early psychotherapeutic treatments based on developmental and behavioural approaches like the Early Start Denver Model [103] or the Thérapie d'Echange et de Développement [3, 237, 240]. However, these approaches are very time-consuming and a lot of children do not have access to evidence-based care.

Movement abnormalities have been observed since the first clinical descriptions of autism by Kanner [216] and Asperger [19] who described patients with "sluggish" reflexes or "clumsy" gait. Meta-analyses have confirmed alterations in motor performances [118, 139] in 85% to 90% of cases [246, 284]. Motor difficulties are significantly correlated to social, communicative and behavioural impairments that define the disorder [121]. Cook et al. argued that movement differences between typical children and those with ASD may contribute to difficulties in reciprocal social cognition [91].

However, motor difficulties do not reach a great attention since repetitive behaviours are the only motor symptomatology included in the current diagnostic criteria of the international classification criteria, namely DSM-5 [8] and the ICD ³.

1.3.2 Developmental Coordination Disorder

Developmental coordination disorder (DCD, previously named dyspraxia) is a neurodevelopmental disorder that impairs the acquisition and the execution of coordinated motor skills [8] and perceptual-motor abilities with an impact in daily living in the absence of any physical, sensory or neurological abnormalities. It has a prevalence of 5% in the population [245]. DCD is commonly diagnosed after the age of 5 years highlighted by increasing structured demands of the child's environment [42]. About half of the children with DCD experience difficulties to learn handwriting [172]. Males are affected 2 to 3 times more frequently than females [245]. The symptoms of children diagnosed with DCD persist in adulthood in 30-87% of them [225].

The care of DCD can be divided into two main categories [42]. The bottom-up category with process-oriented (or deficit-oriented) approaches. It assumes that a deficit in a specific body function or sensory process is responsible for the impaired motor skills of children. Its aim is to remediate this underlying process deficit, thereby improving motor performance. The top-down category contains task-oriented (functional skill) approaches, such as the Cognitive Orientation to daily occupational Performance (CO-OP) [281]. Instead of focusing on an underlying deficit, these approaches involve the children by allowing them to choose and train on the activities of daily life they need to master. Children are encouraged to think about the nature of the difficulties they encounter and how to find solutions to solve these difficulties and plan them [29, 42]. Systematic analyses showed that top-down, task oriented approaches seem the most effective whereas the bottom-up strategies, process oriented are not, despite their popularity [29, 321]. However, this data

³https://icd.who.int/en

is still limited [283] and should be completed with the most impaired patients that are often not included in these studies. The cost and length of the diagnosis and rehabilitation make this evaluation difficult and a more scalable diagnosis and rehabilitation of these difficulties with new technologies would allow to confirm or not this statement.

1.4 A dimensional approach of Neurodevelopmental Disorders

There is a strong relationship between all the NDD. They are very often associated (we call these co-occuring disorders, comorbidities in the classical DSM-5 and ICD categorical approach). In total, sixty combinations of NDD would be possible. Some authors believe that a common core could be shared by all these disorders [47]. Some clinicians propose a multidimensional approach to overcome the limitations of the categorical approach and comorbidities: Multiplex developmental disorder (MDD), later renamed Multiple Complex Developmental Disorder (MCDD), Multidimensional impairment (MDI), deficits in attention, motor control, and perception (DAMP), or even Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examination (ESSENCE), developmental dysharmony, developmental psychotic dysharmony, or cognitive dysharmony (see Figure 1.1 [416] for a review).

The figure 1.1 shows the overlap of the different dimensions of the NDD and suggestions to propose a new terminology to have more homogenous categorical diagnosis that could be useful for clinical practice and research. We do not support this idea because (1) the proposed categories are not recognized by an international consensus, (2) the number of comorbidities can be very high and the size of each group can be limited. A proposition to bypass the categorical approach is proposed with the RDoc approach.

Researchers from adult psychiatry in the National Institute of Mental Health in United States proposed another approach to bypass the limitations of the categorical DSM-ICD approach: the Research DOmain Criteria (RDoC) (Figure 1.2⁴). The dimensional approach assumes the existence of a continuum between mental health and disorders. This dimensional approach is also relevant in child and adolescent psychiatry, especially in neurodevelopmental disorders [147], with a specific perspective, which takes into account the developmental age [77, 282]. This approach (1) assesses the range of functioning regarding the neurobiological, cognitive and behavioural capacities, representing them along continua of greater or lesser degrees of health or adaptation, (2) investigates mental disorders through fundamental components of behaviours that cut accross diagnoses. [147]

In this fundamental diagnostic approach, tailored for research, it is legitimate to understand motor development, (1) which quality seems to distribute in a continuum of functioning between normal writing and very poor quality and speed and (2) it can be found across categorical diagnoses in several NDD disorders like ASD, DCD, but also Attention-Deficit/Hyperactivity Disorder (ADHD).

In the studies of handwriting (Chapters 3, 4 and 5) presented in this thesis, we will study "Sensorimotor Systems", in particular "Motor Actions" on a behavior and self-reported level across different categorical diagnoses.

⁴retrieved from https://www.nimh.nih.gov/research/research-funded-by-nimh/ rdoc/about-rdoc.shtml

Figure 1.1: **Phenomenology and developmental lines in DSM-5 autism spectrum disorder and other complex developmental disorders.** ASD, DSM-5 autism spectrum disorder; ESSENCE, early symptomatic syndromes eliciting neurodevelopmental clinical examinations; DAMP, deficit in attention, motor control, and perception; MCDD, multicomplex developmental disorder; S(P)CD, DSM-5 social (pragmatic) communication disorder (Retrieved from Xavier et al., 2020)

Figure 1.2: Matrix of the Research Domain Criteria (RDoC)

1.5 Motor difficulties in Neurodevelopmental Disorders

Symptoms of Developmental Coordination Disorder (DCD) can be found in ASD [139]. How ASD and DCD interact is still controversial. Regarding motor dysfunction, the DSM-5 now recommends to diagnose them as comorbidities [8]. Some authors support that these two disorders could have similar onset mechanism [161, 284]. Others consider the motor dysfunction found in DCD and ASD to be different in nature [310, 417]. In a systematic review, Cacola et al. [66] showed that while DCD and ASD share some behavioural symptoms, distinctions have been shown in terms of gestural performance, severity of motor challenges and grip selection. Finally, motor disturbances appear to be among the first manifestations of developmental abnormalities in ASD and could serve as markers of the condition in the first years of life before other core symptoms (i.e., social communication, restricted interests) [168, 303].

Clinical assessment of motor coordination is based on semi-quantitative standardized instruments such as the Movement Assessment Battery for Children (MABC-2) [182], the NP-MOT [392], the Test of Gross Motor Development (TGMD-2) [370], the Bruininks-Oseretsky Test of Motor Proficiency (BOT-2) [75], or the Concise Evaluation Scale for Children's Handwriting (BHK) [82] usually done to assess writing. Parental question-naires are also available such as the DCDDaily-Q [213, 393] or the Dunn question-naire [120]. For a review of tests to assess DCD, see [6]. However, recommendations for a set of standardized and fixed assessments are difficult since the autism spectrum is large and heterogeneous both in terms of child's commitment with examination and motor dysfunction. Therefore, assessments often require a subjective input from trained professionals, beyond the limitations of being time consuming and tedious to rate. The evaluation sessions regroup several assessments in a row that can be tiring for the child. It does not allow ecological evaluation of the performance in an everyday context. Thus, accessibility of these tests is low and waiting list of 6 months and more is common even in developed countries [178].

1.6 Handwriting difficulties

1.6.1 Importance of handwriting

Handwriting is an essential skill, since children spend up to 60% of their time at school writing [271]. Despite a broad use of laptops and tablets in schools, handwriting remains a paramount skill to be acquired during childhood education as it is the basis of core educational activities such as taking notes, composition and self-expression [37, 54, 160]. Appropriately legible and automated handwriting is necessary for the acquisition of other higher-order skills such as spelling and story composition. Handwriting is a complex perceptual–motor task, as it involves attention, perceptual, linguistic and fine motor skills [55, 132, 269].

1.6.2 Developmental approach of handwriting

Formal handwriting acquisition begins at the age of five years (preschool) and requires about ten years of practice to reach a level of almost complete automation [44, 83, 106, 132, 342, 352, 401, 422]. During this time, handwriting initially evolves on a quality level (from first to fifth-Grade) [2, 82, 173] and then on a speed level (handwriting speed mainly evolves starting from the fourth grade) [254, 352]. Interestingly, a gender effect has been observed in handwriting acquisition, with girls presenting slightly higher quality and speed scores versus their male peers [82], however no effect of handedness has been reported thus far.

1.6.3 Dysgraphia

Despite education exposure, 5% to 10% of children never reach a sufficient level of automation in handwriting [82, 367]. These handwriting difficulties, termed dysgraphia, affect legibility and/or speed and can seriously impact both children's behavioural and academical development [37].

With the rising cognitive demand of school work, these children quickly face more general difficulties. As they encounter trouble to automatize their handwriting, they cannot handle simultaneous tasks such as grammar, spelling, or composition. This leads to an increase of fatigue and decrease of cognitive performance and self-esteem [234, 348]. To avoid accumulation of school difficulties, it is of prime importance to detect and remediate these handwriting difficulties as early as possible [86, 132].

1.6.4 Associated difficulties

Given the prerequisites of handwriting acquisition, dysgraphia can be related to language problems, motor learning and/or motor execution, visual-motor problems, coordination problems, or cognitive impairments (e.g., attention deficit). In consequence, dysgraphia can be observed in the context of various NDD such as dyslexia, developmental coordination disorders, or ADHD [99]. Dysgraphia is not recognised by international classification of mental disorders, the DSM-5 [8] or the ICD-11⁵ as a disorder *per se*, but can be a specifier of neurodevelopmental disorders. Most classifications of dysgraphia suggest three sub-groups and are usually based on comorbidities. For example, Deuel (Table 1.1 [113]) proposed to differentiate: (1) dyslexic dysgraphia that is often comorbid with ADHD or dyslexia; (2) spatial dysgraphia that is the consequence of a defect in the understanding of space; and (3) motor dysgraphia that is often comorbid with a DSM-5 motor acquisition disorder.

Beyond motor difficulties, dysgraphia is often associated with emotional difficulties. The difficulties in handwriting could self-perpetuate due to avoidance and anxiety. We propose a model composed of two vicious loops (Figure 1.3). The one on the left is self-amplified by an avoidance of the writing stimulus via a negative reinforcement mechanism [366]. The avoidance, in the short-term, decreases anxiety but in the long term increases the anxiety and decreases self-esteem. The second vicious loop, shown on the right, is the consequence of the lack of training. The lack of training, itself decreases the writing training opportunities, which themselves, limit the improvement of writing. In the end, the anxiety generated by the practice and the lack of practice induce a mismatch between what the child can do and what parents and teachers expect from him/her.

1.6.5 Assessment of handwriting difficulties

Assessing the legibility or readability of handwriting is not a new challenge, as studies relating to this topic exist since the beginning of the twentieth century. The first scaling

⁵https://icd.who.int/en

Figure 1.3: **Functional analysis of writing difficulties maintenance**. Vicious circles can appear due to anxiety (left) and lack of practice (right), that can worsen handwriting. Adapted from [79, 93]. A recent empirical network approach is trying to better conceptualize how differents psychological and biological factors are deeply intertwined in feedback loops [49, 50]. Below, possible strategies to break the vicious circles.

	Spontaneously written text is poorly legible, with					
	textual complexity influencing legibility					
Duclavia ducaranhia	Oral spelling severely abnormal					
Dysiexie uysgrapina	Copying of written text relatively preserved					
	Drawing relatively preserved					
	Finger-tapping speed normal					
	Spontaneously written text is poorly legible					
Duagnanhia dua ta matan	Oral spelling relatively preserved					
Dysgrapma due to motor	Copying of written text poorly legible					
ciumsmess	Drawing usually compromised					
	Finger-tapping speed abnormal					
	Spontaneously written text is poorly legible					
Dysgraphia due to defect in	Oral spelling relatively preserved					
Dysgrapma due to defect m	Copying of written text poorly legible					
understanding of space	Drawing severely abnormal					
	Finger-tapping speed normal					

Table 1.1: Clinical classification of dysgraphia proposed by Deuel [113]

method was developed by Thorndike in 1910 [379].

This constituted a very important contribution "not only to the experimental pedagogy but to the entire movement for the scientific study of education". Thorndike compared his invention to the thermometer. "Just as it was impossible to measure temperature beyond the very hot, hot, warm, cool, etc., of subjective opinion, so it had been impossible to estimate the quality of handwriting except by such vague standards as one's personal opinion that given samples were very bad, bad, very good, etc." [24]. Until now, two approaches are used to evaluate handwriting. The first is a global holistic method that evaluates the handwriting quality as a whole, while the second measures it according to several predefined criteria.

Many quantitative tests were proposed to evaluate calligraphy. Most quantitative methods assess handwriting according to several predefined specific criteria. The judgment is made by experts grading these criteria and summing the sub-scores. A number of tests using this principle have been developed for different alphabets.

The presence of dysgraphia can be assessed via different tests in different alphabets [21] (Table 1.2). Concerning the Latin alphabet, we can use the Detailed Assessment of Speed of Handwriting (DASH) [30]; the Ajuriaguerra scale (E scale) [106]; and the Concise Evaluation Scale for Children's Handwriting (BHK) which is the gold-standard test in France for diagnosing dysgraphia. Initially developed in the Netherlands [173], the BHK has since been adapted for use in other languages including French (Charles et al [82]). Importantly, as all of these tests are conducted using a pen/pencil and paper, their scoring is restricted to the analysis of the final, static handwriting product and does not consider or include any information about the movement dynamics.

These tests are heterogeneous as they were specifically designed to assess the handwriting quality for a specific alphabet or a specific age range. Moreover, we can see that these tests are based on handwriting from different writing tasks (Table 1.2), which might imply high variability of the results. Finally, an important part of the information is not taken into account. Only the final product of handwriting is used for analysis, disregarding the handwriting dynamic, tilt, and, in most cases, the pressure. One of the main drawbacks of these tests is that the scoring of several parameters relies on human judgment which makes the test more subjective. Moreover, grading of the BHK test is also time consuming since scoring can take up to 15 minutes. Additionally, as the expert responsible for the scoring only has access to the final static image of the child's handwriting, some very informative handwriting aspects, such as the handwriting dynamics, the pressure between the pen and the tablet or the pen tilt remains hidden and are, therefore, not used in the diagnosis. In the same way, posture and grasping style are difficult to assess and must be done live by an expert evaluator. Finally, the text used in the test is standardised (the content of the text is always the same). Consequently the test cannot be performed during ecological writings sessions (e.g., during schools sessions with the text actually written everyday by the child).

	Validation number	Age range [y.o.]	Test duration [min]	Scoring duration [min]	Alphabet	Language	Number of items	Dynamic of handwriting	Pressure	Tilt	Speed	Posture	Writing task
Ajuriaguerra [172]	350	6-12	2	5	Latin	French	37	×	✓*	X	1	1	WT1
BHK [173]	837	6-12	5	10	Latin	Multi-language	13	×	×	X	1	X	WT2
BHK-teenager [302]	471	12-18	5	10	Latin	Multi-language	9	×	×	X	1	×	WT2
DASH [30]	546	9-16	20	10	Latin	English	5	×	×	X	1	X	WT3
HHE [128]	230	6-18	5	0	Hebrew	Hebrew	10	×	×	X	×	×	WT4

Table 1.2: Resume of different tests used to diagnose dysgraphia. WT1: Copy a sentence several times, request of quality and speed, WT2: Copy a long text for 5 min, WT3: Copy a sentence several times, alphabet, geometric figures and composition, WT4: Copy a text containing all letters. *some pressure aspects of handwriting are assessed thanks to carbon paper.

Ajuriaguerra scale (E scale): is a well spread test evaluating the quality of the writing depending on speed and precision. It had a special focus on the posture and style of pen grasping of the child. Concise Evaluation Scale for Children's Handwriting (BHK): is the gold standard test to diagnose dysgraphia in Latin alphabet based language [172, 219, 302].

BHK for teenagers: has also been created using the same principles.

Detailed Assessment of Speed of Handwriting (DASH test): evaluates the quality and the speed of the writing in different conditions (quality, speed, writing with a free topic of the child choice). **Hebrew Handwriting Evaluation (HHE)**: that examines Hebrew handwriting products and assess the legibility through both global and analytic measures. Re-assessment of writing with the same tool could cause over-learning (the performance during the test is improved because the child become trained to perform always the same task, such as writing this same words) but could not generalize to other texts for instance.

The rapid development of digital tablets in the last decade partially allowed us to tackle some of these problems. It made possible the evaluation not only of the final product of handwriting (static image) but also of its dynamic. New features become accessible including the pressure between the pen and the tablet's surface as well as the pen's tilt. Recent studies point that pressure features are useful in the diagnosis of dysgraphia [339].

These tests measure the motor aspect of dysgraphia but other aspects such as emotions and associated difficulties need to be taken into account.

1.6.6 Rehabilitation of dysgraphia

Concerning rehabilitation, recent reviews and some professionals recommend simple graphomotor exercises focusing on the primitives of writing (loops, bridges, etc.) to tackle progressively the avoidance which is frequent in these children. Then, they propose exercises of increasing complexity, depending on the child performance and motivation eventually leading to training in writing [42].

Meta-analyses showed that rehabilitation of writing is efficient. However, it requires to take time (> 1 month) and needs to include handwriting practice, (and not only relaxation or sensory-based training) [188].

Taking into account our model (Figure 1.3), we can predict a trade-off between (1) an intensive approach, the most efficient approach at the end to improve handwriting at the end, but that could induce avoidance/anxiety behaviours, when the writing in itself is too difficult, and (2) a progressive approach with simpler exercises that could foster motivation and self-esteem but without a strong evidence of efficacy on their own to improve directly handwriting.

1.6.7 Compensation of dysgraphia

The approach of disability is very important in this situation since the handwriting itself is not compulsory in our life and can be bypassed without too many consequences. According the World Health Organization, the disability is the conjunction of the environment with the person (Figure 1.4 [413]). Some adaptations in the environment can help to limit the difficulties expressed by the child. Thus, it is possible to decrease the handwriting requests of children with handwriting difficulties, educating the parents and teachers about the difficulties [190]⁶, by providing them printed copy of the class material, favor oral evaluation, train the use of laptops for the oldest children, use of specific softwares⁷. These adaptations allow to decrease the disability especially in the case when rehabilitation is not efficient or possible. In practice, both strategies can be proposed in parallel during the care of children with dysgraphia depending on the evolution of the child's symptoms. These strategies are not mutually exclusive in their approach since, a

⁶https://www.cartablefantastique.fr/la-dyspraxie/ quest-ce-que-la-dyspraxie/

⁷https://www.cartablefantastique.fr/outils-pour-compenser/ comment-compenser/

Figure 1.4: **Model of disability** used by the International Classification of Functioning of the World Health Organization

remediation strategy would be to help the children to identify their cognitive and motor strengths and rely on them, to compensate their other difficulties impairing handwriting.

We showed that beyond handwriting difficulties, motor difficulties are frequent and impairing in NDD. How, and which technology, could be helpful to measure and monitor these motor development difficulties? To improve the access and the precision of the evaluation of motor learning skills, we propose to use electronic sensors and algorithms. In the next chapter, we present a systematic review of the assessment of motor disorders with such technologies, focusing on the example of ASD.

Chapter 2

Innovative assessment of motor disorders

The.: "But, what is semiology?" Tho.: "It's feature extraction." The.: "Ah, ok!"

Laboratory discussion, CHILI laboratory, EPFL, Lausanne, May, 2019

"While decisions made according to Bayes' theorem are the academic normative standard, the theorem is rarely used explicitly in clinical practice. Yet the principles can be followed without intimidating mathematics."

Medow, M. A., & Lucey, C. R. (2011). A qualitative approach to Bayes' theorem. BMJ Evidence-Based Medicine, 16(6), 163-167.

This chapter is under review in Cognitive Computation journal, under the title Gargot, T., Archambault, D., Chetouani, M., Cohen, D., Johal , W. Anzalone S. M., "Automatic assessment of motor impairments in autism spectrum disorders: a systematic review",.

Abstract

Introduction

Autism spectrum disorder (ASD) is mainly described as a disorder of communication and socialisation. However, motor abnormalities are also common in ASD. New technologies may offer quantitative and automatic metrics to measure movement difficulties.

Objectives

We sought to identify computational methods to automatize the assessment of motor impairments in ASD.

Methods

We systematically searched for the terms 'autism', 'movement', 'automatic', 'computational', and 'engineering' in IEEE (Institute of Electrical and Electronics Engineers), Medline and Scopus databases and reviewed the literature from inception to 2018. We included all articles discussing: (1) automatic assessment/new technologies, (2) motor behaviors, and (3) children with ASD. We excluded studies that included patient's or parent's reported outcomes as online questionnaires, that focused on computational models of movement, but also eye tracking, facial emotion or sleep.

Results

In total, we found 53 relevant articles that explored static and kinetic equilibrium, like posture, walking, fine motor skills, motor synchrony and movements during social interaction that can be impaired in individuals with autism. Several devices were used to capture relevant motor information such as cameras, 3D cameras, motion capture systems, accelerometers. Interestingly, since 2012, the number of studies increased dramatically as technologies became less invasive, more precise, and more affordable. Open-Source softwares have enabled the extraction of relevant data. In a few cases, these technologies have been implemented in serious games, like "Pictogram Room", to measure the motor status and the progress of children with ASD.

Conclusion and implications of key findings

Movement computing opens new perspectives for patient assessment in ASD research, enabling precise characterizations in experimental and at-home settings, and a better understanding of the role of sensorimotor disturbances in the development of social cognition and ASD. These methods would likely enable researchers and clinicians to better distinguish ASD from other motors disorders while facilitating an improved monitoring of children's progress in more ecological settings (i.e. at home or school).

2.1 Introduction

Symptoms of developmental coordination disorder (DCD) can be found in ASD [139]. How ASD and DCD interact with one another is still controversial. On the subject of motor dysfunction, the DSM-5 now recommends diagnosing ASD and DCD as comorbidities [8]. Some authors support the existence of different disorders that could be caused by the same mechanisms [161, 284]. Others consider the motor dysfunctions found in DCD and ASD to be different in nature from one another [310, 417]. In a systematic review, Cacola et al. [66] showed that, while DCD and ASD share some behavioural symptoms, distinctions exist in terms of gestural performance, severity of motor challenges, and grip selection. Finally, motor disturbances appear to be among the first manifestations of developmental abnormalities in ASD and could serve as markers of the condition in the first

years of life before other core symptoms (i.e., social communication, restricted interests) are visible [168, 303].

The clinical assessment of motor coordination in ASD is based on semi-quantitative standardised instruments such as the Movement Assessment Battery for Children (MABC-2) [182]; the NP-MOT (Neuro-Psychomotrian evaluation of the child) [392]; the Test of Gross Motor Development (TGMD-2) [370]; the Bruininks-Oseretsky Test of Motor Proficiency (BOT-2) [75]; or more specifically the Concise Evaluation Scale for Children's Handwriting (BHK) [82], which are usually performed to assess writing skills.

Parental questionnaires are also available, including the DCDDaily-Q [213, 393] and the Dunn questionnaire [120]. For a review about tests to assess DCD, see Albaret et al. [6]. However, it is difficult to recommend a set of standardised and fixed assessments since the autism spectrum is large and heterogeneous in terms of a child's commitment to an examination and the intensity of motor dysfunction. Therefore, assessments often require a subjective input from trained professionals, are time-consuming and can be tedious to rate. The evaluation sessions typically group several assessments in a row. To complete this evaluation can be tiring for the children. In addition, such assessments do not allow ecological (in situ), day-to-day context evaluations. Therefore, these tests have a low access and waiting lists of six or more months are frequent, even in richest countries [178].

Computational technologies offer the opportunity to overcome these obstacles, enabling new ways for characterizing children's behaviour in more natural contexts. This challenge has been faced by Neuro-Developmental Engineering (NDE) with the goal of providing "new methods and tools for: (1) understanding neuro-biological mechanisms of human brain development; (2) [performing] quantitative analysis and modeling of human behavior during neurodevelopment; [and] (3) assessing neuro-developmental milestones achieved by humans from birth onwards" [70, 71]. Applications are numerous and include robotics [53, 210, 222, 356], computer games [164], diagnosis [28, 178, 222] and behaviour imaging [?, 12, 381]. Machine learning, deep learning [259, 419] in particular, is more and more used in medicine [259, 388] and psychiatry in particular [229], for instance to analyse brain imaging data in neurological and psychiatric disorders [296]. Recent reviews and articles showed the usefulness of such tools in child and adolescent psychiatry: in the detection of motor anomalies in Attention Deficit and Hyperactivity Disorder (ADHD) [289]; in the assessment of social behaviors in ASD with contact-less and irritation-free sensors [230]; in the analysis of data from questionnaires and interviews [360]. These tools open new, fascinating approaches as described in [341], where photos taken by children with ASD are studied, revealing the world of autism from a firstperson perspective. Machine learning was also used in neurological disorders, [280] such as dementia [196] or Parkinson, [129] as a characterization tool, but also for the development of new treatments, such as the ones based on brain-computer interfaces [260]. Yet, a review focusing on the assessment of motor difficulties in children with autism is still missing.

Here, we present a systematic review of the automatic assessment of movement disorders in children with ASD using new technologies. After briefly describing the different motor impairments found in ASD, we review NDE attempts to automatize motor dysfunction assessments. Given the variety of motor domains, we propose to distinguish the areas of (1) equilibrium; (2) motor coordination; and (3) motor synchrony and movements during social interaction.

2.2 Methods

We systematically searched the Institute of Electrical and Electronics Engineers (IEEE)¹, Medline² and Scopus³ databases from inception to October 2018 with the following items: *'autism' AND 'movement' AND ('automatic' OR 'computational' OR 'engineering')*. The search was limited to articles written in English. We screened all the identified reports, studies and reviews by reading the titles and abstracts.

2.2.1 Inclusion and exclusion procedure

Eligible studies included those that discussed the following topics: (1) automatic assessment/new technologies, (2) motor behaviours, and (3) children with ASD. We excluded studies that involved direct cognitive function assessment, patient- or parent-reported outcomes. We excluded studies with computational models of movement like Idei et al, 2017 [193]. We also excluded eye-tracking studies (see Papagiannopoulou [307] for a systematic review), emotion expression studies focusing in facial action units in laboratory settings (see El Kaliouby et al [127] for a review), driving assessment studies (see Wilson et al. [408] for a review) and sleep assessments studies (see Moore et al. [286] for a review) since these points were tackled by reviews cited above. We excluded studies that included only adults, to limit the variability of the studies.

2.2.2 Data selection

From the relevant articles, we extracted the following information: type of movement evaluated; level of evidence, according to the "Rational Clinical Examination Levels of Evidence" table [364]; study design, in terms of the number of subjects included and the existence of a control group; automatic system used to identify ASD peculiarities (e.g., camera, tablets); sampling frequency; type of setting (i.e., experimental laboratory vs. ecological setting); socio-demographics of the participants (age and sex); clinical assessment; statistical/machine learning method used to explore the data; and the main results of the study. When subgroups of children with ASD were identified (autism, Asperger's syndrome and pervasive developmental disorder-not otherwise specified), the sample size was pooled under the generic term ASD according to the DSM-5 [8]. The report was complied according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [285].

2.3 Results

In total, we identified 53 relevant articles dealing with new technologies, motor behaviours and including children with ASD. Figure 2.1 details the process and output for studies selection and inclusion. The included studies were quite heterogeneous as most movements can be impaired in ASD including equilibrium (such as posture, gait), motor coordination, and motor synchrony and movements in interaction. Also, they relied on several devices to capture relevant motor information such as cameras, 3D cameras, motion capture systems, accelerometers within watches or smartphones. Interestingly,

¹https://ieeexplore.ieee.org/Xplore/home.jsp

²https://pubmed.ncbi.nlm.nih.gov/

³https://www.scopus.com/

since 2012, the number of studies increased dramatically as technologies have become less invasive, more precise and more affordable (Figure 2.2). In the following sections, we summarize the main results of the present review. We opted to briefly detail each ASD motor domain even when no NDE study was found in said domain to indicate further areas of research that may be appropriate to explore.

Figure 2.1: Flowchart of studies inclusion

'autism' AND 'movement' AND ('automatic' OR 'computational' OR 'engineering')

2.3.1 Equilibrium (N = 24)

Tonus

Hypotonia and ligamentous hyperlaxity are often described in children with ASD [171, 279, 361]. In a population-based study [359] as well as a retrospective analysis of parents' early concern [168], a low muscle tone in infancy predicted autistic traits or ASD. Children with ASD presenting a disharmonious tonic typology may be encountered with a hypertonia of trunk muscles and of proximal muscles of the lower limbs, and a hyperlaxity of the ankles and of the proximal and distal muscles of the upper limbs (wrists and shoulders) [309]. However, we did not find any distinct method used to automatically assess tonus.

Posture analysis (N = 10, Table 2.1)

Posture instability is common in children with ASD (for reviews see [244, 374]), with an increase in the size of the support polygon and shorter strides [295] that can lead to difficulties like holding up one's own head, sitting and walking [201].

Assessment with consumer devices

Travers et al. [385] evaluated the balance and postural stability with a Nintendo Wii[™] (Nintendo, Kyoto, Japan) balance board (Figure 2.3A), a device developed for video games, that has sensors in its four corners and a relatively high sampling frequency (60 Hz). Twenty-six individuals with ASD and 26 age-and-IQ-matched individuals with typical development stood on one leg or two legs with eyes opened or closed on a Wii balanceboard. They observed a significant intergroup difference in postural stability during one-legged standing. Closing eyes similarly affected the balance time of both groups. No difference were found between the groups during two-legged standing.

Figure 2.3: Sensors used to assess posture in ASD: Nintendo Wii balance boardTM (A); KinectTM (RGB-D sensor) (B).

Stereotypical behaviours during resting state

Inertial measurement units are sensors that can include a gyroscope (to measure rotation), an accelerometer (to measure acceleration), and a magnetometer (to measure direction, strength, or relative change of the magnetic field). Some can be used to measure motor stereotypies.

Albinali, Min and Goodwin proposed to use wireless three-axis accelerometers and pattern recognition algorithms to automatically detect body rocking and hand-flapping in six children with ASD [7, 157, 158, 278]. On average, pattern recognition algorithms correctly identified approximately 90% of stereotypical motor movements repeatedly observed in both laboratory and ecological environments such as classrooms.

Rad et al. [323–325] used wireless inertial sensing technology to detect stereotypical motor movements in children with ASD. A Deep learning algorithm allowed them to outperform the traditional classification scheme on the handcrafted features but the interpretability remains difficult since the features automatically extracted are difficult to understand.

RGB-D sensors (RGB-D for "red, green, blue - depth") extend common cameras with depth information. The KinectTM (Microsoft Corp., Redmond, WA, USA), in particular, is a RGB-D camera developed to pair with video games, to assess user positioning with depth analysis. The KinectTM v1 uses structured light and projects bi-dimensional patterns to estimate the dense depth information of the scene: reflections of such patterns allow the computation of three-dimensional information of the objects in the environment. The KinectTM v2 uses in addition time of flight of the signal between the camera and the object, making it less sensitive to the illumination conditions than the KinectTM v1. Goncalves [155, 156] used simultanenously an accelerometers located in a watch and a KinectTM system (Figure 2.3B) to measure stereotypic hand-flapping movements in children with ASD. A dynamic time warping algorithm was used to classify the data from the KinectTM, which presents the advantage not to require the child to wear any device or marker.

Resting state during magnetic resonance imaging

From resting-state functional magnetic resonance imaging scans performed on 304 children with ASD and 304 control group children, Torres et al. examined the noise-to-signal ratio of micro-movements present in time-series of extracted head motions [382]. After complex pretreatment and data analysis, the authors hypothesized the existence of micro-movements as potential biomarkers of ASD.

Gait (N = 14, Table 2.2)

Walking pattern appears to be altered in people with ASD [397, 398]. Several abnormalities have been described in ASD including toe-walking [403], variable stride length and duration, incoordination, head and trunk positionning abnormalities, reduced plantar flexion, and increased dorsiflexion [67] (for an in depth review, see Kindregan et al. [224]). During our research, we found 14 studies investigating automatically gait difficulties in ASD (Table 2.2).

Gait analysis with infrared cameras

The field of NDE has proposed several attempts to assess and quantify gait-related ASD characteristics. Nobile et al. [295] set up a system composed of eight infrared cameras (Elite SystemTM, Bts® Bioengineering, Milan, Italy). The use of several cameras allowed the authors to follow each part of the body at any time (limits the occlusion).

They explored gait on a 10 m walkway in children with ASD (N=16) and controls (N=16) who were equipped with markers. Children with ASD showed a significantly shorter step length and wider step width and a marginally slower mean velocity. The range of motion in the hips and knees was also significantly reduced. Using an automatic motion analyser (Vicon Motion Systems, Oxford, UK) made of markers and six cameras, Longuet et al. [248] showed that the steps of children with ASD (N=11) were generally smaller and slower than those of controls (N=9). Movements of the head, shoulders and hips were more variable in children with ASD. Using the same setup, Eggleston et al. [124] found that children with ASD (N=10) exhibited unique lower-extremity joint asymmetries. Further, Calhoun et al. [67] reported significant differences between children with ASD (N=12) and controls (N=22) regarding cadence, and kinematics of peak hip and ankle. However, Chester and Calhoun [85] did not find any differences in asymmetry during walking between the two groups studied.

Attempts to automatize the diagnosis

Noris et al. [298] measured a collection of three-dimensional coordinates from 14 markers applied to the joints of the lower-body area of 22 children (11 children with ASD, 11 controls) using an infrared camera (motion-capture). Using an echo state network (a form of recurrent neural networks – NN) they were able to extract differences in the cycles evolution and could stratify children with ASD and controls with an accuracy of up to 91%.

Ilias et al. [197] used a NN and a support vector machine (SVM) to classify temporal, spatial, kinetic and kinematic gait parameters of 32 controls subjects and 12 children with ASD. They acheived an accuracy of 95%, a sensitivity of 100% and a specificity of 85% for the SVM. Hasan et al. [176] performed a stepwise discriminant analysis to select features and then established three layers of an artificial NN to classify gait with an accuracy of 91.7%, a sensitivity of 93.3% and a specificity of 90.0%. Torres [383] used a motion capture system (Polhemus Liberty[™], 240 Hz continuous gamma family of probability distribution, ; Polhemus, Colchester, VT, USA) to check for differences between children with and without ASD and with Phelan McDermid syndrome, a rare genetic syndrome that has a high penetrance of ASD. In all atypical cases, they found excess noise and randomness.

Pressure systems

Rinehart et al. [330] asked 11 children with ASD and 11 controls to walk on a GAITRite Walkway (CIR Systems Inc., Franklin, NJ, USA) and observed that a greater difficulty was experienced by children with ASD regarding walking along a straight line and dealing with the coexistence of variable stride length and duration. Children with ASD were also less coordinated. They were rated by the experimenter as more variable and inconsistent (i.e., they showed reduced smoothness) compared to the control group. Postural abnormalities were noted in the position of the head and trunk of the ASD group.

Rinehart et al. used the Clinical Stride Analyser (B & L Engineering, CA, USA) (Figure 2.4), a pressure system, to evaluate children's walk [329]. The group with ASD (N=10) showed a significant increase in stride-length variability in comparison with the control group (N=10) and Asperger's disorder (N=10) participants. No quantitative gait deficits were found for the Asperger's disorder group.

Hasan et al. [177] used two force plates embedded in the middle of a walkway to measure the ground reaction force during gait. Children with ASD (N=15) had a different ground reaction force than the control group individuals (N=25), especially throughout the first half of the stance phase. Specifically, they showed a higher maximum braking

Figure 2.4: The clinical stride analyser® (B & L Engineering, CA, USA)

force, lower relative time to maximum braking force, and lower relative time to zero force during mid-stance. Children with ASD were also found to have a reduced second peak of vertical ground reaction force in the terminal stance.

Pre/post therapy study

4

Steiner et al. [371, 372] used a gait analyser constructed with four cameras and Ariel Performance Analysis SystemTM (Ariel Dynamics, Trabuco Canyon, CA, USA), to compare the effects of riding therapy on children with ASD (N=26). Half of study participants performed the riding therapy with horses, while the other half composed the control group. Of note, the length of the gait cycle became more stable in the sagittal plane after the riding therapy.

Overall, these gait study set-ups were quite precise, achieving classification models with high accuracies. However, using those techniques for clinical evaluation seems difficult and costly: such studies required trained teams, the activities recorded were highly specific and the generated models seemed difficult to be generalized to ecological scenarios.

2.3.2 Fine motor skills requiring hand dexterity and visuomotor coordination (N = 11, Table 2.3)

Young children with ASD have poorer fine motor skills in tasks like object handling, grasping and visual-motor tasks [207, 322]. It seems there is an higher rate of left-handed people in the ASD population but the methods of evaluation used are heterogeneous and the results are inconclusive [308, 320]. Children with ASD also display differences in movement planning and execution [261].

Grasping (N = 7)

Sacrey et al. [344] showed in a review that grasping in ASD is impaired. Researchers tried to characterize this impairment using different kind of technical aids, as infrared cameras, accelerometers, gyroscopes and more complex robotics systems.

Infrared cameras

Crippa et al. [95] revealed that simple upper-limb movement could be assessed by a three-dimensional infrared camera optoelectronic 60-Hz SMART-D system[™] (Behavior Tracking System Bioingegneria, Garbagnate Milanese, Italy), with picked up markers placed on the wrists and hands of participants. This system was useful to classify the movements of low-functioning children with ASD (n=15) versus controls (n=15) using an SVM classifier, based on seven features related to the goal-oriented part of the movement. The system obtained an accuracy of 96.7 %. Campione [69] used the same system showing that children with ASD (N=9) took a longer time to complete the whole reaching movement. However, kinematics of the grasp component were spared in ASD, while early kinematics of the reach component were atypical. During a grasp and throw task with a ball, Perego et al. [314] asked children with ASD (N=10) and controls (N=10) to wear markers on the shoulders, elbows and wrists. The same SMARTTM system was used. Using an SVM algorithm to discriminate the diagnostic of children by the means of upper-limb kinematics, during reaching and throwing, these authors revealed a difference in the overall number of movement they performed, the total duration of movements and wrist angle whilst reaching. The SVM algorithm proved to be able to separate the two groups: an accuracy of 100% was achieved with a soft margin algorithm, while an accuracy of 92.5% was achieved with a more conservative one.

These methods are more invasive than RGB-D sensors and can be used only for very specific tasks taking just few minutes. Indeed, the markers that children need to wear can restrict their movements and cannot be used in ecological settings.

Accelerometers, gyroscopes and robotics system

Several studies have examined grasping from sensors (inertial measurement units) included directly within the targeted object. Campolo et al. developed a ball with sensors to characterize the grasping of children with ASD [71]. David et al. compared children with ASD (N=13) to control peers (N=13) and found prolonged latency between grip and load forces, an elevated grip force at the onset of load force, and increased movement variability, which can be taken as signs of temporal dyscoordination in ASD [101].

Wedyan and Al-Jumaily [405, 406] used wearable sensors and sensor insides shapes to measure movements during three upper-limb tasks: (1) throwing a small ball into a transparent plastic then inserting the ball into a tube; (2) placing a block into a large open box, then making a tower with four blocks; and (3) inserting a shape into a small slot. Both studies extracted features of interest automatically, using linear discriminant analysis. The first task was deemed as the best to classify a high risk versus low risk of autism with an accuracy of 81.67% using an Extreme Learning Machine (ELM), a type of NN. Marko et al. [263] analyzed the reaching movements of children with (N=20) or without (N=20) ASD while holding the handle of a robotic manipulandum. In random trials, the reach action was perturbed, leading to errors that were perceived either through vision or proprioception. Children with ASD outperformed control children when learning from errors that were perceived through proprioception, but underperformed control children when learning from when learning from errors that were perceived through vision.

Pointing (N = 1)

Torres et al. [381] used a different motion capture system (Polhemus Liberty[™], 240 Hz; Polhemus, Colchester, VT, USA) and the MouseTracker software (Freeman and Ambady, 2010 ; Medford, MA 02155, USA). The participants performed two pointing tasks: one with and one without a decision-making task on a touch screen. The authors defended that ASD could be characterised by micro-movements and argued that they correspond to the re-afferent feedback signal, giving rise to precise stochastic signatures of movement fluctuations over time.

Touching and drawing (N = 2)

Anzulewicz et al. [15] used tablets with touch-sensitive screens and embedded inertial movement sensors (iPad Mini[™]; Apple, Cupertino, CA, USA). They asked children with ASD (N=37) and controls (N=45) to play two serious games (a video game developed for educative and diagnostic purpose, i.e., cutting fruits and sharing them and then drawing and colouring a chosen shape). Different decision forests models of the children's motor patterns were employed to classify ASD against controls The most effective algorithm achieved an accuracy of 93%. Children with ASD displayed greater force at impact and a different pattern of force output onto the device during gestures. Fleury et al. used an electronic tablet (Wacom[™] Co., Ltd., Kazo, Japan) to record drawing of circles under different conditions (with dominant and non-dominant hands and, for each, (1) continuously, (2) discontinuously and (3) continuously as fast as possible) of 23 children with ASD and 20 controls. Children with ASD showed an intact ability to consistently produce continuous movements, but an increased degree of variability in the production of discontinuous movements [136].

Writing (N = 1)

Writing evaluation has shown that patients with ASD have lower handwriting scores. In addition, the handwriting quality of ASD participants is impaired with bigger size of letters and lower measures of legibility (for a review see Finnegan [134] and Verma [396]). We failed to find in the literature any automatic assessment of writing in children with ASD although recent research is available on the subject for control children [21, 143]. However, Sparaci [368] showed that a virtual pursuit rotor exercice [1] with a pen on a tablet was harder for patients with ASD than for controls to perform.

2.3.3 Movement used in social interactions (N = 12, Table 2.4)

Monitoring movements involved in social interaction is important because these difficulties are the best described and are required for ASD diagnosis. Affective computing [127] has shown that it is possible to measure the synchrony of motion history with performing metrics that are now openly available such as Python SyncPy library [395].

Motor coordination or synchrony (N = 4)

Fitzpatrick et al. [135] used sensors attached to the end of two pendulums manipulated by a teenager and by her/his parent to record angular displacements. Such displacements were tracked with a magnetic motion tracking system (Polhemus Liberty[™], Polhemus, Colchester, VT, USA) and a 6-D Research System software (Skill Technologies, Inc., Phoenix, AZ, USA). In particular, they compared the displacements from teenagers with (N=9) or without ASD (N=9) showing that adolescents with ASD synchronised less spontaneously or intentionally.

Fulceri et al. [142] found similar results during an interpersonal motor coordination task. Both static and dynamic movements were measured through a wearable embedded system that integrated information from a tri-axial gyroscope and a tri-axial magnetometer and accelerometer.

Marsh et al. used rocking chairs with a Polhemus Fastrak magnetic tracking system[™] (Polhemus, Colchester, VT, USA) to assess interpersonal synchrony between children and

their parents. These authors showed that children with ASD (N=8), opposed to controls (N=15) experienced a disruption of spontaneous synchronisation [264].

Cameras or cameras with a depth sensor (RGB-D camera) have been used to evaluate motor turn-taking and motor synchrony. Delaherche et al. [110] video-recorded cooperative-joint action tasks and automatically extracted features that characterised interactive behaviours such as auditive turn-taking or synchronised gestures. Features characterizing the gestural rhythms of the researchers and the duration of their gestural pauses were particularly accurate for discriminating their interactions with patients with ASD (N=7) and controls (N=14).

Interpersonal distance

In general, interpersonal distance is larger among children with ASD [72, 151, 334, 390]. However, sometimes, children with ASD can position themselves very close to other people, violating others' personal space [221]. We failed to find, in literature, automatic assessments of interpersonal distance in children with ASD. This kind of evaluation would come as soon as multiple-people-tracking technology⁴, such as the open access libraries OpenPtrack⁵, will allow a continuous and efficient tracking of people in a room. Specifically, by employing several cameras, such systems will automatically assess the interpersonal distances between children, evaluating if any child is isolated and stay far from the others or not.

Motor imitation (N = 4)

Social deficits in ASD have been linked to imitations difficulties [334]. Motor imitation has been investigated by NDE in several protocols. Xavier et al. [417] used an imitation task with a virtual tightrope walker standing and moving. They compared children with ASD (N=29), children with developmental coordination disorder (DCD; N=17) and controls (N=39). They showed that (1) interpersonal synchronisation (as evidenced by the synchrony between the participant's and the tightrope walker's bars) and (2) motor coordination (as evidenced by the synchrony between the participant's bar and its own head axis) increased with age and were more impaired in children with ASD. Motor control was more impaired in the ASD group than in the DCD and control groups.

Boucenna et al. [51] and Guedjou et al. [166] developed a robotic interactive system, based on a camera, in which a child imitates the robot's motor postures and then the robot imitates the child's motor postures. The system was able to extract a motor signature indicating when the robot was interacting with children with ASD (N = 15) as compared to control children (N = 15) or adults (N=11). The system required more computational power, i.e., more neurons in the neuron networks to achieve posture recognition in individuals with ASD than in control children. [166].

Bugnariu et al. [60], showed that children with ASD (N=4) had poorer performance while imitating a robot than control children (N=4). Authors collected the children's movements through a motion-capture system with markers and exploited them using dynamic time-warping. This algorithm is interesting due to its ability of matching the temporally inexact nature of imitation.

⁴https://www.epfl.ch/labs/cvlab/research/research-surv/research-body-surv-index-php/ ⁵http://openptrack.org/

Joint attention (N = 2)

Impairment in joint attention (JA) is a key symptom of ASD that appears early in development [105]. Most researchers have used eye trackers (a video camera with an infrared light source following the subject's gaze) to show that initiating and responding to joint action from someone else are positively correlated with social orienting [209]. However, as gaze usually anticipates head movements during natural interaction, an estimation of JA can also be achieved focusing to the head pose, exploiting RGB or RGB-D data.

Using this method, Anzalone et al. showed that JA was impaired in children with ASD [12], proposing new metrics to describe it through head pose and posture [13].

Orientation to social signals and name calling (N= 2)

Martin et al. used a computer vision-based head-tracking software (Zface⁶) while exposing children to different social and non-social stimuli [265]. Children with ASD exhibited larger yaw displacement, indicating pronounced head-turning, and a higher head yaw and roll speed, indicating faster head-turning and face inclination. These dynamics were specific to the social stimuli condition. However, they did not find a difference in vertical movement (pitch). Aside from the specific study, this approach could be also useful to diagnose head stereotypies such as repetitive head-banging. Authors suggest that the children with ASD might be unable to regulate incoming social information. Possible disruptions in motor planning and head movements early in development may have cascading effects in later social engagement.

Campbell et al. used a tablet to display videos to 22 children with ASD and 82 controls (1.5-2.6 y.o.). Only 8% of toddlers with ASD oriented to name-calling on more than one trial as compared with 63% of toddlers in the control group (p=0.002). Orienting latency was on average significantly longer for toddlers with ASD (2.02 vs 1.06 seconds, p=0.04) [68].

2.3.4 Ecological assessment (N = 6, Table 2.5)

Although this field is still limited, we found 6 studies with technologies used in an ecological context (Table 2.5). We believe that the ability to automatically measure behaviours in an ecological context will offer great opportunities in the future.

Accelerometers (N = 2)

Accelerometers were first used in the assessment of sleep in children with ASD [407]. By putting a GT3X device (Actigraph, Pensacola, FL, USA) on the right hip for seven consecutive days, Memari et al. [275] showed a reduction in physical activity in ASD participants during adolescence. However, Pan and Frey and Bandini [26, 306] did not observe any difference in physical activity.

Videos collected at home (N=4)

Home movies have been used for years to investigate early infant development before a diagnosis of ASD is made. Some authors have found that this approach can improve diagnosis [378], while others did not replicate this result [303]. Many analysis have been

⁶http://zface.org/

conducted by manually annotating videos [16, 305]. In infants with ASD, researchers have observed a reduced response to their name, a reduced looking towards others, a lower quality and quantity of eye contact, a decrease of positive facial expressions and of inter-subjective behaviours for instance during a joint attention task (for a review see Saint Georges et al. [345] and Costanzo et al. [92]). Infant motor symmetry and gait were explored by Maestro et al. [255–257]. Infants who went on later to develop autism showed more asymmetry and gait dysfunction than control children. Using the same Pisa home movie database, Cohen et al. [88] and Saint-Georges et al. [347] employed a computational analyses of synchrony and a motherese classifier [258] to refine assessments of early interaction. They showed specific patterns of early caregiver-infant interaction, in those who go on to develop ASD.

Recently, Egger et al. [123] developed a smartphone application to reach 1756 families who uploaded 4441 videos recorded in their child's natural settings. Using the software IntraFace to automatically annotate face behaviours, they identified significant differences in emotion and attention according to age, sex, and ASD risk status. The face direction and emotion expression can also be assessed with the software OpenFace. This strategy was for instance used by Higuchi et al. [184], who showed how a computer interface helped observers in performing video coding of social attention, and how human judgment compensates technical limitations of the automatic gaze analysis.

2.4 Discussion

2.4.1 Main findings

This review showed that many motor activities can be tracked automatically in ASD with a good level of sensitivity. Exploiting such devices and techniques, differences between children with ASD and controls were described in all the domains of movements, obtaining sometimes high levels of accuracy. Additionally, these techniques allowed the detection of stereotypical motor movements.

This 'neurodevelopmental engineering' field [70, 71] is a rapidly evolving area of research that could provide more objective evaluations, especially during screening, but also an improved understanding and monitoring of the development of children with ASD or other neurodevelopmental disorders [104, 351].

In the presented studies, the devices used to measure movements showed different advantages in terms of sampling frequency, spatial precision, or adaptation to behavior subtypes and costs (Figure 2.5) [64]. Some of these devices allow the capture of large amounts of ecological data, while being cheap, and available in the consumer market. With time, they will become less invasive, more affordable and more available for ecological contexts.

The number of studies collecting data in natural environments has been usually modest, due to the challenges faced in their completion. However, thanks to new technologies, such studies become more and more feasible. Assessment using tablets (writing, touching, pointing), for instance, is an emerging field that employs data collected at home from young children aged from three to six years old. Posture and stereotypies can be evaluated with cheap sensors like accelerometers or devices developed initially for video games (KinectTM and WiiTM balance board) as early as three years old. Such sensors are very useful for ecological contexts. At the same time, some studies have been realised in semi-structured environments as classrooms. These locations are interesting as more easily approachable than the home or other unstructured scenarios, because of the partial control of the environment they offer, together with the possibility of collecting structured data.

Within the presented technologies, more and more motor activities are being investigated: posture, walking, grasping... Even when we consider social difficulties in ASD, we can measure the behaviours involved in social interactions, including head pose, synchrony or interpersonal distance. Other motor activities like writing could be targeted thanks to the development of hardware and analysis methods implemented in tablets [21, 143, 144]). Gait has been evaluated in a larger number of studies (N= 14, Table 2.2). However, children needed to be older to do the proposed assessment (from five years old on). We think that this strategy is limited for ASD screening since other evaluations are easier to do in ecological settings at an earlier age.

Figure 2.5: **Properties of motion sensors** in terms of sampling frequency, spatial resolution and temporal scales of use

The different computational methods employed in the explored studies highlighted also a trade-off between interpretability and accuracy (Figure 2.6). In particular, different strategies of data analysis have been applied to extract automatically movement disorders in ASD. Some teams have developed sets of features able to model the movements, improving the interpretability of the obtained models. Other teams applied advanced machine learning approaches, like deep learning, directly to raw data. While the latter can be more accurate and improve rapidly [259], the interpretability of the outcome is more complicated. Indeed, explainability and interpretability [39, 40] and acceptability [189] are important and difficult goals, beyond the objective of accuracy that could limit implementation in the field with end-users . Some data analysis strategies permit real-time feedbacks whereas others have higher computational cost and such feedbacks are not feasable. Some of these algorithms have made possible the use of less-invasive and more accessible devices, as the tracking technologies that do not use body markers, (a simple camera could be sufficient): OpenFace [123] instead of an eye-tracker or Open Pose (Figure 2.7A) instead of a motion capture system.

Figure 2.6: **Properties of main machine learning methods** in terms of interpretability and accuracy. Deep learning are the most recent machine learning methods based on Neural networks.

Figure 2.7: Screenshots from the use of Open Pose (A) and from the serious game Pictogram Room (B)

2.4.2 Limitations

The quality of evidence obtained in the explored studies does not reach the clinical standards for routine diagnostic assessment. Most of the studies do not report how and if they limited the risk of biases. Blinding of the diagnosis when validating a system and pre-registration of the protocol could limit such biases. Often, the clinical data are not precised and even the gold standard clinical assessments (i.e., Autism Diagnostic Interview-Revised –ADI– or Autism Diagnostic Observation Schedule –ADOS®-2) are not performed [250]. The highest medical standards would require the recruitment of large series of consecutive patients [376]. An open science framework with accessible data and software would enable easier replications in different populations to increase the generalisation of the results [288].

Large datasets would require a centralised collection of data that would ensure easier

characterisation and clustering. However, medical data are sensitive and their use is associated with security and confidentiality issues. For example, home movies or data from smartphones [123] need secured internet transfer and storage on distant powerful computer for data analysis. From another perspective, the development of open science suggests the need of sharing data and algorithms to improve transparency and reproducibility. Beyond privacy issues and open-source strategies, data and algorithms would require appropriate business models for private companies investigating in the field.

Our systematic review was completed on October 2018. It is likely that given the recent increase of publications in the field (Figure 2.2), the diversity of motion sensors, (Figure 2.5) and analysis methods (Figure 2.6), new systematic reviews will be necessary in the future with more specific scopes. Questions to explore may cover (1) the youngest children, since the expected therapeutic outcomes would be larger with early rehabilitation, (2) motion sensors that would be the least invasive (best tolerance for the children), and the most easily scalable to a wide audience, (3) data analysis methods that would be the most accurate, and (4) data analysis methods and user interfaces that would enable the best interpretability and trust among end-users.

2.4.3 Perspectives

We think that movement computing [293] of automatically measured movement would be useful to help the assessment and monitoring of individuals with ASD. Similar terms are coined regarding other areas of automatic assessment: social computing, affective computing, and vision computing.

Electronic sensors allow the precise measure of behaviour. Thanks to this approach, the study of behaviour, ethology, is undergoing its own transition towards data sciences, which has prompted the terms 'ethomics'. This field of research is very active in fruit flies studies with specific devices [149], data analysis package [150] that can be applied in large groups in these insects [56]. Algorithms and sensors to measure such interactions in humans and especially in ASD are presented in Table 2.4. However, while promising, the ethomic approaches focus on the behavior of simple animals in closed environments. Recent advances in computational methods and technologies promise the possibility of harnessing behavioral data from more complex systems, as humans, in interactive settings, where behaviors of each agent emerge from cognitive loops that include explicit representations of the others. In this regard, OpenPtrack ⁷ can be seen as a promising technology to capture the complexity of such group interactions. Due to the recent emergence of these tools and databases, the field of ethomics is far from being as developed as genomics or connectomics that can already be supported by large scale databases. We think that these technologies will achieve this goal. Behavioural assessment could help in identifying more homogenous endophenotypes. This new theoretical framework known as ethomics seeks to assess behaviour extensively, in a reproducible way, as it is now done in genetics (genomics), brain connections (connectomics) or proteins (proteomics) [153]. The concept digital phenotyping is also emerging. It represents a new approach aimed at measuring human behavior by using smartphone and personal devices sensors, smartphone apps, keyboard interaction, and various features of subject voice and speech. [198,243,300]. This digital phenotyping approach could be useful thanks to computer vision [107, 351] for instance colour analysis to extract changes in cardiac pulse or pupillary responses [117], sensory dysfunction analysis [97]. While ASD is the most

⁷http://openptrack.org/

studied disorder in the digital phenotyping field [243], several reviews were also done to assess the role of digital phenotyping in (1) bipolar disorders [300], (2) schizophrenia and other psychotic disorders [36], (3) depression [203], (4) addiction disorders [133]. We agree with Spinazze et al. [369], stating that it is important to (1) describe the different forms of captors, data sources and analysis methods (Figures 2.5 and 2.6), (2) compare the most used sensors and most assessed movements to compare ASD with controls (summary tables) and (3) to propose frameworks to map digital traces and health conditions [45, 91, 146, 386].

Several teams [15, 381, 418] have suggested that these assessment methods will allow researchers to define a motor signature of ASD. In this context, the proprioceptive feed-back that allows online guidance of movement may be disrupted, creating resonance and control errors [381]. If this motor signature is specific, we would not expect to find it in children with DCD, intellectual disabilities or attention-deficit/hyperactivity disorder, while it would be often associated with ASD. It would be necessary to disentangle different kinds of movements such as (1) goal directed movements (as pointing to a target under request), (2) automatic movement such as motor mirroring, (3) cultural movements as writing that could involve different cerebral computations and thus lead to different difficulties.

Children with ASD are highly variable between themselves [267, 414]. The sample size of the studies is often small because patients with ASD are difficult to enroll in experiments given their impairments (e.g. in communication) and behaviour disturbances. In addition, most of the reported studies are cross-sectional. These technologies could be useful to follow longitudinally the spontaneous evolution of children to understand how and to what extent care can restore a better developmental trajectory. During treatment, these methods could also be useful to provide motor feedback that can benefit both patient and therapist, like it was done for dysgraphia in DCD [144].

Open access and annotated benchmark datasets in the field would be helpful to evaluate various classification methods, select the best ones and improve reproducibility like it did in other domains [229, 259]. ABIDE dataset allowed to analyse functional brain peculiarities using MRI data [114, 180, 294]. However, from this dataset, Zhang et al. concluded that the neuroanatomy of ASD does not exist, but is highly age and gender dependent [420].

In a recent systematic review assessing computer vision in ASD, Belen et al. presented several datasets used in computer vision and concluded that "until recently autism datasets have been relatively small when compared to other datasets in which machine learning has seen tremendous application" [107].

A very recent DREAM dataset, collected during Robot Enhanced Therapy, has several advantages [41](1) the dataset is openly accessible and would enable to become benchmark database on which different teams could perform different classification algorithms, (2) the number of patients is important (n=61), (3) the diagnosis is based on ADOS, a gold standard test, (4) the data were collected longitudinally, (5) the therapy sessions are evidence-based (Applied Behavior Analysis), (6) the motion sensors (RGB, RGB-D, sensorized table, 25 Hz) were not invasive and did not need to be worn by the patients [41]. No data analysis have been published on this database yet.

General movement assessment (GMA) can be assessed from birth to 3 months old. This motors signs assessment was developed and validated in the field of cerebral palsy [62, 319] but could also be used to detect motor signs that could predict ASD difficulties [125]. A recent systematic reviewed showed that a wide variety of tracking and detection tools for computer vision-based GMA exist. However, a "method-of-choice" for automated GMA does not exist yet [363]. Though, we can see yet good results with simple RGB and openpose and a shallow multilayer neural network algorithm [326].

There is a lack of cognitive models to bridge the gap between cognitive sciences and NDE. From a theoretical point of view, future research should be combined with computational approaches of ASD [159,377]. Torres et al. [384] in particular, believe that integrating a perception-action perspective would be fruitful since movement production in ASD has been linked to a movement-perception deficit, which looks to be a prerequisite for the understanding of intentions of others, posture, and facial expressions and thus social abilities and communication. These sensorimotor competencies could be the primum movens of an atypical developmental cascade that should be further validated [45, 91, 146, 386]. The new methods described in this review, for measuring motor difficulties could open new insights in the development of ASD and, in general, of social cognition. The development of sensorimotor abilities occurs before the development of communication and socialisation skills. Sensory difficulties are frequent in children with ASD [238, 421]. Severe sensory issues are associated with more prominent social difficulties and lower adaptive functioning [227]. In the same way, impaired praxis (that includes gestures to command, imitation, and tool-use in children) is strongly correlated with the social, communicative, and behavioural impairments that define ASD [121]. Future research should assess whether this fine sensorimotor reaction to social scenes could be an early developmental step required for the early acquisition of social competences [373, 410].

In addition, with the development of easy-to-use devices that can track and monitor movements easily, several serious games are emerging. For instance Pictogram Room (University of Valencia, Valencia, Spain) allows the tracking of the posture of the child with a KinectTM (Figure 2.7B). This posture tracking is displayed on a screen and with an augmented reality system. The game can ask the child to catch some virtual items or to adopt special postures, to perform rehabilitation. Other systems could allow the development of adapted robotic behaviours for interactions with children with ASD [144, 313].

2.5 Conclusion

Movement disorders are found in ASD. However, there is no clear theoretical or clinical framework that could easily explain all of them. The motor assessment of ASD is usually clinical, costly and tedious. New technologies offer the possibility for researchers to measure more objectively the specificities of movement disorders in ASD and eventually could lead to characterizing a specific motor signature of ASD or of subgroups of individuals with ASD based on motor signature. It is likely necessary to begin to collect large amounts of standardised movement data to better understand the specificities of movement disorders in ASD and to enable descriptions allowing the screening and identification of more objective endophenotypes.

In the following chapters, we will take the specific example of handwriting. These difficulties are frequent and not only found in ASD. Handwriting is one of the most difficult and usual movement one's need to master through lifespan. Can we use electronic tablets to assess the quality and speed of handwriting? How to drive the data analysis to keep an intelligible pipeline with accurate, but also, as interpretable as possible, feature extraction and machine learning classification? Transparency and trustworthiness could be, at the end, as important as accuracy, in educational and clinical contexts. Does it open new insight on features that were not accessible so far with classical motor semiology. After this analysis part, we will show how we used openpose in Chapter 5, during rehabilitation that enable the meaure of body pose with a simple camera and a Neural Network.

Authors contribution

TG: selecting keywords, screening and selection of the articles, designed the figures, wrote the first draft, DC: proposed the general idea, wrote the first draft; SA: designed the figures, revised the 1st draft, DA, MC, WJ: revised the first draft, All authors read and approved the final manuscript

Table 2.1: Automatic assessment of posture

Author name	Evidence (1: best; 5: worst)	ASD (N)	Control (N)	Technology used	Frequency	Setting	Sociodemographics of the participants	Clinical assessment	Statistical/machine learning methods used to analyse the data	Main results of the study
Travers et al., 2013	4	26	26	Wii balance board	60 Hz	Lab	16-30 years (2 females, 24 males in the ASD group and 2 females, 24 males in the control group)	WASI, ADOS or ADI, SRS, RBS-R	ANOVA	Difference in postural stability during one- legged standing but not during two-legged standing
Albinali et al.,2009	4	6	0	Wireless accelerometers, left wrist and right wrist using wristbands, and on the torso	60 Hz	Home and lab	12-20 years (sex not reported)	DSM-IV-TR , RBS-R	Time and frequency domain features computed for each acceleration stream, decision tree (C4.5 classifier in the WEKA toolkit)	In the classroom, an overall recognition accuracy of 88.6% (TP: 0.85; FP: 0.08)
Min et al., 2010	5	4	0	3-axis accelerometer, microcontroller and Bluethooth module for wireless communication with the base station	50Hz	Lab	Not reported	Nor reported	Linear predictive coding (LPC)	Detection of the self-stimulatory patterns with an average of 92.7%.
Goodwin et al., 2011	4	6	0	MITes3-axis wireless accelerometer	60 Hz	lab and class	13-20 years (all males, all ASD)	DSM-IV-TR, RBS-R, CARS	Decision Tree (C4.5 classifier in the WEKA toolkit)	Pattern recognition algorithms identified ap- proximately 90% of SMM repeatedly ob- served in both settings
Goodwin et al., 2014	4	6	0	Wockets set to transmit three- axis \pm 4g motion data	90 Hz	Classroom	12-20 years (all males, all ASD)	DSM-IV-TR, RBS-R, CARS	Decision tree (C4.5 classifier in the WEKA toolkit) and SVM	They observed an average accuracy across all participants over time ranging from 81.2% [true positive rate (TPR): 0.91; false positive rate (FPR): 0.21] to 99.1% (TPR: 0.99; FPR: 0.01)for all combinations of classifiers and feature sets.
Rad et al., 2016	4	6	5	EXLs3 sensor records three-axis accelerometer, gyroscope and magnetometer data	90-100 Hz	Lab and class	13-20 years (all males, all ASD)	DSM-SIV-TR, RBS-R, CARS	Long short-term memory with CNN	Transferring the raw feature space to a dy- namic feature space via the proposed archi- tecture enhances the performance of auto- matic Stereotypical Motor Movements detec- tion system especially for skewed training data.
Rad et al., 2016	4	6	5	EXLs3 sensor records three-axis accelerometer, gyroscope and magnetometer data	90-100 Hz	Lab and class	13-20 years (all males, all ASD)	DSM-IV-TR, RBS-R, CARS	CNN	preliminary evidence that feature learning and transfer learning embedded in deep architec- tures can provide accurate SMM detectors in longitudinal scenarios.
Rad et al., 2018	4	6	5	EXLs3 sensor records three-axis accelerometer, gyroscope and magnetometer data	90-100 Hz	Lab and class	13-20 years (all males, all ASD)	DSM-IV-TR, RBS-R, CARS	CNN to extract features and then long short-term memory,	Feature learning via CNN outperforms hand- crafted features in SMM classification, Includ- ing temporal dynamics of the signal using LSTM improves the detection rate
Goncalves et al., 2012	5	5	0	RGB-D, Microsoft Kinect [™] sensor and gesture recognition algorithms	30 Hz	Lab	3-15 years (sex not reported)	Not reported	Dynamic time warping	Kinect TM sensor detected 83% of the stereo- typical movements.
Torres et al., 2016	4	304	301	Functionnal MRI	0.3 Hz - 1.5 Hz	Lab	6-50 years (269 males, 35 females in the ASD group and 247 males, 54 females in the control group)	ADOS	Gamma PDF, Kruskal–Wallis test	Specific noise-to-signal levels of head move- ments as a biologically informed core feature of ASD

WASI : Wechsler Abbreviated Scale of Intelligence ; ADOS : Autism Diagnostic Observation Schedule ; ADI-R: Autism Diagnostic Interview, SRS: Social Responsiveness Scale, RBS-R : Stereotyped Behavior Subscale of the Repetitive Behavior Scale-Revised, CARS: Childhood Autism Rating Scale, DSM: Diagnostic and Statistical Manual of Mental Disorders, PDF: Probability Density Functions, SMM: stereotypical motor movements, MRI: magnetic resonance imagery, CNN: convolutional neural network, SVM: Support Vector Machine

Table 2.2: Automatic assessment of Gait

Author	Evidence	ASD	Control	Technology used	Frequency	Setting	Sociodemographics	Clinical assessment	Statistical /machine	Main results of the study
name	(1: best;						of the participants		learning methods used to	
	5: worst)								analyse the data	
Nobile et	3-4	16	16	Infrared cameras	100 Hz	Lab	6-14 years (12 males and 4	DSM-IV-TR, ADOS, ADI-R,	ANCOVA, correlation	Shorter stride legth and wider step width and a marginally
al, 2011				(optoelectronic technique			females in each group)	WISC-III-R		slower velocity. The range of motion in the hips and knees
				with passive markers)						idity of walking is lost
Longuet et	4	11	9	Automatic motion analyser	200 Hz	lab	6-13 years (sex not reported)	PEP-R. CARS	ANOVA, Kruskal–Wallis	Smaller and slower steps. Movement of the head, shoulders
al, 2012				(VICON system) with six					one-way analysis of variance	and hips were more variable in children with ASD
				cameras having a sampling					on ranks	
	-		-	frequency of 200 Hz						
Eggleston	5	10	0	Eight-camera motion capture	120 Hz	Lab	5-12 years (6 males, 4	DSM-IV criteria only	Model Statistic technique	Unique lower extremity joint asymmetries
et al, 2017				Motion Systems)			females all ASD)			
Calhoun et	5	12	22	Eight camera motion capture	60 Hz	Lab	5 to 9 years (10 males, 2	Not reported	ANOVAs and Kruskal–	Difference for cadence, peak hip and ankle kinematics
al, 2011				system and four force plates			females in the ASD group		Wallis tests	
				(Vicon MCam motion			and 10 males, 12 females in			
				capture system) Twenty			the control group)			
Chester et	5	12	22	Eight camera Vicon motion	60 Hz for	Lab	5 to 9 years (10 males, 2	Not reported	MANOVAs	No asymetry differences during walking
al., 2012	-			capture system and four	cameras and		females in the ASD group	F		
				Kistler force plates	600 Hz for		and 10 males, 12 females in			
					forces plates		the control group)			
Noris et	5	11	11	a motion capture system with	not reported	Lab	4-10 years (9 males, 2	Not reported	Echo state network (a form	Accuracy of classification of 91% using only half of the com-
al., 2006				applied to the joints of the			remaies in each group)		of reccurent neural network),	piete wark cycle provides good results already
				lower body of the child as					ren	
				well as to the shoulders and						
				neck						
Ilias et al.,	5	12	32	16 passive bilateral reflective	Not reported	Lab	6-12 years (sex not reported)	Not reported	Neural network and SVM	Accuracy of classification of 95 % and sensitivity of 100%
2016 Hocen of	5	24	24	Fight compare (Vicen	100 Hz for	Lab	4 12 years (18 malas 6	Not reported	t tasts and Mann Whitney U	and a specificity of 85 % for the SVM
al., 2017	5	24	24	T-series) motion capture and	cameras and	Lab	females in ASD group and	Not reported	tests. Linear discriminant	produces better classification performance with 82.50% of
				two force plates	1,000 Hz for		12 males, 12 females in the		analysis (LDA) and quadratic	accuracy and lower misclassification rate.
				*	forces plates		control group)		discriminant analysis (QDA)	
Torres et	4	3	11	Weak electro-magnetic field	240 Hz	Lab	10-12 years old (3 males in	DSM-5, ADOS, ADI-R,	They estimated the	Typical walking signatures are absent in all children with
al., 2016				created by the sensing system			the ASD group) and 5-19	MSEL, Vineland	parameters of the continuous	ASD. They found an excess noise, a narrow range of
				(Poinemus Liberty, Colchester VT USA)			years old (5 females and 6 males) in the control group):		distributions and calculated	distinct joint network connectivity pattern
				recording			males) in the control group),		their ranges. These estimated	distinct joint network connectivity pattern.
				recording					stochastic signatures were	
									then mapped on the Gamma	
									plane to obtain several	
									statistical indexes for each	
Pinebart	4	11	11	GAITRite Walkway	200 Hz	Lab	4.7 years (8 males 3 females	DSM-IV DBC ADLR	child Coefficient of variability	Greater difficulty walking in a straight line reduced stride
et al., 2006	-	11	11	(electronic walkway with	200112	Lau	in each group)	WPPSI-R, WISC-III	t-test	regularity (i.e., adjusted ataxia ratio) with increased variabil-
				pressure sensors embedded			5F/			ity in velocity, and the coexistence of variable stride length
				in a horizontal grid)						and duration.
Rinehart	3	20	10	Clinical Stride Analyzer	80 Hz	Lab	6-14 years (4 females, 16	DSM-IV criteria, ADI-R, IQ	ANCOVA	Increase of stride-length variability in their gait in compari-
et al., 2006				(electronic foot-switch in			males in the autism group			son to control and Asperger participants, both clinical groups
				of the participant's feet)			the control group)			only the Asperger's group were rated assignificantly differ-
				or the participant 5 reet)			and control group)			ent from controls in terms of head and trunkposturing.

Table 2.2: Automatic assessment of Gait

		-							1	
Author	Evidence	ASD	Control	Technology used	Frequency	Setting	Sociodemographics	Clinical assessment	Statistical /machine	Main results of the study
name	(1: best;						of the participants		learning methods used to	
	5: worst)								analyse the data	
Hasan et al., 2017	5	15	25	Two force plates were used to measure the 3D ground reaction forces data during walking.	1,000 Hz	Lab	4-12 years (11 males, 4 females in the ASD group and 12 males, 13 females in the control group)	Not reported	Time-series parameterisation techniques were employed to extract 17 discrete features from the 3D ground reaction forces waveforms. t-test and Mann-Whitney U test, stepwise discriminant analysis to select features,	91.7% accuracy, 93.3% sensitivity and 90% of specificity
Steiner et al., 2012	5	26	0	4 digital camcorder (PAL) : Ariel Performance Analysis System	60 Hz	Lab	10-13 years old (12 males and 14 females in the ASD group)	PAC	time-series analysis (displacement function) and part of the gait cycle (stance and swing phase). The third method was measured joint angles in each plane	The length of the gait cycle become more stable in the sagittal plane for children with riding therapy
Steiner et al., 2015	5	26	0	4 digital camcorder (PAL) : Ariel Performance Analysis System	60 Hz	Lab	10-13 years old, (12 males and 14 females)	PAC	T-probe, paired T probe, chi-squares, Mann–Whitney test, ANOVA	The length of the gait cycle became significantly more stable in the sagital plane after the therapy

ADI-R: Autism Diagnostic Interview-Revised, ADOS: Autism Diagnostic Observation Schedule, CARS: Childhood Autism Rating Scale, DBD: Developmental Behaviour Checklist, DSM: Diagnostic and Statistical Manual of Mental Disorders, ICBS: Infant and Caregiver Behavior Scale, M-CHAT: Modified Checklist for Autism in Toddlers, MSEL :Mullen Scales of Early Learning, PAC: Pedagogical Analysis and Curriculum, PEP-R : Profil Psycho- Educatif (PsychoEducational Profile—Revised), WISC: Wechsler Intelligence Scale for Children, WPPSI: Wechsler Preschool and Primary Scale of Intelligence,

Table 2.3: Automatic assessment of motor coordination and hand dexterity

Author	Fyidence	ASD	Control	Technology used	Frequence	Setting	Sociodemographics	Clinical according	Statistical/machine	Main results of the study
name	(1: best; 5: worst)	ASD	Control	rechnology used	riequence	Setting	of the participants	Chinear assessment	learning methods used to analyse the data	wan results of the study
Crippa et	4	15	15	Infrared cameras (3-D	60 Hz	Lab	2-4 years old (12 males and 3	DSM-5, ADOS, Griffiths	ANCOVA, Fisher	The machine-learning method was able to successfully clas-
al. 2015				optoelectronic SMART			females in ASD group 13	mental development scales	discriminant ratio SVM	sify participants by diagnosis. The classification accuracy
,				system)			males and 2 females in			reached a maximum accuracy of 96 7% (specificity 93 8%
				system)			control group)			and sensitivity 100%) by using seven features selected by
							control group)			the Eisher discriminant ratio based technique
Commission	4	0	11	Infront compared (2 D	6011-	Lab	4.5 years ald (7 males and 2	DEM 5 ADOS WEDST HI	Mixed englyses of verience	Kinemetice of the areas common ant uses areas d in oution
Campionne	4	9	11	Infrared cameras (3-D	00 HZ	Lab	4-5 years old (7 males and 2	DSM-5 ADOS, WPPSI-III,	witzed analyses of variance	Kinematics of the grasp component was spared in autisin,
et al., 2016				optoelectronic SMARI			females in ASD group, /	MABC		whereas early kinematics of the reach component was atyp-
				system)			males and 4 females in			ical.
							control group)			
Perego et	5	10	10	Infrared cameras (3-D	60 Hz	Lab	2-4 years old in both groups	IQ	SVM	Accuracy of 100% with a soft margin algorithm and an ac-
al., 2009				optoelectronic SMART						curacy of 92.5% with a more conservative one
				system). Markers on						
				shoulder, elbow, medial and						
				lateral position of the wrist.						
Torres et	4	34	44	Motion caption system	240 Hz	Lab	3.5-61 years old (24 males,	Stanford-Binet, ADOS,	Shape and scale of the	Micromovement assessment could allow to characterize and
al., 2013				(Polhemus Liberty, 240 Hz)			10 females in the ASD group	GARS	Gamma familly of	make subtypes of ASD
, ·							and 23 males, 21 females in		probability distribution	51
							the control group)		1	
David et	5	13	13	High impedance load	125 Hz	Lab	8-19 years old (2 females and	IO. Social Communication	3-level hierarchical linear	Participants with ASD demonstrated prolonged latency be-
al 2009	-			cellplaced orthogonally to			13 males in each group)	Questionnaire (SCO)	model	tween grip and load forces, elevated grip force at onset of
an, 2007				and other to conture children			15 males in each group)	Questionnane (SeQ)	model	load force, and increased movement variability
				practice						foad force, and increased movement variability.
Wedness	5	17 UD	15	Momente inantial platform	50.11-	lah	1.2 years (0 males and 8	Uich rick infonts due to on	Lincon Discriminant Analysis	The study shows that the accuracy secults that were abtained
vveuyan et	3	1/ ПК	15	Magneto-mertial platform	30 HZ	lab	1-5 years (9 males and 8	High fisk linants due to an	Linear Discriminant Anarysis	The study shows that the accuracy results that were obtained
al., 2016				worn by infants on their			remaies in the HR group ; 8	older sibling with autism	(LDA) to extract features,	from part two (insert a ball into a clear tube) in the both
				wrists			males and / females in the		Support Vector Machine	classifier (SVM and ELM) Accuracy is 75.0%, and 81.67%,
							low risk)		(SVM) and Extreme	respectively.
									Learning Machine (ELM) to	
									analyse them	
Wedyan et	5	17 HR	15	Wearable sensors and sensors	50 Hz	Lab	1-3 years (9 males and 8	High risk infants due to an	linear discriminant analysis	The maximum classification accuracy for a task that inserts
al., 2017				inside shapes			females in the HR group ; 8	older sibling with autism	to extract features, SVM and	the ball into a clear tube open at both sides with mean accu-
							males and 7 females in the		extreme learning machine to	racy 75.0% and 81.67% with SVMs and ELM respectively.
							low risk)		analyse them	
Marko et	4	20	20	Robotic manipulandum	100 Hz	Lab	8-12 years (18 males, 2	ADOS or ADOS-2, ADI-R,	ANOVA, generalized linear	Abnormal patterns of motor learning in children with
al., 2015							females in ASD group, 16	WISC-IV	model, Chi-squares	autism spectrum disorder, showing an increased sensitivity
							males and 4 females in			to proprioceptive error and a decreased sensitivity to visual
							control group)			error
Anzulewicz	4	37	45	tablet (iPad mini)	10 Hz	Home	3-6 years old (25 males an	ICD criteria	Machine learning :	Greater forces at contact and with a different distribution of
et al., 2016							12 females in ASD group, 32		ExtraTree, random forest,	forces within a gesture, and gesture kinematics were faster
l í							males and 13 females in the		regularized greedy forest	and larger, with more distal use of space, 93% accuracy of
							control group)			classification of ASD children vs controls
Fleury et	4	23	20	Wacom Cintig 15- digitizing	142.8 Hz	Lab	4 -8 years old 3 female in	DSM-IV, ADI-R, ADOS.	Hierarchical linear regression	Children with ASD have an intact ability to consistently
al., 2013	-			tablet and pen			each group)	Stanford-Binet Intelligence		produce continuous movements, but increased variability in
				laster and pen		1	cuch group)	Scale-5		production of discontinuous movements
Snaraci et	4	16	54	Digitalised pen and tablet	25 Hz	Lab	5-11 years old (16 males and	IO (Bayen's Colored	ΑΝΟΥΑ	Virtual Pursuit Rotor was harder for children with ASD than
al 2015	-	10	1 57	(Wacom) with virtual pursuit	2.5 112	Lau	no female in ASD group 29	Prograssive Matrices task)		for TD controls matched for chronological ago and intelli
al., 2015				(wacom) with virtual pursuit			moles and 26 females in the	ADOS Deem Viewel Mater		for TD controls matched for chronological age and intern-
				Totor exercise		1	mates and 20 remaies in the	ADOS, Beery VISUAI IVIOIOF		tan magadura laaming (i.a. similarly inore marable mo-
						1	control group)	integration fest		TT) How a loss of CTT DT a 120
						1				11). However, closer analysis of C11, D1, and DP as well
						1				as 2D trajectories, showed different motor per- formance
						1				strategies in ASD, highlighting difficulties in overall actions
1	1		1	1	1					planning

DSM: Diagnostic and Statistical Manual of Mental Disorders, ADI-R: Autism Diagnostic Interview Revised, ADOS: Autism Diagnostic Observation Schedule, Movement Assessment Battery for Children (MABC-2), GARS: Gilliam Autism Rating Scale, WISC: Wechsler Intelligence Scale for Children, WPPSI: Wechsler Preschool and Primary Scale of Intelligence, ICD-10 : International Classification of Disease,

Table 2.4: Automatic assessment of movement used in social interactions

Author name	Evidence (1: best; 5: worst)	ASD	Control	Technology used	Frequency	Setting	Sociodemographics of the participants	Clinical assessment	Statistical/machine learning methods used to analyse the data	Main results of the study
Fitzpatrick et al., 2016	4	9	9	Pendulums using a magnetic motion tracking system (Polhemus Liberty, Polhemus Corporation, Colchester, VT, USA)	100 Hz	Lab	12–17 years old, (8 males, 1 female in ASD group; 7 males and 2 females in the control group)	DSM-IV-TR, ADOS-2, WASI	ANOVA	Less synchronisation in spontaneous and intentional interper- sonal motor coordination than controls
Fulceri, 2018	4	11	11	Wearable magneto-inertial sensor fixed through a support on both child and experimenter right wrists	4 Hz	Lab	5-10 years ; (10 males, 1 female in the ASD group 9 males, 2 females in the control group)	DSM-IV, ADOS , WPPSI	ANCOVAs, t-Tests	Impairment in joint action coordination when they had to rely only on kinematic information. They were not able to pay more attention to the kinematic cues in absence of a visual goal.
Marsh et al., 2013	4	8	15	Rocking chair and magnetic tracking system (Polhemus Fastrak, Polhemus Corporation, Colchester, VT).	60 Hz	Lab	2-8 years old , (8 females, 7 males in the control group)	ADOS, Mullen Scales of Early Learning	ANOVA	Disruption of spontaneous and intentional synchronisation
Delaherche et al., 2013	4	7	14	Single camera placed above the participants	25 Hz	Lab	4-11 years old (6 males and 1 female in the ASD group , 12 males, 2 females in the control group)	ICD-10, Vineland or PsychoEducational Profile-Revised	Mann-Whitney non-parametric tests, SVM classifier, continuous classifiers (SVR)	Features characterizing the gestural rhythms of the therapist and the duration of his gestural pauses were particularly accu- rate at discriminating between the two groups. The duration of the verbal interventions of the therapist were predictive of the age of the child in all tasks. Furthermore, more features were predictive of the age of the child when the child had to lead the task.
Xavier et al., 2018	4	29	39	Avatar and RGB-D sensor (Kinect TM 1)	25 Hz	Lab	6-20 years old (ASD 21 males, 5 females ; 23 males and 16 females in the control group)	DSM-5, WISC-4, ADI-R	generalized linear mixed model	Interpersonal synchronisation and motor coordination in- creased with age and was more impaired in children with ASD. Motor control was more impaired in ASD group
Boucenna et al., 2014	4	15	15	Nao robot and RGB	10 Hz	Lab	3-13 years old (13 males and 5 females in the ASD group and 9 males and 6 females in the control group)	ADI-R, Vineland, PEP, the Kaufman Assessment Battery for Children or WISC	Neural network (NN) and learning according to the number of recruited neurons	Learning was more complex with children with ASD com- pared to both adults and TD children
Guedjou et al., 2018	4	15	15	Nao robot and RGB	10 Hz	lab	3-13 years old (13 males and 5 females in the ASD group and 9 males and 6 females in the control group)	ADI-R, the WISC-IV, lobal Assessment Functioning (GAF)	NN and learning according to the number of recruited neurons	NN needs to learn more visual features when interacting with a child with ASD (compared to a TD child) or with a TD child (compared to an adult).
Bugnariu et al., 2013	5	4	4	12 camera motion analysis system at 120 Hz (Motion Analysis corp, Santa Rosa, CA)	120 Hz	Lab	6-12 years old (all males)	Not reported	Dynamic Time Warping algorithm	Children with ASD have poorer imitation behaviour (higher discrepancy values of imitation based on weighted joint angle contributions) during the dynamic task compared to control group.
Anzalone et al., 2014	4	16	16	Nao robot and RGB-D (Kinect [™] 1)	25 Hz	Lab	5- 13 years (13 males, 5 females in the ASD group, 9 males, 6 females in the control group)	ADI-R, Vineland, PEP, the Kaufman Assessment Battery for Children or WISC, GAF	K-means, Wilcoxon Mann Whitney rank-sum test, multivariate regression or a Linear Mixed Model (LMM), Fisher test	In ASD, JA skill depends on the interaction partner, and im- plies a higher motor and cognitive cost.
Anzalone et al., 2018	4	42	16	Nao robot and RGB-D (Kinect TM 1)	25 Hz	Lab	4-11 years old (37 males and 5 females in the ASD group, 12 males, 2 females in the control group)	ADI-R, WISC, the Kaufman- ABC or PEP-3	Mann-Whitney-Wilcoxon test	Body and head movements, gazing magnitude, gazing direc- tions (left vs. front vs. right) and kinetic energies features confirm the reveal the improvements of children behaviours after several months of training with a serious game.
Martin et al., 2018	4	21	21	computer-vision based head tracking (Zface)	30 Hz	lab	2.5-6.5 years old (17 males, 4 females in ASD group and 14 males, 7 females in the control group)	ADOS, ADI-R, DSM-IV, WPPSI-III or Mullen Scales of Early Learning	ANOVA	Children with ASD exhibited greater yaw displacement, indi- cating greater head-turning, and greater velocity of yaw and roll, indicating faster head-turning and inclination. Follow- up analyses indicated that differences in head movement dy- namics were specific to the social rather than the nonsocial stimulus condition.

Table 2.4: Automatic assessment of movement used in social interactions

Author	Evidence	ASD	Control	Technology used	Frequency	Setting	Sociodemographics	Clinical assessment	Statistical/machine	Main results of the study
name	(1: best;						of the participants		learning methods used to	
	5: worst)								analyse the data	
Campbell	4	82	22	Visualisation of video on a	30 Hz	Lab	1.5-2.6 years (17 males, 5	M-CHAT-R/F, ADOS-T,	t-test, Chi-squared test,	Only 8% of toddlers with ASD oriented to name calling on
et al., 2019				tablet, computer vision			females in the ASD group	MSEL	Linear model, Cox	>1 trial, compared to 63% of toddlers in the control group $(n=0.002)$. More latency to grid use significantly larger
				of the tablet			in the control group)		Kaplan-Meier Curves	for toddlers with ASD (2.02 vs 1.06 s, p=0.04). Sensitivity
										for ASD of atypical orienting was 96% and specificity was
										38%.

DSM: Diagnostic and Statistical Manual of Mental Disorders, ADI-R: Autism Diagnostic Interview-Revised, ADOS: Autism Diagnostic Observation Schedule, WISC: Wechsler Intelligence Scale for Children, WASI : Wechsler Abbreviated Scale of Intelligence, WPSI: Wechsler Preschool and Primary Scale of Intelligence, ICD-10 : International Classification of Disease, PEP : PsychoEducational Profile-Revised, MSEL: Mullen Scales of Early Learning, M-CHAT-R/F: M-CHAT-R/F Modified Checklist for Autism in Toddlers, Revised with Follow-Up (M-CHAT- R/F), CARS: Childhood Autism Rating Scale, ICBS: Infant and Caregiver Behavior Scale, M-CHAT: Modified Checklist for Autism in Toddlers

									1	
Author name	Evidence (1: best; 5: worst)	ASD	Control	Technology used	Frequency	Setting	Sociodemographics of the participants	Clinical assessment	Statistical/ machine learning methods	Main results of the study
Memari et al., 2013	5	80	0	Actigraph GT3X	30 Hz	Home	7-14 years old (55 males and 35 females in the ASD group)	DSM-4-TR, ADI-R	t-test, ANOVA, correlations, linear multiple regression	Substantial reduction in activity across the adolescent years in ASD, particulary less active in school compared to after-school.
Pan and Frey, 2006	5	30	0	Accelerometer	0.25 to 2.50 Hz	home	10–19 years (27 males and 3 girls)	Child/Adolescent Activity Log (CAAL)	t-tests, ANOVA	Elementary youth are more active than the other groups, regardless type of day or time period. There are no con- sistent patterns in physical activity of youth with ASD ac- cording to day or time period.
Bandini et al., 2013	4	53	58	Piezoelectric accelerometer (Actical TM)	0.03 Hz	Home	3–11 years (45 males and 8 females in ASD group ; 44 males and 14 in the control group)	ADI-R, Vineland, Differential Abilities Scale	t-tests, chi-square or Fisher	After adjustment for age and sex the amount of time spent daily in moderate and vigorous activity (MVPA) was sim- ilar in children with ASD (50.0 minutes/day, and typically developing children 57.1 minutes/day)
Cohen et al., 2013	3	15	15	Camera (home movies)	25-30 Hz	Home	0-1.5 years (10 males, 5 females in the ASD group and 9 males, 6 females in the control group)	ADI-R, CARS, Griffiths Mental Developmental Scale or WISC	generalised linear mixed model	Parents of infants who will later develop autism change their interactive pattern of behaviour by increasing father's involvement in interacting with infants; both are signifi- cantly associated with infant's social responses
Saint Georges et al., 2011	3	15	15	Camera (home movies)	25-30 Hz	Home	0-1.5 years (10 males, 5 females in the ASD group and 9 males, 6 females in the control group)	ADI-R, CARS, Griffiths Mental Developmental Scale or WISC, ICBS	Markov assumption, Generalised Linear Mixed Model, non negative matrix factorization	Babies with ASD exhibit a growing deviant development of interactive patterns. Parents of AD and ID do not differ very much from parents of TD when responding to their child. However, when initiating interaction, parents use more touching and regulation up behaviors as early as the first semester
Egger et al. 2018	2*	555 HR	1199	Smartphone camera (iPhone)	30 Hz	Home	1- 6 years old (447 males, 108 females in the high-risk group and 764 males, 435 females in the control group)	M-CHAT	Generalized linear mixed models, Linear regression models	An app-based tool to caregivers is acceptable due to their willingness to upload videos of their children, the feasibil- ity of caregiver-collected data in the home, and the appli- cation of automatic behavioural encoding to quantify emo- tions and attention variables

Table 2.5: Automatic Assessments of movement based on ecological settings assessment (accelerometers and home movies)

*: this study was done on a large sample with consecutive patients but the M-CHAT is a screening test and a criterion standard of diagnosis. ADI-R: Autism Diagnostic Interview-Revised, CARS: Childhood Autism Rating Scale, WISC: Wechsler Intelligence Scale for Children, ICBS: Infant and Caregiver Behavior Scale, M-CHAT: Modified Checklist for Autism in Toddlers

Chapter 3

An automatic handwriting diagnosis

"Il n'y a pas de fait normal ou pathologique en soi. L'anomalie ou la mutation ne sont pas en elles-mêmes pathologiques. Elles expriment d'autres normes de vie possibles."

Le normal et le pathologique, PUF, 1966 (NP) p. 91

"Je crois donc nécessaire de dénoncer les excès d'un idéologie scientiste, le plus souvent mensongère, qui débouche sur la mise en cause de la spécificité de l'être humain. L'utilisation du psychiatre comme régulateur d'une société normative et celle du médicament psychotrope prescrit en dehors de ses indications médicales commme planificateur de la passivité sociale ne doivent constituer un idéal pour personne"

Zarifian, E. (1999). Les Jardiniers de la folie. Odile Jacob.

This chapter is published, under the title "Automated human-level diagnosis of dysgraphia using a consumer tablet" [21]. Asselborn, T., Gargot, T., Kidziński, Ł., Johal, W., Cohen, D., Jolly, C., & Dillenbourg, P. (2018). Automated human-level diagnosis of dysgraphia using a consumer tablet. NPJ digital medicine, 1(1), 1-9.

Some aspects of this chapter were discussed in a comment paper [112]. We answered some of these points in [22]. The other are discussed in a following article presented in chapter 4.

Abstract

Introduction

The academic and behavioral progress of children is associated with the timely development of reading and writing skills. Dysgraphia, characterized as a handwriting learning disability, is usually associated with dyslexia, developmental coordination disorder (dyspraxia), or attention deficit disorder, which are all neuro-developmental disorders. Dysgraphia can seriously impair children in their everyday life and require therapeutic care. Early detection of handwriting difficulties is, therefore, of great importance in pediatrics. Since the beginning of the 20th century, numerous handwriting scales have been developed to assess the quality of handwriting. However, these tests usually involve an expert investigating visually sentences written by a subject on paper, and, therefore, they are subjective, expensive, and scale poorly. Moreover, they ignore potentially important characteristics of motor control such as writing dynamics, pen pressure, or pen tilt. However, with the increasing availability of digital tablets, features to measure these ignored characteristics are now potentially available at scale and very low cost.

Method

In this work, we developed a diagnostic tool requiring only a commodity tablet. To this end, we modeled data of 298 children, including 56 with dysgraphia. Children performed the BHK test on a digital tablet covered with a sheet of paper.

Results

We extracted 53 handwriting features describing various aspects of handwriting, and used the Random Forest classifier to diagnose dysgraphia. Our method achieved 96.6% sensitivity and 99.2% specificity.

Conclusion

Given the intra-rater and inter-rater levels of agreement in the BHK test, our technique has comparable accuracy for experts and can be deployed directly as a diagnostics tool.

3.1 Introduction

The rapid development of digital tablets in the last decade allowed us to extract new features and thus have access to new features hidden so far. It made possible the evaluation not only of the final product of handwriting (the static image), but also its dynamics. For instance, Esposito et al, used handwriting and drawing features from a Wacom tablet to see difference in motor performance according to Big Five Personality questionnaire [130].

It is also possible to tackle partially some of the limitations of tests to diagnose dysgraphia. Multiple studies have employed these new technologies to better under-stand writing disabilities. Pagliarini et al [304] used tablets to collect data on handwriting ability before handwriting is performed automatically. Quantitative methods allowed them to find patterns indicating potential future writing impairments at a very early age. Mekyska et al. [273] used a Random Forest model to classify children with dysgraphia. The authors included 54 third-grade Israeli children in the study and used a 10-item questionnaire for Hebrew handwriting proficiency (HPSQ) [336] to identify poor writing. In the adult population, automatic handwriting assessment tools were proposed for Parkinson's Disease as a potential biomarker [119]. In this work, we build on previous work in order to design a digital diagnostic tool. Compared to previously established results, we focus on clinical relevance in pediatrics. To this end, we analyzed data for children who have been clinically diagnosed with dysgraphia, and matched them with a cohort of children with typical development (TD). We maximized the potential impact of the work by focusing on the Latin alphabet—the most popular script worldwide, which is used by approximately 2.6 billion people. Moreover, we defined features related to those currently used in clinical practice. Our quantitative model leverages four categories of writing characteristics: the geometrical aspect of handwriting, and the use of pressure, tilt, and kinematics. We used a Random Forest classifier to predict dysgraphia. In the test set, approximately 96% of writers with dysgraphia were labeled correctly (true positive ratio), while less than 1% of children without dysgraphia were incorrectly diagnosed (false negative ratio). We obtained an F1-score of 97.98%.

After building the model, we explored and analyzed the most important features for the diagnosis of dysgraphia. In this analysis, we combined statistical analysis and collaboration with clinicians, exchanging examples and comments. The conclusions were then used to provide insights for the development of a new screening tool that would modernize the current gold-standard test, BHK.

3.2 Materials and methods

3.2.1 Participants

The present study was conducted in accordance with the Helsinki Declaration. It was approved by the Grenoble University Ethics Committee (Agreement No. 2016-01-05-79). It was conducted with the understanding and written consent of each child's parents, the oral consent of each child, and in accordance with the ethics convention between the academic organization (Laboratoire de Psychologie et NeuroCognition (LPNC)—Centre National Recherche Scientifique) and educational organizations.

A total of 242 Typically Developing (TD) children were recruited in 14 primary schools from various Grenoble suburbs to ensure differing socio-economic environments (*TD dataset*). Children from the first to fifth grade were recruited from 43 classes. None of the TD children included in the study presented known learning disabilities or neuromotor disorders.

The study also included 56 children with dysgraphia (*D dataset*) recruited at the Learning Disorders Clinic of Grenoble Hospital (Centre Referent des Troubles du Langage et des Apprentissages, Centre-Hospitalier-Universitaire Grenoble). They were all diagnosed with dysgraphia based on their BHK scores. The scores were assigned by a single rater.

In order to validate the analysis on the combined dataset of D and TD, we needed to compare age distributions in both groups. The Kolmogorov–Smirnov test showed no statistical difference (p=0.32) in terms of ages between the two distributions (D and TD datasets). Based on this result and the qualitative assessment of the Q–Q plot (see Figure 3.1), we concluded that there was no evidence of a difference between these two distributions and they could be treated jointly in the analysis.

For more information concerning the participants, we refer the reader to Table 3.1.

3.2.2 Data collection

The 298 children (TD dataset + D dataset) involved in this study performed the BHK test by writing on a sheet of paper affixed to a Wacom graphic tablet (sampling frequency=200

Figure 3.1: Quantiles of the TD dataset (x-axis) against the quantiles of the D dataset (y-axis). The points are closed from the diagonal dashed line and included in the confidence bounds, showing the similarity of the two distributions.

	Dataset	Grade 1	Grade 2	Grade 3	Grade 4	Grade 5
Ago (Std.) in yours	TD	6.77(0.29)	7.80(0.30)	8.75(0.27)	9.85(0.35)	10.90(0.38)
Age (Stu.) in years	D	6.83(0.10)	7.92(0.67)	8.97(0.53)	10.08 (0.67)	10.98(0.61)
Malos /Fomalos	TD	23/26	22/29	21/20	22/26	28/25
Wales/Females	D	2/0	14/6	9/3	14/1	7/0
Pight handed /L off handed	TD	41/8	48/3	38/3	41/7	46/7
Right handed/Left handed	D	2/0	16/4	11/1	13/2	7/0

Table 3.1: Summary statistics of the participants

Hz; spatial resolution=0.25 mm). A Wacom Intuos 4 tablet was used for the TD set, and a Wacom Intuos 3 for the D set. Pressure data were carefully calibrated between the two tablets. The BHK test consists of copying a text for 5 min. The first five sentences of the text are composed of monosyllabic words typically learned during first grade. Then the complexity of the words starts increasing. Scoring includes two dimensions: (1) handwriting velocity, calculated by counting the number of characters written; and (2) handwriting fluency, which takes into account only the first five sentences of the text and is assessed semi-quantitatively according to 13 clinical features (see Table 3.2 for details on the features used). The data was collected using Ductus software (LPNC laboratory) [169]. Doing so allowed children's handwriting parameters to be saved, including the x and y coordinates, pressure, and tilt of the pen, for every time frame at a maximum sampling rate of 200 Hz. In addition, the age, gender, and laterality of the writers were saved. The BHK tests of the children with dysgraphia (D dataset) were rated by one expert from the hospital in Grenoble. None of the BHK tests from the TD dataset were rated for

	BHK Item	Corresponding Feature
	Variation in Height of Small Letters (a, c, e, i, m, n,	×
er	o, r, s, u, v, w, x)	
stt	Incorrect Relative Height of letters	×
Ľ	Distorted Letters	×
	Ambiguous Shapes of Letters	×
	Handwriting Size	Handwriting Size
	Margin Shifted to the Right	×
	Non Linear Lines	Moment of Handwriting
	Words too Narrowed	Space Between Words
	Chaotic Writing (trace not fluid, too many change	Median of Power spectral of Tremor Frequencies [*] ,
ŧ	of directions during handwriting)	Bandwidth of Tremor Frequencies [*] , Median of Power
Ŀei		Spectral of Speed Frequencies [*] ,
	Loss of Links between Letters	In Air Time Ration [*] , Std. of Speed [*] , Std. of pressure [*] ,
	Superposed Letters	Handwriting Density [*]
	Modified Letters	Handwriting Density [*]
	Shaky Handwriting	Bandwidth of Tremor Frequencies, Median of Power
		spectral of Tremor Frequencies

Table 3.2: **Mapping between the extracted features and the BHK items**. *represents features which are not mapped directly to the BHK item but which are likely to explain a similar concept. The category of the BHK features is written in the left column.

	Feature	t-stat	p-value	Mean TD	Std. TD	Mean D	Std. D
	Moment of Handwriting	2.02	0.045	-25.02	73.45	-0.93	89.14
	Handwriting Density	2.10	0.037	84.48	42.40	99.31	65.36
	Space Between Words	-5.62	$5.36 \cdot 10^{-8}$	0.0049	0.0016	0.0031	0.0029
ti	Handwriting Size	-2.89	0.0042	3686.53	1213.11	3145.91	1222.67
Sta	Bandwidth of Tremor Freq.	5.92	$1.14 \cdot 10^{-8}$	$3.00\cdot10^{-3}$	$3.92\cdot10^{-4}$	$3.36\cdot10^{-3}$	$3.86\cdot10^{-4}$
	Median of Power spectral of	5.81	$2.02 \cdot \mathbf{10^{-8}}$	$3.18\cdot10^{-3}$	$1.77\cdot 10^{-4}$	$3.32\cdot10^{-3}$	$1.03\cdot10^{-4}$
	Tremor Freq.						
	Dist to mean of Tremor Freq.	3.65	$3.21 \cdot 10^{-4}$	$2.57\cdot10^{-4}$	$1.52\cdot 10^{-4}$	$3.56\cdot10^{-4}$	$2.38\cdot10^{-4}$

Table 3.3: A comparison between the two groups of writers (D dataset and TD dataset) for every feature based on the static handwriting features. For each feature, we report the mean and standard deviation in each group as well as the t-statistic and p-value from the comparison between the two groups.

dysgraphia, which means that some of these children might have dysgraphia, as well.

3.2.3 Features extraction

In this work, we tried to extract the spectrum of features that could describe handwriting in terms of different aspects, such as static, dynamic, tilt, and tremors.

We organized all the features into four categories:

- Static features—purely geometric characteristics of a written text.
- Kinematic features—dynamics of handwriting path.
- **Pressure features**—characteristics of the pressure recorded between the pen tip and the tablet surface.
- **Tilt features**—characteristics of the pen tilt. Every feature used in the analysis is described below

Static features

The design of the BHK and its scoring limit analysis to just the static aspects of handwriting. Each of the 13 BHK features can be classified into one of two categories. The first category regroups features which assess handwriting quality at a letter level. A direct translation of these features requires knowledge of the letter's shape. Since this would require a large-scale analysis of shapes of letters, which would be language-dependent due to variations in the Latin alphabet, we disregarded these features in the analysis. The second category of features focuses on higher-level aspects of handwriting. In this case, we were able to construct features related to BHK concepts. In this section, we outline the features engineered for the study. More details on the mapping between the BHK items and our static features can be found in Table 3.2.

Detailed analysis of all Static features can be found in Table 3.3.

Space between words:

The distance (in pixels) between words, averaged for the entire text and logged. *Handwriting density:*

A grid with 300-pixel cells covering the entire range of the handwriting trace was created. The number of points in each cell, if present, were stored in an array. The mean value of this array represented our approximation of the handwriting density.

Moment of handwriting:

To compute this feature, we extracted bins of 300 points (from the same line of text) and computed its barycenter. The distance in they direction between consecutive barycenters is computed and averaged for all of the points. This reflects the average direction of the written line, which could be a proxy for the "non-straight lines" item on the BHK.

Handwriting size:

To compute this feature, we extracted bins of 300 points (from the same line of text) and computed the total surface occupied by the box bounding the trace.

Tremor frequencies:

This feature quantifies shaky handwriting. For each child, we first divided the signal into bins of 600 points (as can be seen in Figure 3.2) and extracted from each of these bins the deviance from the handwriting path. To do so, two types of vectors were extracted, as we present at the top of Figure 3.2: for the first one, we computed a "global" vector by averaging bins of 10 points (represented in green in Figure 3.2). This vector represents the global direction of the handwriting movement in a restricted area of 10 points. The second vector is local as it is not averaged on bins of points. It simply links points inside this restricted area of 10 points (represented in blue in Figure 3.2). The cross product of these two vectors tells us how orthogonal the local vector is compared to the "global" vector. The greater the result of this operation is, the higher the deviance from the path is. We conjecture that shaky handwriting will result in local vectors being rarely aligned with their global counterparts and can then be detected with this method. For each of the 600 points, we log the norm of the cross product.

Figure 3.2: The whole process used to extract the frequency spectrum of our signal. (1) We first divided the BHK text into bins of 600 points. (2) For each packet, the signal was extracted. (3) We then computed the Fourier transform of the signal. (4) We took the average of all signals and finally performed a normalization. At the top of the figure is presented an example of a signal extracted from the data: the red dots are the point coordinates recorded by the device during handwriting. The vectors in blue are "local" vectors linking two consecutive points. The vector in green is the "global" vector (average of the nine blue vectors) representing the global direction of the handwriting. The cross product of these two vectors gives us an indication of the smoothness/shakiness of the handwriting. The image on the right comes from a writer with smoother/less shaky handwriting than the one on the left. The cross product operation will detect this difference
	Feature	t-	p-value	Mean	Std.	Mean D	Std. D
		stat	_	TD	TD		
	Mean Speed	-2.23	0.027	3.22	1.17	2.81	1.25
	Max Speed	2.81	0.0054	20.51	10.22	25.02	11.01
	Std. of Speed	2.17	0.031	2.50	0.78	2.78	1.07
	Increase (slope) of Speed	2.54	0.012	$1.65\cdot10^{-4}$	$3.37\cdot10^{-4}$	$3.41\cdot10^{-4}$	$6.98\cdot10^{-4}$
	Nb of Speed Peaks per secs	-0.70	0.49	0.038	$3.76 \cdot 10^{-3}$	0.037	$2.20 \cdot 10^{-3}$
tic	Mean Acceleration	-1.37	0.17	0.40	0.17	0.36	0.17
na	Max Acceleration	-0.72	0.47	6.17	16.34	4.58	2.12
ler	Std. of Acceleration	-0.22	0.83	0.43	0.30	0.42	0.17
N.	Increase of Acceleration	-0.40	0.69	$4.67\cdot10^{-5}$	$2.35\cdot10^{-3}$	$-8.51 \cdot 10^{-5}$	$1.10 \cdot 10^{-3}$
-	Bandwidth of Speed Freq.	20.86	$4.92 \cdot \mathbf{10^{-55}}$	$1.20\cdot 10^{-3}$	$1.97\cdot 10^{-4}$	$2.19\cdot 10^{-3}$	$5.24 \cdot 10^{-4}$
	Median of Power Spectral of	21.49	$5.12 \cdot 10^{-57}$	0.0013	$1.83 \cdot 10^{-4}$	0.0021	$3.34 \cdot 10^{-3}$
	Speed Freq.						
	Dist to mean of Speed Freq.	8.60	$1.23 \cdot 10^{-15}$	$2.84\cdot10^{-4}$	$1.39\cdot10^{-4}$	$5.62\cdot10^{-4}$	$3.49 \cdot 10^{-4}$
	In Air Time Ratio	6.94	$3.91 \cdot 10^{-11}$	0.52	0.075	0.61	0.11

Table 3.4: A comparison between the two groups of writers (D dataset and TD dataset) for every feature based on the handwriting kinematics. For each feature, we report the mean and standard deviation of the two groups as well as the associated t-statistic and p-value for the t-test.

We computed the Fourier transform on the vectors, regrouping the results of all of these cross products. Then, the average of all of the Fourier transforms coming from these different bins of 600 points (see Figure 3.2) was computed. In this manner, a normalization was finally achieved for every child in our database.

With this analysis, we aimed to quantify the tremor/shaky aspect of handwriting, which would then be translated by higher frequencies or a wider bandwidth in the spectral domain.

For example, we extracted the range of frequencies covering 90% of the spectral density. Our hypothesis is that, the smaller this value is (meaning that the distribution is more clustered), the more proficient the writer is. A writer having a huge bandwidth will not be fluent as they are less consistent in their movements. This feature is called Bandwidth of Tremor Frequencies.

Motivated by this concept, we also extract the median of the power spectral density. A higher value of this feature indicates a higher presence of high frequencies. We refer to this feature as Median of Power Spectral of Tremor Frequencies.

The last feature we define in this context is the distance between the spectral distribution of the writer to the averaged spectral distribution of all the writers in our database. The higher this distance is, the more eclectic the handwriting of this particular writer. This feature is called Distance to Mean of Tremor Frequencies.

Kinematic features

Detailed analysis of all kinematic features can be found in Table 3.4.

Handwriting speed:

We hypothesize that abnormal variability in speed is indicative of handwriting problems. We quantify the speed as the distance traveled by the pen divided by the time taken. Although Wacom data is collected at 200 Hz, we noticed high frequency noise, and, to remedy this issue, we applied a moving average filter with n=10 and then subsampled every 10th point. We only kept the measurement if the pen stayed on the surface during the 10 points (no in-air time). Finally, we computed the mean, maximum, and standard deviation for each user. With this technique, we had access to the local handwriting speed every 10 points. We then performed a linear regression to compute the evolution of the handwriting speed. Motivated by insights from clinicians, we also computed the number of speed peaks per seconds. To that end, we applied a Gaussian filter to the signal of velocity over time, and we computed the number of local maxima and minima extracted. We expect that the number of peaks should grow with the total duration of the test, and, therefore, we normalize this number by time.

Handwriting speed frequencies:

We can interpret handwriting as a two-dimensional time series. As such, we can apply common time-series analysis techniques, and, in particular, we compute the Fourier transform. We conducted the process described in Figure 3.2 and then we extracted the Bandwidth of speed frequencies, the Median of power spectral of speed frequencies, and the Distance to mean of speed frequencies.

Handwriting acceleration:

Acceleration is another measure of variability in speed. We computed the mean, maximum, and standard deviation of acceleration following the same procedure as that used to extract the mean, maximum, and standard deviation of handwriting speed.

In-air time ratio:

The in-air time ratio represents the proportion of time spent by the writer without touching the surface of the tablet. It was found to be a discriminative feature in a recent study interested in the analysis of dysgraphia [338, 339].

	Footuro	+	n-valuo	Moon	Std	Moon D	Std D
	reature	stat	p-varue		TD		Siu. D
		June					
	Mean Pressure	1.10	0.27	493.25	116.79	676.24	2193.71
	Max Pressure	1.56	0.12	968.27	93.26	1386.66	3540.76
	Std. of Pressure	1.53	0.13	203.84	39.54	283.80	686.99
	Mean Speed of Pressure	-9.01	$7.50\cdot\mathbf{10^{-17}}$	0.23	0.091	0.015	0.26
	Change						
	Max Speed of Pressure Change	-2.96	0.0034	13.83	3.77	10.69	12.35
	Std. of Speed of Pressure	-0.29	0.77	2.50	0.67	2.37	5.79
e	Change						
ms	Increase of Speed of Pressure	2.71	0.0070	$-2.41 \cdot 10^{-5}$	$4.89\cdot10^{-5}$	$-4.32 \cdot 10^{-6}$	$4.21\cdot10^{-5}$
es	Change						
$\mathbf{P}_{\mathbf{r}}$	Nb of Peaks of Speed of	-8.39	$\textbf{4.63} \cdot \textbf{10}^{\text{-15}}$	0.0035	$6.9\cdot10^{-4}$	0.0026	$6.72\cdot10^{-4}$
	Pressure Change						
	Bandwidth of Speed of	-0.46	0.65	0.0017	$1.93\cdot 10^{-4}$	0.0017	$2.29\cdot10^{-4}$
	Pressure Change Freq.						
	Median of Power Spectral of	3.20	0.0016	0.0022	$1.60\cdot10^{-4}$	0.0023	$2.16\cdot10^{-4}$
	Speed of Pressure Change Freq.						
	Dist to Mean of Speed of	4.87	$2.09 \cdot 10^{-6}$	$1.72\cdot 10^{-4}$	$6.26\cdot10^{-5}$	$2.31\cdot 10^{-4}$	$1.15 \cdot 10^{-4}$
	Pressure Change Freq.						

Pressure features

Table 3.5: A comparison between the two groups of writers (D dataset and TD dataset) for every feature based on the pressure between the pen and tablet surface. For each feature, we compute the mean and standard deviation of the two groups as well as the t-statistic and p-value for the t-test.

Detailed analysis of all pressure features can be found in Table 3.5.

Pressure: The first features concerning the pressure are simply the mean, maximum, and standard deviation of the pressure.

Speed of pressure change:

To compute the speed of pressure change, we used the same method we used for the speed of handwriting. We worked with averaged buckets of 10 points and divided the

time spent by the difference between these two averaged bins of points. The mean, maximum, and standard deviation of these measures can then once again be extracted. The number of peaks of speed of pressure change during handwriting was also extracted. A Gaussian filter was applied to the signal and local minima and maxima of this filtered signal were extracted and normalized by the total amount of handwriting time (excluding the in-airtime).

Speed of pressure change frequencies:

The speed of pressure change can be seen as a time-series, and frequencies can be extracted using a Fourier transform. The same process as that described in Figure 3.2 is followed to extract the Bandwidth of speed of pressure change frequencies, the Median of power spectral of speed of pressure change frequencies, and the Distance to mean of speed of pressure change frequencies.

3.2.4 Tilt features

The Wacom system logged the data measuring the pen tilt with two different angles, which we referred to in this paper as the Tilt-x and Tilt-y angles (see Figure 3.3 for more details). Both angles are measured in the range between -60° and 60° . The tilt-x reflects the inclination of the pen in the direction of the written line, and the tilt-y reflects the inclination of the pen below the written line.

Figure 3.3: The two angles (tilt-x and tilt-y) recorded for the pen. The black arrow represents the pen, and the red segments represent its projection on the XZ and YZ planes, respectively.

Tilt:

Detailed analysis of all tilt features can be found in Table 3.6.

Simple features were extracted for both angles, namely the mean, maximum, and standard deviation of the measurement.

Speed of tilt change:

We computed the speed of tilt-x/tilt-y change in the same way as before, and we extracted the mean, maximum, standard deviation, and number of peaks. Finally, we also computed the evolution of the speed of tilt-x/tilt-y change over time.

Frequency of speed of tilt change:

	Feature	F	p-value	Mean	Std.	Mean D	Std. D
		statistic		TD			
	Mean Tilt-x	-1.67	0.096	607.10	53.01	592.90	61.48
	Mean Tilt-y	-0.29	0.77	1233.29	629.65	1204.48	669.94
	Max Tilt-x	2.72	0.0071	727.74	75.17	759.64	79.62
	Max Tilt-y	5.73	$3.02 \cdot 10^{-8}$	1788.75	819.03	2517.14	843.35
	Std. of Tilt-x	3.56	$4.55 \cdot 10^{-4}$	40.43	14.25	49.00	19.40
	Std. of Tilt-y	0.64	0.52	169.59	269.26	193.70	131.81
	Mean Speed of Tilt-x change	-1.60	0.11	0.024	0.014	0.021	0.012
	Mean Speed of Tilt-y change	-1.15	0.25	0.031	0.15	0.0077	0.043
	Max Speed of Tilt-x change	-1.10	0.27	1.66	0.76	1.54	0.68
	Max Speed of Tilt-x change	1.41	0.16	8.38	18.89	12.74	23.43
	Std. of Speed of Tilt-x change	3.18	0.0017	0.18	0.04	0.20	0.037
	Std. of Speed of Tilt-y change	-0.61	0.54	1.04	2.55	0.82	1.16
	Increase of Speed of Tilt-x	0.29	0.77	$6.32 \cdot 10^{-7}$	$6.16 \cdot 10^{-6}$	$9.17 \cdot 10^{-7}$	$7.03 \cdot 10^{-6}$
	change						
It	Increase of Speed of Tilt-y	-0.98	0.33	$9.89\cdot10^{-6}$	$9.66 \cdot 10^{-5}$	$-2.83 \cdot 10^{-6}$	$1.36 \cdot 10^{-5}$
Ë	change						
	Nb of peaks of Tilt-x Speed	-0.47	0.64	1174.56	235.35	1156.01	307.94
	Nb of peaks of Tilt-y Speed	-1.30	0.19	1093.54	220.77	1045.73	285.59
	Bandwidth of Speed of Tilt-x	9.08	$4.73 \cdot 10^{-17}$	$3.42\cdot10^{-3}$	$2.42 \cdot 10^{-4}$	$3.92\cdot10^{-3}$	$5.74 \cdot 10^{-4}$
	Change Freq.						
	Median of Power Spectral of	1.33	0.19	$3.34 \cdot 10^{-3}$	$2.49 \cdot 10^{-5}$	$3.35 \cdot 10^{-3}$	$6.26 \cdot 10^{-5}$
	Speed of Tilt-x Change Freq.						
	Dist to Mean of Speed of Tilt-x	12.56	$6.36 \cdot 10^{-28}$	$2.27\cdot 10^{-4}$	$4.35 \cdot 10^{-5}$	$4.34\cdot10^{-4}$	$2.04 \cdot 10^{-4}$
	Change Freq.						
	Bandwidth of Speed of Tilt-y	6.19	$2.64 \cdot 10^{-9}$	$3.45 \cdot 10^{-3}$	$2.72 \cdot 10^{-4}$	$3.72 \cdot 10^{-3}$	$3.36 \cdot 10^{-4}$
	Change Freq.						
	Median of Power Spectral of	-9.66	$8.93 \cdot 10^{-19}$	$3.35. \cdot 10^{-3}$	$2.30 \cdot 10^{-5}$	$3.30. \cdot 10^{-3}$	$4.38 \cdot 10^{-5}$
	Speed of Tilt-y Change Freq.						
	Dist to Mean of Speed of Tilt-y	7.97	$7.24 \cdot 10^{-14}$	$2.26\cdot10^{-4}$	$2.79 \cdot 10^{-5}$	$2.85\cdot10^{-4}$	$8.57 \cdot 10^{-5}$
	Change Freq.						

Table 3.6: A comparison between the two groups of writers (D dataset and TD dataset) for every feature based on the tilt between the pen and tablet surface. For each feature, we report the mean and standard deviation of the two groups as well as the t-statistic and p-value.

Using the same method as before, we computed the Bandwidth of speed of tilt change frequencies, the Median of power spectral of speed of tilt change frequencies, and the Distance to mean of speed of tilt change frequencies.

3.3 Results

As described previously, our database is not balanced in terms of positive and negative examples (242 TD children versus 56 D children), which can skew the model towards a larger subpopulation. In order to validate the accuracy, we divided our data into two disjoint sets.

- Training set —70% of TD dataset and 70% of D dataset.
- Testing set —30% of TD dataset and 30% of D dataset.

A k-fold cross-validation [179] (with k=25) on a Random Forest classifier [57] was performed in order to test our model. Due to the differences between positive (children with dysgraphia) and negative examples (children without dysgraphia) in the database, reporting the overall accuracy might be misleading (a model that always predicts non-dysgraphia will be ~75% accurate). Following machine learning literature, we report the F1-Score. The F1-Score is the harmonic mean of Precision and Recall. Therefore, the

score takes both false positives and false negatives into account, making it more comparable across studies with different proportions of classes. The F1-score is defined as

$$F1 - Score = 2 \cdot \frac{Precision \cdot Recall}{Precision + Recall}$$

where

$$Recall = \frac{TruePositive}{TruePositive + FalseNegative}$$

and

$$Precision = \frac{TruePositive}{TruePositive + FalsePositive}$$

In our case, the *True Positive* ratio corresponds to the proportion of children with dysgraphia correctly labeled correctly, while the *False Negative* ratio refers to the proportion of children with dysgraphia incorrectly labeled improperly. Finally the *False Positive* ratio defines the proportion of children without dysgraphia incorrectly labeled with dysgraphia.

For our model, after the 25-fold cross-validation, we obtained a F1-score of 97.98% (Std. of 2.68%). We found this result very satisfactory given the small number of recordings of writing of children with dysgraphia used for training the model. We also conjectured that a larger sample would improve the generalizability and robustness of the model.

3.3.1 Robustness of the test

To validate the robustness of the test, we measured how much data per user was needed in order to accurately predict dysgraphia. To that end, we trained the model, using only the first seconds of the test, while keeping the same workflow of training, including the k-fold validation (k=25). In Figure 3.4, we present the F1-score as a function of the length of the portion of the test used to train the model. For example, 15 s means that only the data recorded during the first 15 s of the BHK test were used to train the model. We can see that, after 15 s of testing, the results are already satisfactory (F1-Score of 77.21%), but the high standard deviation (10.34%) may indicate that the model is not generalizable. After 50 s of testing, the F1-Score reaches 93.93%, while the standard deviation drops to 4.6%. For any longer periods of time, the results improve only marginally.

We believe that this result indicates the robustness of our features. Indeed, even with the noise coming with the restricted portion (for example, 15 s) of the test used (a smaller number of examples means less statistical significance), our model still manages to extract relevant information from the features measured. This is an indirect benefit compared to the BHK test, which must be interpreted in its entirety.

3.3.2 Discriminative features

In order to analyze the most discriminative features, we first sort them by importance. Following machine learning literature, we use one of the most popular choices, Gini importance [57]. Table 3.7 presents the eight most important features (i.e., the most discriminative) emerging from the Random Forest model (averaged over 25 folds). Features related to frequencies seem to be very discriminative as six out of eight of the most important features are related to frequencies. Features from all four of our categories are represented among the eight most discriminative features: three are kinematic features,

Figure 3.4: Box plot representing the F1-score as a function of time period of the test used for training. We used Random Forest for classification, and each model was trained following the same k-fold, cross-validation procedure with k = 25

Rank	Category	Name	Importance
			(Std.)[%]
1	Kinematic	Median of Power Spectral of Speed Frequencies	15.71 (9.06)
2	Kinematic	Bandwidth of Speed Frequencies	12.08 (8.00)
3	Pressure	Mean Speed of Pressure Change	9.81 (6.52)
4	Static	Space Between Words	7.45 (6.73)
5	Tilt	Distance to Mean of Speed of Tilt-X Change	6.07 (4.30)
		Frequencies	
6	Kinematic	Distance to Mean of Speed Change Frequencies	5.18 (4.73)
7	Tilt	Bandwidth of Speed of Tilt-X Change Frequencies	4.10 (4.64)
8	Tilt	Median of Power Spectral of Tilt-Y Change	2.97 (3.33)
		Frequencies	

Table 3.7: The most important features found by the Random Forest model, using Gini importance as a metric. We report the ranks, features categories and their importance averaged for the 25 folds and the standard deviation of importance over all folds.

three represent tilt, one is related to pen pressure, and one is a static feature. In the next section, we will analyze these features further

We notice that only one of these features, the space between words, could be extracted if we only had access to the final output of handwriting. This reassures us concerning the value of the digital tablet in assessing handwriting as it provides us access to important information previously inaccessible to clinicians analyzing standard tests, such as the BHK.

3.4 Discussion

3.4.1 Clinical Features Analysis

The most discriminative static feature we found was the Bandwidth of Tremor Frequencies (see left graph of Figure 3.5). This feature represents the range of tremor frequencies found in the handwriting of the writer under investigation. A high value for this feature means that many tremors were extracted from the handwriting. In Figure 3.6, we present an example of handwriting from a child without dysgraphia (on the left) and a child with dysgraphia (on the right). The handwriting of the non-dysgraphic child appears to be smooth. Conversely, the handwriting of the dysgraphic writer is not smooth; we can see easily some high-frequency shaking (as in the apostrophe or at the end of the "a"). We hypothesize that this characteristic results in an important value of the Bandwidth of Tremors Frequencies feature. The dysgraphic child hesitates more when forming letters, and it is harder for them to control the pen smoothly. This lack of smoothness is indicative of poor motor control, resulting in more noise. Interestingly, this feature is related to the BHK item hesitation and shaking. According to the therapists, a score of 0 (highest score) was obtained by the non-dysgraphic child for this feature, while a score of 3/5 (a low score) was obtained by the dysgraphic child.

Figure 3.5: Distribution of the features of the children with dysgraphia (D dataset) and the without dysgraphia (TD dataset). For static features: Bandwidth of Tremors Frequencies and the Space Between Words features. For kinematic features: Median of Power Spectral of Speed Frequencies and the In Air Time Ratio features. For tilt features: Median of Power Spectral of Speed of Tilt-y change and the Bandwidth of Power Spectral of Speed features

Figure 3.6: A comparison of different metrics for a without dysgraphia child (left) and a child with dysgraphia (right)

Concerning the Space Between Words feature, we can see in the right graph of Figure 3.5 that the children without dysgraphia tends to put more space between the words they write. This is related to the BHK item called narrow words. This BHK item indicates pathology if it is not possible to insert the letter "o" between each pair of words, meaning that not enough space is left. Moreover, in the case of dysgraphia, the writing is barely automatized, leading to irregular spaces between words. This irregularity is attested to by the difference in standard deviation that we can observe between the two groups (for more details, see Std. TD and Std. D in Table 3.3).

The most discriminative kinematic feature we found was the Median of the Power Spectral of Speed Frequencies. This feature indicates that the speed frequencies of children with dysgraphia are shifted toward high frequencies (see left graph of Figure 3.5). In Figure 3.6 b, we present an example of the handwriting of a child without dysgraphia on the left and a child with dysgraphia on the right. The color corresponds to the handwriting speed at the time the points were recorded. In the child's with dysgraphia handwriting, we observe very rapid changes in speed (rapid acceleration and deceleration), contrary to what can be found in the handwriting of the writer without dysgraphia. It is interesting to note that the features linked with acceleration were not found to be discriminative as these sudden changes of speed are local (compensated for by long periods of constant speed). These sudden changes of speed are translated into high frequencies during the Fourier transformation. This feature relates the fact that we can find more saccades during the handwriting of the child with dysgraphia due to the lack of automation and control in his/her hand movements. In the case of the BHK test, the only feature related to the kinematics of handwriting is the number of characters written after 5 min. The results of this very basic feature show that the children with dysgraphia are slower than the ones without dysgraphia.

Another interesting feature that was found to be discriminative was the in-air time (the proportion of time spent with the pen not touching the surface of the tablet), as can be seen in the right graph of Figure 3.5. This result appears to be in line with previous findings [338].

As can be seen in Figure 3.5, the frequencies extracted from the speed of tilt change are very discriminative of dysgraphia. Concerning the Tilt-y, in contrast to what was observed for other categories of features, we can see that the non-dysgraphic children seem to exhibit higher frequencies during their handwriting. This finding is highlighted in Figure 3.6c. For every point recorded, the color of the trace represents the speed of the tilt-y change. We can see that the child with dysgraphia stays very constant, maintaining the tilt-y of his/her pen (almost no variations in the speed of the tilt-y change, with small absolute value). The child without dysgraphia, in contrast, presents very rapid variations in his/her tilt-y change speed (rapid acceleration and deceleration). These very sudden variations are translated into high frequencies in the Fourier domain, shifting the median of the power spectral to high frequencies. Thus, we can infer that the child without dysgraphia is able to change very frequently and quickly the tilt of his/her pen in the y-axis, whereas the child with non-dysgraphia displays less tilt-y variation abilities, probably due to a more constraining and rigid pen grip.

Concerning the tilt-x, although the distribution of children with dysgraphia is very spread out (see the right graph of Figure 3.5), the children with dysgraphia seem to present a larger range of frequencies in their handwriting concerning the speed of tilt-x change than seen typically in developing children. This means that they are not constant in the way they move their pen in the ZX plane (see Figure 3.3 for more details). This finding is

highlighted in Figure 3.6. For every point recorded, the color of the trace represents the speed of the tilt-x change. We can see more variations in the speed of tilt-x change for the child with dysgraphia compared to that of the child without dysgraphia, who seems to present more control in his/her movement. Contrary to the pen tilt in the direction perpendicular to the handwriting global direction (perpendicular to the lines of the paper sheet), proficient writers exhibit less variations (more control) in the speed of tilt change (and also the tilt, itself) in the direction of the lines of the paper sheet.

3.4.2 Correlation between features

We analyzed correlations between pairs of 53 features extracted throughout this study. We found a strong, positive correlation between the median of the power spectral of speed frequencies and the bandwidth of speed frequencies (Pearson's test: r = 0.96, p < 0.001), as well as between the median and the distance to mean speed change frequencies (Pearson's test: r = 0.65, p < 0.001). In other words, these three features describe the same "abnormal" high-speed frequencies in the handwriting: the more a child's frequencies differ from the average, the more these frequencies will be shifted towards high frequencies.

This finding encouraged us to test a simpler model, using only the median of the power spectral of speed frequencies. Despite the high correlation between the median and the bandwidth, adding the additional feature still has additional predictive power, as indicated by our cross-validation process. In particular, the model with both features presents a F1 score of 0.98 (Std. = 0.03), while the simplified model has an F1 score of 0.95 (Std. = 0.05). We conjecture that two correlated features, despite being linearly correlated, are still discriminative in a non-linear manner. Thanks to the robustness of the Random Forest in terms of correlations and non-linear structures, we obtained better results. We decided to report on the more accurate model, leaving the decision to decrease model complexity to the user.

3.4.3 Main findings

We designed a method allowing clinical assessment of dysgraphia using a consumer tablet. Compared to existing tools, our method is cheaper, faster, free of human bias, validated on clinical data, and is applicable to Latin alphabet. The method leverages information contained not only in static writing but also in its dynamics. These characteristics make it useful not only as a clinical diagnostic tool, but also as a tool for parents or guardians to obtain high-quality assessment more frequently throughout development of the child. Granularity of the features allows to obtain more specific diagnosis and can lead to design of new exercises tailored to specific motor-impairments. In this section, we discuss accuracy, clinical relevance, applicability, and potential impact of our work.

On average, 96.6% (standard deviation of 5.02%) of the writers with dysgraphia were diagnosed correctly, while we achieved a 0.78% (standard deviation of 1.82%) false positive rate. The final model reached an F1-Score of 97.98% (standard deviation of 2.68%) Note that the inter-rater correlation in BHK is 0.89 [82]. Since our algorithm outperforms this value, we conclude that the algorithm learned to mimic the rater. These findings suggest that adding data from other raters should not only reduce bias, but also allow us to surpass the accuracy of each individual rater.

Our diagnostic system has the advantage of being almost costless (not including the cost of the tablet) and very fast (only a few milliseconds to deliver the diagnosis compared

to 10 min for the BHK test). It also reduces subjectivity as the model is permeable to all the external parameters that can bias a human. Moreover, it is interesting to see that, among the 53 features used by our model, most of them are very technical and "low level", i.e., measuring the mechanics of writing. In that way, our test is more robust to differences in handwriting style, language, and understanding of the text by the subject. Indeed, these features (for example, the three most discriminative features: the Median of Power Spectral of speed frequencies, the Bandwidth of Speed Frequencies and the Mean Speed of Pressure Change) can be interpreted the same way independently of the language or handwriting direction. For example, languages written from right to left, such as Hebrew, or from left to write, such as French, still share the same low-level characteristics. In future work, we envision testing the method for its robustness with other tests and, especially, other languages. Whenever the retraining of the model is needed, we are interested in validating it if an overlap between the most predictive features is large.

As the model includes 53 criteria of a child's handwriting, the system helps us to build a more precise profile of the child compared to standard tests, in which only a few different criteria are available. Moreover, our model has the consequent advantage of not being restricted to the use of static features, such as in the current standard tests, but also uses kinematics, pressure, and tilt features. In the BHK test, the 13 items reflect what is wrong in the final product of the child's handwriting, but do not give indications on why it is wrong. We believe that our system explores the handwriting pathology at a deeper level, and it permits analyzing the handwriting characteristics that lead to the imperfections seen in the final product. This brings with it potential therapeutic value, especially for remediation. Given new features, it is now possible to reach a more specific diagnosis rather than the general binary indication of dysgraphia. This will help clinicians focus on specific remediation exercises (e.g., exercises to increase the stability of the pen tilt or the change in pressure necessary for handwriting automation).

3.5 Conclusion

We demonstrated, using handwriting's static, dynamic, pressure, and tilt features extracted from a digital tablet, that we could diagnose dysgraphia very accurately. We believe that the knowledge gained from the analysis of the features extracted during this study can be applied to design a new test to diagnose dysgraphia. This modernized test has the advantage to also assess the dynamic of handwriting, and the pressure of the pen as well as its tilt. In the future, we hope to design a new test with words maximizing the feature differences between children with and without dysgraphia.

Electronic tablets that are not expensive and easily interpretable algorithms such as random forest algorithms (See Figure 2.6), can allow us to extract relevant handwriting features. These allow to classify properly and eventually with a better reproductibility writing disorders. However, the same input needs to be interpreted differently depending on the age. The same writing sample can be normal for a child of 6, and pathological for a child of 10 since it is expected that, with age and training, the motor performances become better. In the next section, we will describe the normal development and to show which kind of digital features are the most important, depending on the age, to discriminate the children who need a diagnosis and ultimately a treatment and those who don't. Finally, reducing the clinical heterogeneity, thanks to the creation of subroups (i.e., clusters), allow to study the specific evolution, impairment and effect of treatment in more homogeneous

subgroups.

Authors contribution

Guarantor: T. Asselborn had full access to the study data and took full responsibility for the integrity of the final decision to submit the manuscript. Data collection: Jolly. Data analysis: Asselborn, Kidziński, Gargot, Medical interpretation based on published literature and data analysis : Gargot, Cohen. Drafting of the manuscript: Asselborn, Kidziński, Gargot, and Johal. Critical revision of the manuscript: All. Supervision: Dillenbourg.

Data and code availability

As it is possible to identify participants from the data, ethical requirements do not permit us to share participant data from this study.

Code is available from the corresponding author, thibault.asselborn@epfl.ch, upon reasonable request.

Chapter 4

Writing development and a new classification of dysgraphia

"Mental disorders are chronic diseases of the young."

Insel, T. R., & Fenton, W. S. (2005). Psychiatric epidemiology: it's not just about counting anymore. Archives of general psychiatry, 62(6), 590-592.

"Si l'on veut dépasser les contradictions entre ce qui est d'ordre biologique et ce qui relève du psychologique, ou encore entre le psychologique et le sociologique, il faut étudier l'homme dès le commencement, non seulement sur le plan de la phylogenèse, mais sur le plan de sa propre ontogenèse et prendre connaissance de ce que lui offre la nature, mais également de ce que l'homme construit dans le cadre de son environnement. Les ténèbres de l'enfance ne sont ni simple obscurité silencieuse, comme le veulent certains, ni clarté illuminante, comme le prétendent d'autres. Elles sont la confrontation de l'être avec le monde, la naissance d'une opacité constructive, l'ouverture de l'organisme envers sa propre structure et envers le réel, réel qu'il transforme et fait, de son expérience individuelle, un général transmissible et communicable."

Julian de Ajuriaguerra, Bulletin de Psychologie, 1981, 391 (42) 658 et (43) 690, cité par Alain Berthoz, 1993

This chapter was published in Plos One journal, under the title "Acquisition of handwriting in children with and without dysgraphia: A computational approach", Gargot, T., Asselborn, T., Pellerin, H., Zammouri, I., M. Anzalone, S., Casteran, L., Johal, W, Dillenbourg, P., Cohen, D. & Jolly, C. (2020). PloS one, 15(9), e0237575.

Abstract

Introduction

Handwriting is a complex skill to acquire and it requires years of training to be mastered. Children presenting dysgraphia exhibit difficulties automatizing their handwriting. This can bring anxiety and can negatively impact education.

Materials and methods

280 children were recruited in schools and specialized clinics to perform the Concise Evaluation Scale for Children's Handwriting (BHK) on digital tablets. Within this dataset, we identified children with dysgraphia. Twelve digital features describing handwriting through different aspects (static, kinematic, pressure and tilt) were extracted and used to create linear models to investigate handwriting acquisition throughout education. K-means clustering was performed to define a new classification of dysgraphia.

Results

Linear models show that three features only (two kinematic and one static) showed a significant association to predict change of handwriting quality in control children. Most kinematic and statics features interacted with age. Results suggest that children with dys-graphia do not simply differ from ones without dysgraphia by quantitative differences on the BHK scale but present a different development in terms of static, kinematic, pressure and tilt features. The K-means clustering yielded 3 clusters (Ci). Children in C1 presented mild dysgraphia usually not detected in schools whereas children in C2 and C3 exhibited severe dysgraphia. Notably, C2 contained individuals displaying abnormalities in term of kinematics and pressure whilst C3 regrouped children showing mainly tilt problems.

Discussion

The current results open new opportunities for automatic detection of children with dysgraphia in classroom. We also believe that the training of pressure and tilt may open new therapeutic opportunities through serious games.

4.1 Introduction

Despite the inherent progressive learning of writing, so far no study using digital features took into account age and had a developmental approach. We still do not know how the selected features classifying children with dysgraphia evolved in children with typical development (TD). In addition, we don't know whether their ability to detect children with dysgraphia changed with age.

In the current study, we aimed to extend our work, from the previous chapter [21] addressing the effect of age, and the heterogeneity of dysgraphia. Our objectives were the following:

- First, we aimed to present the learning and acquisition of handwriting from a developmental approach (according to child age). We explored TD children in order to better understand typical development (TD dataset only) and children with dysgraphia (D dataset)
- 2. Second, we aimed to identify the best features, to diagnose children with dysgraphia (according to age) both using the clinical gold standard method as well as relevant digital features [21].

Isolated disorder: n=26 (55,3%)	n=
DCD	5
DL	9
ADHD	7
dyscalc	3
dysph	2
2 comorbiditiess: n=15 (31,9%)	
DCD/DL	1
DCD/ADHD	2
DCD/dysph	2
DL/ADHD	4
DL/dyscalc	1
DL/dysph	2
ADHD/dysph	2
dyscalc/dysph	1
3 comorbidities: n=5 (10,7%)	
DCD/DL/ADHD	2
DCD/ADHD/dyscalc	1
DL/ADHD/dysph	1
DCD/DL/executive disorder	1
4 comorbidities: n=1 (2,1%)	
DCD/DL/ADHD/dysph	1

Table 4.1: Diagnosis of children in the specialized clinic

DCD: developmental coordination disorder, DL: dyslexia, ADHD: Attention Deficit Hyperactivity Disorder, dyscalc: dyscalculia, dysph: dysphasia

3. Third, we performed unsupervised clustering of children with dysgraphia by applying a K-means clustering of discriminative digital features, to assess how many clusters of patients had a similar profile and to identify their main characteristics.

4.2 Materials and methods

4.2.1 Participants

The present study was conducted in accordance with the Declaration of Helsinki and was approved by the Grenoble University Ethics Committee (agreement no. 2016-01-05-79). It was conducted with the understanding and informed written consent of each child's parents and the oral consent of each child. In total, we recruited 280 children. Two hundred thirty-one children were recruited at different schools from Grenoble area. The exclusion criteria were: having a known specific disability or characterized disorder like any neurodevelopmental disorder and being a non-French native. In this study no specific neurological and cognitive assessments were conducted. The absence of disorders was assumed using the teachers' judgments of children's academic achievement. Fortynine children were recruited on the basis of a clinical diagnosis of dysgraphia from the Reference Center for Language and Learning Disorders at Grenoble University Hospital, a specialized clinic for learning impairments. Since the diagnosis of dysgraphia is not recommended during the 1^{st} grade the children with dysgraphia from this specialized clinics are reported in Table 4.1.

Table 4.2:	Clinical-Gol	ld Standard	(BHK	scores)	and	digital	features o	n handw	vriting.
			\ \						

		Writing is too large		
		Widening of left-hand margin		
		Bad letter or word alignment		
		Insufficient word spacing		
		Chaotic writing		
	BHK quality score based on the sum	Absence of joins		
DUK saaras	of 13 quality item scores	Collision of letters		
DIIK Scores	(raw and normalized with age)	Inconsistent letter size (of x-height letters)		
		Incorrect relative height of the various kinds of letters		
		Letter distortion		
		Ambiguous letter forms		
		Correction of letter forms		
		Unsteady writing trace		
	BHK speed (raw and normalized with age)	The numbers of characters written in 5 min		
		Space between Words		
	Static features	Standard deviation of handwriting density		
		Median of Power Spectral of Tremor Frequencies		
		Median of Power Spectral of Speed Frequencies		
	Kinematics features	Distance to Mean of Speed Frequencies		
Digital features		In-Air-Time ratio		
Digital leatures		Mean Pressure		
	Pressure features	Mean speed of pressure change		
		Standard deviation of speed of pressure change		
		Distance to Mean of Tilt-x Frequencies		
	Tilt features	bandwidth_tiltx		
		Median of Power Spectral of Tilt-y Frequencies		

BHK quality scores have each a score between 0 and 5 according to (1) their age for size of writing and widening of left-hand margin and (2) a score of 0 or 1 for each line of the 1st paragraph for other quality items.

4.2.2 Procedure

The BHK test consists of copying a text beginning with simple monosyllabic words and evolving towards more complex words for five minutes onto a blank paper. Different features reflecting handwriting quality (e.g., letter form, size, alignment, spacing...) are scored to generate a final handwriting quality score. The final quality score is a degradation score. Higher scores correspond to more errors and a worse quality. A speed score is also provided (i.e., the number of characters written in five minutes) (see BHK scores Table 4.2).

The 298 children involved in this study performed the BHK test by writing on a sheet of paper affixed to a Wacom graphic tablet (sampling frequency = 200Hz; spatial resolution = 0.25mm). A Wacom Intuos 4 tablet was used for the children recruited in schools, while a Wacom Intuos 3 tablet was used for the children recruited in the specialized clinic. Pressure data were carefully calibrated between the two tablets. The weights X were carefully chosen (from 0g (pen only) to 400g) in order to explore all range of tablet outputs until saturation. The relation between the weight in input (X) and the value returned by the tablet (Y) could be extracted and was found to be very similar for the two tablets (Spearman correlation > 0.99, p < 0.001, mean square error = 0.6). A 4th degree polynomial fit was created to model the function describing the X/Y relation of the first tablet and used on the second to correct the output. After this correction, the spearman correlation was found to be 0.99998 (p << 0.001) and the mean squared error was 5.1 x 10⁻³. Two junior psychomotor therapists were trained by the same senior psychomotor therapist to score BHK. Then, the 2 juniors therapists annotated independently all BHK both for quality and speed scores. For the 30 least consistent scores (BHK score > 5), the senior therapist scored the BHK.

These professionals were blinded to the demographics and clinical characteristics of the children. Scoring included two dimensions: (1) handwriting velocity assessed through the number of characters written in five minutes and (2) handwriting quality on the five first sentences of the text according to 13 items using a semiquantitative method (BHK quality scores: Table 4.2). We calculated the final inter rater-reliability using intra-class correlation, ICC = 0.97 (95% CI: 0.96-0.98). Finally, according to the normal scores by age measured during the previous validation of the scale [82], we computed a qualitative score (quality of the writing) and a quantitative score (speed of the writing).

In a previous work [21], 53 digital handwriting features were defined and used to train a random forest classifier to diagnose dysgraphia. In this work, we only used the features that were found to be the most important in the aforementioned random forest model according to the Gini importance metric [21]. This means that all the features were significantly different between TD and D based on a binary diagnostic classification (BHK threshold). As expected, all digital features were significantly associated with continuous BHK quality score when the models were applied on TD children and children with dysgraphia (Table 4.4). To maintain a good balance and to compare the different groups of features, we selected the three most important features for each of the following four groups that we distinguished: static, pressure, kinematic, and tilt. In the following paragraphs, we briefly provide their respective definitions (Table 4.2).

Static features

They are purely geometric characteristics of the written text. Among static features, we selected: (1) Space Between Words, which refers to the distance between words averaged for the entire text; (2) SD of handwriting density, where a grid with 300-pixel cells covering the entire range of the handwriting trace is created. The number of points recorded by the Wacom tablet in each cell, if present, was stored in an array. The SD of this array is represented by this feature. Also, (3) Median of Power Spectral of Tremor Frequencies was included. Here, the tremors present in the handwriting of children can be calculated for a given packet of points and can thus be described as a series. By doing so, we can apply the usual time series analysis and, in particular, the Fourier transform and take the median of the spectral distribution resulting from it. What we can observe from this is that children having handwriting difficulties show abnormal movements that translate in high frequencies in the Fourier transform, resulting in a shift of the median towards higher frequencies.

Kinematic features

They regroup features describing the dynamic of the handwriting process. Among these features, we selected: (1) Median of Power Spectral of Speed Frequencies. We can interpret handwriting as a two-dimensional time series. In the same way as for the Median of Power Spectral of Tremors Frequencies, a Fourier transform can be calculated as well as the median of the spectral distribution resulting from it. We can observe very fast changes of speed in the handwriting of children with dysgraphia. These abnormal changes of speed are translated in high frequencies in the Fourier transform resulting in a shift of the

median towards higher frequencies. (2) Distance to Mean of Speed Frequencies: This feature refers to the distance between the spectral distribution of the writing of the child under investigation and the writing of the typical child of the same age. The higher this distance is, the more eclectic the handwriting of this particular writer is. (3) In-Air-Time ratio: represents the proportion of time spent by the writer without touching the surface of the tablet.

Pressure features

They regroup features using the notion of pressure measured between the pen tip and the tablet surface. Among these features, we selected: (1) Mean Pressure, which is simply the average of all record points of pressure during the test's duration and (2) Mean Speed of Pressure Change, which was extracted by working with averaged buckets of 10 record points of pressure and dividing the time spent by the difference between these two averaged bins of points. This feature is then computed by taking the mean of all measurements. Also, (3) SD of Speed of Pressure Change was selected. This feature is computed in the same way as the feature above: although, instead of applying the mean function, we applied the SD to compute it.

Tilt features

They regroup features using the notion of tilt between the pen and the surface of the tablet. Among these tilt features, we selected: (1) Distance to Mean of Tilt-x Frequencies: This feature refers to the distance between the spectral distribution of the writing of the child under investigation and the one from a typical child of the same age. The higher this distance is, the more eclectic the handwriting of this particular writer. Also, we selected (2) The Bandwidth of Speed of Tilt-x Frequencies: In the same way as described above, the Fourier transform of the two-dimensional time series can be calculated with the tilt-x logs as well as the bandwidth of the spectral distribution resulting from it. For the tilt-x, we can observe that children having handwriting difficulties present spreader tilt-x frequencies and thus a larger bandwidth. Lastly, we included (3) Median of Power Spectral of Tilt-y Frequencies. Here, the Fourier transform of the two-dimensional time series can be calculated with the tilt-y logs as well as the median of the spectral distribution resulting from it. For the tilt-y logs as well as the median of the spectral distribution resulting from it. For the tilt-y logs as well as the median of the spectral distribution resulting from it. For the tilt-y logs as well as the median of the spectral distribution resulting from it. For the tilt-y logs as well as the median of the spectral distribution resulting from it. For the tilt-y logs as well as the median of the spectral distribution resulting from it. For the tilt-y logs as well as the median of the spectral distribution resulting the spectral distribution resulting from it. For the tilt-y logs as well as the median of the spectral distribution resulting from it. For the tilt-y logs as well as the median of the spectral distribution resulting from it. For the tilt-y logs as well as the median of the spectral distribution resulting from it. For the tilt-y logs as well as the median of the spectral distribution resulting from it. For the tilt-y

Statistical models

Since we selected the 12 digital features through machine learning classifying BHK scores as threshold (binary classification), we considered inappropriate to use direct group comparisons (TD vs. D). To take into account the effect of age, and possible interactions between a given digital feature and age, we applied linear regressions considering each feature as a continuous variable to explain the BHK as a continuous variable without consideration of the diagnosis threshold. To do so, each of the 12 digital features was normalized in order to assess their effect in linear regression models.

To understand how a given digital feature is explaining or not BHK quality taking into account grade and gender, a linear regression model per feature was created to predict the continuous BHK quality score. This model was adjusted for grade and gender. In the

same way, a model was created to predict the BHK speed score. The formulas can be described as follows:

$$BHKScore \sim Normalized(feature) + grade + gender + \varepsilon$$

To understand how a given digital feature explaining continuous BHK changes according to a child's grade, a similar model with interaction [grade*Normalized(feature)] was also created. In other words, the model can show the relative importance of a given digital feature to diagnose dysgraphia according to age. As recommended in the BHK manual, we selected the grade rather than the age to assess the effect on education, since the writing process is learned at school and not spontaneously. The formulas can be described as follows:

$$BHKScore \sim Normalized(feature) + grade + gender + +grade * Normalized(feature) + \varepsilon$$
(4.1)

Since the distribution of the residuals was not normally distributed, a bootstrap analysis (with 10,000 replications) was performed to assess the 95% confidence intervals (95%CI) and p values. These were respectively obtained by BCA (bias-corrected and accelerated) bootstrap and percentile bootstrap with the R boot package. As said previously, we performed these analyses on the TD dataset only to explore how digital features predict writing (BHK) quality and speed in TD children, then on the TD + D dataset to explore how digital features predict writing (BHK) quality and speed in a mixed population that resembles a more realistic situation in the context of school detection of D children.

Clustering

Finally, we tested the theoretical classification of Deuel [113] by a K-means clustering of our digital features, to assess how many clusters of patients had a similar profile and to identify their main characteristics. We used the elbow method to explore the best numbers of clusters.

4.3 Results

4.3.1 Participant's demographics

Our first aim was to better characterize the children recruited from schools and to assess whether or not few had dysgraphia. After clinical assessment of BHK tests of the 280 children from our dataset, we confirmed dysgraphia in all children recruited in the special clinics and detected 13 (5.63%) children with dysgraphia among those recruited from regular schools. Speed dysgraphia (slow writing) was observed in 12 children, with all of them showing also qualitative dysgraphia (poor quality, legibility). Thus, we defined the diagnostic category of dysgraphia based on the BHK quality score only. Therefore, after re-annotation of all BHKs, our dataset was composed of 218 children in the control group, without dysgraphia called the TD group, and 62 children in the experimental group, with dysgraphia called the D group (see Figure 4.1).

Table 4.3 summarizes the main characteristics of the two groups. The TD and D children had similar ages of around nine years on average despite a tendency of older age

Figure 4.1: Annotation of the database with the BHK test defining children with dysgraphia (writing quality too bad, BHK quality score too high) and children without dysgraphia

in the group with dysgraphia. Most children were right-handed. There was a gender bias (girls were underrepresented in the D group).

4.3.2 Handwriting acquisition

Handwriting explained from the BHK features

Figure 4.2 summarizes the handwriting quality and speed BHK scores for both the TD and D datasets. As expected, we could see an improvement of the handwriting quality (decrease of the BHK quality score) together with an increase of the writing speed with the age of children. By definition, children with dysgraphia had a lower quality versus TD children. Normalized score allow comparisons between grades. The cut-off for a diagnostic of qualitative and quantitative (legibility and speed) dysgraphia is -2.

Handwriting explained from the digital features

Twelve digital features expressing handwriting on different aspects (static, kinematics, pressure, and tilt) were selected from the work of Asselborn et al. [21]. In Figure 4.3, the link between the digital features and the BHK raw quality score in terms of function of the grade is presented (children without dysgraphia, TD dataset).

Since we selected these features on the basis of their importance on the simple binary classification between children with or without dysgraphia, we wanted to assess whether

	TD group (No dysgraphia)	D group (Dysgraphia)	p-value
	(n=218)	(n=62)	
Age: mean (SD)	8.7 (1.53)	9.13 (1.2)	0.056
Males/Females	108/110	44/18	0.003
Right-handed / Left-handed	190/28	57/5	0.30
BHK quality score: mean (SD)	14.41 (5.16)	27.09 (6.83)	0.001
Grade 1: mean (SD)	n=48; 20.07 (5.39)	n=1; 35.5	0.10
Grade 2: mean (SD)	n=42; 13.17 (4.56)	n=16;33.35 (6.22)	<0.001
Grade 3: mean (SD)	n=36; 13.6 (3.66)	n=15; 26.99 (5.76)	<0.001
Grade 4: mean (SD)	n=44; 12.68 (3.4)	n=20; 24.1 (4.75)	<0.001
Grade 5: mean (SD)	n=48; 12.02 (3.45)	n=10; 22.37 (5.51)	<0.001
BHK speed scores: mean (SD)	195.9 (94.6)	139.5 (86.6)	<0.001
Grade 1: mean (SD)	n= 48; 74.83 (18.32)	n=1; 61,5	0.52
Grade 2: mean (SD)	n=42; 152.29 (43.27)	n=16; 70.4 (23.53)	<0.001
Grade 3: mean (SD)	n=36; 184.97 (42.43)	n=15; 123.67 (47.36)	<0.001
Grade 4: mean (SD)	n=44; 262.27 (56.99)	n=20; 160.78 (81.62)	<0.001
Grade 5: mean (SD)	n=48; 302.54 (50.42)	n=10; 239.28 (103.53)	0.03

Table 4.3: Descriptive statistics of the participants (TD and D)

Non parametric (Wicoxon rank sum) tests were performed to compare BHK quality score for the 2 whole datasets and for each grade, (SD for standard deviation, TD for Typically Developing, D for dysgraphia)

they were also able to explain the continuous BHK quality score (inverse of the handwriting writing quality) of both the D dataset and TD datasets. For this purpose, multivariate linear regression models were used to compute the correlation between the 12 digital features and the BHK scores (quality or speed).

Figure 4.2: **BHK quality and speed scores according to grade in children with typical development and in children with dysgraphia**

Raw score (left) and normalized score (right). Notice that the BHK quality score is a degradation score. The higher the score is, the more the handwriting is impaired. The speed raw score is the number of letters written during 5 minutes.

Figure 4.3: The impact of the 12 digital features on the BHK raw quality score (opposite of handwriting quality) for children without dysgraphia (TD dataset) and for all grades.

Category	Feature	Datasa	Feature esti-	Cl95%	Cl95%	n vəluo
Category	Feature	Datase	' mate	low	up	p value
	Space Between Words	TD	0.45	-0.11	1.05	0.116
Static	Space Between words	TD + D	-1.16	-2.15	0.008	0.033
	SD of Handwriting Density	TD	0.98	0.34	1.67	0.004
Static	SD of Handwitting Density	TD + D	2.09	1.03	3.04	<0.001
	Median of Power Spectral of Tremor Freq	TD	-0.25	-0.8	0.31	0.374
	Median of Tower Spectral of Trentor Freq.	TD + D	1.39	0.68	2.19	0.001
	Madian of Power Spectral of Speed Freq	TD	-0.48	-1.13	-0.03	0.038
	Median of Fower Spectral of Speed Freq.	TD + D	3.65	2.68	4.49	< 0.001
Kinomotic	Distance to mean of Sneed Erec	TD	0.17	-0.29	0.9	0.479
Killematic	Distance to mean of speed Freq.	TD + D	2.42	1.43	3.45	<0.001
	In Air Time Patio	TD	0.85	0.23	1.52	0.006
	III All Tille Ratio	TD + D	2.44	1.36	3.41	< 0.001
	Maan Brassura	TD	-0.03	-0.65	0.57	0.935
	Mean Flessure	TD + D	-1.25	-2.07	-0.3	0.008
Proceuro	Maan Speed of Pressure Change	TD	0.09	-0.58	0.84	0.793
Tressure	Mean Speed of Tressure Change	TD + D	-2.56	-3.51	-1.61	< 0.001
	SD of speed of Pressure Change	TD	-0.12	-0.9	0.61	0.769
	SD of speed of Tressure Change	TD + D	-2.32	-3.3	-1.4	<0.001
	Distance to Mean of Tilt y Freq	TD	0.42	-0.21	1.03	0.178
	Distance to Mean of The-X Preq.	TD + D	3.35	2.54	4.1	< 0.001
Tilt	Pandwidth of Power Speatral of Tilt y Free	TD	-0.22	-0.78	0.31	0.435
1111	Bandwiddi of Fower Spectral of The-X Fleq.	TD + D	2.2	1.17	3.06	< 0.001
	Median of Power Spectral of Tilt v Freq	TD	0.16	-0.45	0.76	0.597
	we and of the spectral of The-y Freq.	TD + D	-2.46	-3.27	-1.65	< 0.001

Table 4.4: Multivariate models to predict the BHK quality raw score

The higher the score, the lower the handwriting quality, for typically developing children only (TD dataset), and all children together (TD + D dataset).

Quality association Table 4.4 shows the association between the digital features and the raw BHK quality score (opposite of handwriting quality) for the children without dysgraphia only (TD dataset) as well as for all children taken altogether (D and TD datasets). As expected, since all these features already classified in a proper manner dysgraphia on a simple binary classification in Asselborn et al. [21], all digital features were also significantly associated with continuous BHK quality score when the models were applied on TD children and children with dysgraphia. However, only three digital features (out of 12) were significantly associated with the BHK quality score of TD children.

This finding is interesting, as it shows that the digital features seem to belong to two groups: all of them are useful to explain the difference of handwriting quality between TD children and children with dysgraphia, but only a few features are useful for predicting the handwriting quality of TD children without dysgraphia. In other words, it means that some features become interesting to predict the quality score only when the score is above a certain threshold (i.e., the score only reached by children with dysgraphia as can be seen in Figure 4.2). These features are the ones able to explain the quality difference between children with dysgraphia and TD children.

As there are several potential causes of dysgraphia with different severities, the variability of handwriting is larger in the D dataset versus the TD dataset. In view of the limited size of our D dataset, the interpretation of the digital feature acquisition of the children with dysgraphia may be difficult. For this reason, we decided to focus our feature interpretation on the children without dysgraphia.

Among the three features able to explain the BHK quality score of children without dysgraphia only, we found two kinematic features (Median Power Spectral Speed Frequencies and In Air Time, respectively) and one static feature (Standard Deviation (SD) of Handwriting Density). As can be seen in Table 4.4 and in Figure 4.3, the In Air Time

Catalan	E4	Deteret	Feature esti-	Cl95%	Cl95%	
Category	Feature	Dataset	mate	low	up	p value
	Space Between Words	TD	5.55	0.01	11.46	0.057
	Space Between words	TD + D	16.6	5.64	25.1	<0.001
Statia	SD of Handwriting Density	TD	-16.89	-23.5	-9.53	< 0.001
Static	SD of Haldwitting Density	TD + D	-21.18	-29.19	-12.56	< 0.001
	Madian of Power Spectral of Tremor Fred	TD	0.62	-4.76	6.05	0.831
	Median of Fower Spectral of Tremor Freq.	TD + D	-12.14	-18.47	-6.28	<0.001
	Madian of Bower Spectral of Speed Free	TD	-6.24	-12.94	-1.32	0.013
	Median of Fower Spectral of Speed Freq.	TD + D	-31.37	-38.65	-24.26	<0.001
Kinomatic	Distance to mean of Speed Fred	TD	4.15	-1.39	12.1	0.09
Killematic	Distance to mean of speed Freq.	TD + D	-19.82	-27.34	-13.34	< 0.001
	In Air Time Patio	TD	-21.37	-27.6	-14.85	< 0.001
	III All Time Katio	TD + D	-27.71	-35.66	-19.62	<0.001
	Moon Process	TD	4.91	-0.66	10.54	0.093
	Mean Flessure	TD + D	9.13	1.67	16.33	0.012
Droccuro	Moon Speed of Pressure Change	TD	5.43	-1.03	11.92	0.09
riessure	Mean Speed of Flessure Change	TD + D	23.45	15.66	31.55	<0.001
	SD of speed of Pressure Change	TD	17.81	11.35	24.28	< 0.001
	SD of speed of Tressure Change	TD + D	29.96	22.09	37.89	<0.001
	Distance to Mean of Tilt y Fred	TD	-1.84	-6.21	2.87	0.424
	Distance to Mean of Tht-x Freq.	TD + D	-18.76	-24.55	-13.49	<0.001
Tilt	Pandwidth of Power Spectral of Tilt v Free	TD	0.31	-5.89	6.87	0.929
1111	Bandwidth of Fower Spectral of Tht-x Freq.	TD + D	-12.96	-19.65	-6.26	<0.001
	Madian of Dowar Speatral of Tilt y Free	TD	4.41	-1.23	10.52	0.118
	Median of Fower spectral of Tht-y Freq.	TD + D	19.59	13.96	25.94	< 0.001

Table 4.5: Multivariate models to predict the BHK speed raw score for typically developing children (TD dataset), and all children together (TD + D dataset).

Ratio as well as the SD of Handwriting Density are positively correlated with the BHK quality score. This means that a reduction of the In Air Time Ratio or the SD of Handwriting density is with an increase in the quality of handwriting (i.e., the lower the score is, the better the quality is). Separately, the Median Power Spectral of Speed Frequency was negatively correlated with the BHK quality score-in other words, the higher the value of this feature is, the better the handwriting quality is.

Speed association Concerning the BHK speed score, the same three features were significantly correlated with the BHK speed score of TD children.

A fourth one namely, the SD of Speed of Pressure Change, was also found to be significantly associated (see Table 4.5). The Median of Power Spectral of Speed Frequencies was found to be negatively correlated with the BHK speed score, meaning that, the lower this feature is (indicating a less brutal change in handwriting speed), the higher the speed of handwriting will be.

In the same way, the In Air Time Ratio was found to be negatively correlated with the handwriting speed (a reduction in the time the child has the pen not touching the paper will result in more time spent writing and thus a higher handwriting speed) as well as the SD of Handwriting density (which can be interpreted as the fluctuation in the handwriting size). Finally, the SD of Speed of Pressure Change was found to be positively correlated with the handwriting speed. Clinically, this feature can be linked with the automation of the pen movement (i.e., the child has a better control of the pen if he/she is able to change the pressure of the pen in different ways).

Interaction of the digital features with grade Considering a developmental analysis of handwriting, we used multivariate models to predict children's BHK scores (quality and speed), taking into account the digital feature, the grade, the gender, but also the interaction between the feature and the grade. Results of the interaction are reported in Table

Catagory	Footuro	Datacat	Feature * grade esti-	Cl95%	Cl95%	n voluo
Category	Feature	Dataset	mate	low	սթ	p value
Static	Space Patween Words	TD	-0.72	-1.18	-0.31	0.001
	Space Between words	TD + D	-1	-1.62	-0.38	0.001
	SD of Handwriting Density	TD	-0.77	-1.2	-0.35	0.001
Static	SD of Handwitting Density	TD + D	-0.44	-1.06	0.26	0.197
	Median of Power Spectral of Tremor Fred	TD	0.22	-0.17	0.6	0.237
	We dial of I ower Spectral of Hentor Heq.	TD + D	0.16	-0.35	0.63	0.527
	Madian of Power Spectral of Speed Fred	TD	0.52	0.08	0.92	0.003
	Median of Fower Spectral of Spect Freq.	TD + D	-0.42	-1.27	0.34	0.357
Kinomotic	Distance to mean of Speed Free	TD	-0.5	-0.89	-0.07	0.04
Killelliau	Distance to mean of Speed Freq.	TD + D	-0.8	-1.48	0.09	0.073
	In Air Tima Patio	TD	-0.48	-0.92	-0.03	0.04
	III Ali Tilile Katio	TD + D	-0.15	-0.78	0.53	0.637
	Maan Brassura	TD	-0.18	-0.57	0.2	0.333
	Wiedii Flessuie	TD + D	0.26	-0.23	0.75	0.313
Proceuro	Mean Speed of Pressure Change	TD	0.54	0.04	0.94	0.023
Tressure	Mean Speed of Tressure Change	TD + D	0.45	-0.29	1.14	0.216
	SD of speed of Pressure Change	TD	0.82	0.38	1.24	0.001
	SD of speed of Hessure change	TD + D	0.46	-0.15	1.05	0.12
	Distance to Mean of Tilt y Freq	TD	0.02	-0.36	0.42	0.891
	Distance to Mean of Tht-X Preq.	TD + D	-0.52	-1.2	0.3	0.218
T:1+	Pandwidth of Dowar Spaatral of Tilt y Frag	TD	0.43	0.03	0.84	0.028
1111	Bandwiddi of Fower Spectral of Tht-x Freq.	TD + D	-0.11	-0.81	0.59	0.774
	Median of Power Spectral of Tilt v Freq	TD	-0.05	-0.53	0.44	0.852
	median of 1 ower spectral of Tht-y Fleq.	TD + D	-0.09	-0.76	0.58	0.755

Table 4.6: Multivariate models with interaction to predict the BHK quality raw score

The higher the score, the lower the handwriting quality) for typically developing children (TD dataset) and all children together (TD + D dataset).

4.6 for the BHK quality score and in Table 4.7 for the BHK speed score, respectively.

Quality interaction:

Once again, we can see that the interaction between handwriting digital features and grade seems to be different between children with dysgraphia and TD children. If we consider the features of the TD children alone, eight of the 12 features present a statistically significant interaction with grade to predict BHK quality, while only one (Space Between Words) is significant if we add the children with dysgraphia to the dataset on which the model is applied (Table 4.6). We believe that this can be explained by the fact that children with dysgraphia show a very different handwriting manner (and thus very different digital features) and present a significantly higher heterogeneity in their writing (and thus more spread-out) as compared with TD children, which brings additional noise to the model and avoids us from finding significant interactions.

For the same reasons as before, we decided to focus our interpretation on TD children only. As can be seen in Figure 4.3 and Table 4.6 an interaction between most of the digital features with the grade was found to predict the BHK raw quality score. Only two tilt features (Distance to Mean of Tilt-x Frequencies, Median of Power Spectral of Tilt-y Frequencies), one static feature (Median of Power Spectral of Tremor Frequencies) as well as one pressure feature (Mean Pressure) did not present a statistically significant interaction with the grade. This result shows that the predictive value of most features changes with the grade. In other words, most of them are either useful for detecting the quality of the writing for the younger or for the older children. A typical example of this can be found with the Space Between Words: this feature is positively associated with BHK score in first grade and becomes negatively associated by fifth grade (see Figure 4.3). In other words, as the child is progressing in his/her school curriculum, the Space Between Words feature becomes more and more so a negative predictor of the BHK quality score

Category	Feature	Dataset	Feature * grade estimate	Cl95 <i>%</i> low	C195 <i>%</i> up	p value
Statia	Secon Datwoon Words	TD	1.24	-2.81	5.33	0.52
	Space Between words	TD + D	8.64	3.25	13.96	0.003
	SD of Hondramiting Donaity	TD	-0.1	-4.37	4.69	0.948
Static	SD of Haldwitting Density	TD + D	-3.14	-8.97	3.58	0.318
	Modian of Dower Spectral of Tramor Fred	TD	1.22	-2.21	4.87	0.514
	Median of Fower Spectral of Tremor Freq.	TD + D	-2.47	-6.66	1.65	0.203
	Madian of Down Smoothal of Smood Error	TD	3.27	-0.02	7.39	0.039
	Median of Power Spectral of Speed Fleq.	TD + D	-4.4	-10.83	3.09	0.223
Vinomatic	Distance to mean of Speed Freq	TD	-4.32	-7.62	-0.5	0.038
Kinematic	Distance to mean of speed Freq.	TD + D	-7.85	-15.72	-0.53	0.005
	In Air Time Datio	TD	-2.29	-6.46	2.12	0.279
	III Alf Time Ratio	TD + D	-9.29	-14.64	-3.69	0.001
	Maar Duranna	TD	3.89	0.55	7.61	0.028
	Mean Pressure	TD + D	2	-2.19	6.26	0.337
Duccourse		TD	-2.11	-6.14	1.96	0.306
Pressure	Mean Speed of Pressure Change	TD + D	2.84	-2.28	8.47	0.299
	SD of speed of Pressure Change	TD	1.56	-2.03	5.32	0.391
	SD of speed of Pressure Change	TD + D	5.7	1.28	10.28	0.009
	Distance to Mean of Tilt y Erra	TD	-2.52	-6.27	1.83	0.206
	Distance to Mean of Tht-X Freq.	TD + D	-3.64	-10.46	1.68	0.209
Tilt	Pandwidth of Dowar Speatral of Tilt v Erec	TD	-1.93	-6.54	2.78	0.407
IIII	bandwidth of Power Spectral of Tht-x Freq.	TD + D	-0.64	-6.59	4.93	0.832
ľ	Madian of Down Spectral of Tilt Error	TD	-1.94	-6.09	2.19	0.346
	we and or Power Spectral or fift-y Freq.	TD + D	4.43	-1.15	9.8	0.111

Table 4.7: Multivariate models with interaction to predict the BHK speed raw score for typically developing children (TD dataset) and all children together (TD + D dataset).

(and thus a positive predictor of handwriting quality).

Speed interaction:

Models with interaction between features and grade to predict BHK speed are presented in Table 4.7. In the TD dataset, two kinematic features (Median of Power Spectral of Speed Frequencies and Distance to Mean of Speed Frequencies) and one pressure feature (mean pressure) showed a significant interaction. When models were applied in TD+D dataset, two kinematic features (Distance to Mean of Speed Frequencies and In Air Ratio), one static feature (Space Between Words) and one Pressure feature (SD of Speed of Pressure Change) showed a significant interaction with grade to predict speed.

Interestingly, Space Between Words is the only feature that interacts with grade to predict both BHK quality and speed in the TD+D dataset. It becomes increasingly positively correlated with the BHK speed score with the increase in the child's grade, which means that, at the beginning of the school curriculum, the space that children put between words is not a significant predictor of handwriting speed, but becomes a stronger one as the child continues in his/her school education.

4.3.3 A new clustering of dysgraphia

Most of the classifications of dysgraphia are based on comorbidities (e.g., dyslexia, attention problems, motor acquisition problems). A more precise description of dysgraphia should take into account the peculiar objective characteristics of handwriting. To do this, we used a K-means clustering algorithm with our 12 digital features as input. Using the elbow method to explore the best number of clusters, we found that three clusters was an optimal number according to the majority rule (see Figure 4.4).

Regarding the final model, the Hopkins statistic was 0.35 and the clusters' stability

Figure 4.4: Elbow method to characterize the optimal number of clusters

were satisfactory (cluster 1: 0.87, cluster 2: 0.89 and cluster 3: 0.84). As can be seen in Table 4.8, individuals from each cluster had the following attributes:

Children from cluster 1 (n = 13) presented the less severe type of dysgraphia, with girls and older children being over-represented. Their BHK speed score was significantly higher. Also, they tended to have better BHK quality normalized Score (meaning better handwriting quality) (Table 4.8). Concerning the digital features, it was interesting to see a significantly lower value (as compared with the other two clusters) of the Median of Power Spectral of Speed Frequencies, meaning that the variation of the handwriting speed is slower for these children (i.e., the transition between low and high speeds is smoother). In addition, the SD of Speed of Pressure Change was found to be significantly higher, also suggesting a better automation of the pen movement. An example of this feature can be found in Figure 4.5, where we can see that the Speed of pressure Change of a child with dysgraphia (from cluster 2) stays relatively constant as opposite to that in the handwriting example of the TD child.

Children from clusters 2 and 3 were all recruited from a specialized clinic, meaning that they presented more severe cases of dysgraphia. As can be seen in Table 4.8, a statistically significant majority of these children were boys, which appears to be in line with the findings of previous studies [2, 82]. Concerning the digital features, children from cluster 2 (n = 25) were characterized as having a lower Space Between Words versus the two other clusters and particular abnormalities in the speed frequencies as well as the pressure features (see Table 4.8). The Distance to Mean of Speed Frequencies was found to be statistically higher here than in the two other clusters, meaning that these children were the most eclectic, regarding the way their handwriting speed was changing. The accelerations (and decelerations) of the handwriting speed were more abrupt, suggesting a lack of automation in the control of the speed (i.e., more jerk recorded). The other features for which children from cluster 2 were noted to be particularly different were the pressure features. As can be seen in the example of Figure 4.5, children from cluster 2 were using a much smaller gaps of pressure while writing (i.e., the pressure stays rela-

Table 4.8: Mean digital features value of each features according to their clustering. Demographic characteristics and BHK scores of children with dysgraphia corresponding to the 3 clusters

Category	Feature	Cluster 1 (n = 13)	Cluster 2 (n = 25)	Cluster 3 $(n = 24)$	p-value
Statics	Space Between Words	$1.3 \cdot 10^3 (3 \cdot 10^2)$	$7.2 \cdot 10^2 (2.9 \cdot 10^2)$	$1.4 \cdot 10^3 (6 \cdot 10^2)$	<0.001
	Median of Power Spectral	$3.2 \cdot 10^{-3} (1.5 \cdot 10^{-4})$	$3.3 \cdot 10^{-3} (9.7 \cdot 10^{-5})$	$3.3 \cdot 10^{-3} (1.2 \cdot 10^{-4})$	0.055
	SD of Handwriting Den- sity	$1.7 \cdot 10^2(73)$	$2.3 \cdot 10^2 (1.3 \cdot 10^2)$	$2.5 \cdot 10^2 (1.2 \cdot 10^2)$	0.161
Kinematics	Median of Power Spectral of Speed Freq.	$1.4 \cdot 10^{-3} (1.6 \cdot 10^{-4})$	$2.2 \cdot 10^{-3} (2.8 \cdot 10^{-4})$	$1.9 \cdot 10^{-3} (2.8 \cdot 10^{-4})$	<0.001
	Distance to mean of Speed Freq	$2.1 \cdot 10^{-4} (9.6 \cdot 10^{-5})$	$7.7 \cdot 10^{-4} (3.5 \cdot 10^{-4})$	$4.1 \cdot 10^{-4} (2.7 \cdot 10^{-4})$	<0.001
	In Air Time Ratio	$5.3 \cdot 10^{-1} (7.8 \cdot 10^{-2})$	$5.9 \cdot 10^{-1} (1.1 \cdot 10^{-1})$	$6 \cdot 10^{-1} (1.4 \cdot 10^{-1})$	0.104
Pressure	Mean Pressure	$4.6 \cdot 10^2 (1.4 \cdot 10^2)$	$3.2 \cdot 10^2 (1.1 \cdot 10^2)$	$4.6 \cdot 10^2 (1.4 \cdot 10^2)$	0.001
	Mean Speed of Pressure Change	$3.1 \cdot 10^{-1} (1.3 \cdot 10^{-1})$	$3.8 \cdot 10^{-2} (3.5 \cdot 10^{-2})$	$6.5 \cdot 10^{-2} (5.6 \cdot 10^{-2})$	<0.001
	SD of speed of Pressure Change	$28(7.5 \cdot 10^{-1})$	$13(4 \cdot 10^{-1})$	$20(5.1\cdot10^{-1})$	<0.001
Tilt	Median of Power Spectral of Tilt-y Freq	$3.3 \cdot 10^{-3} (1.5 \cdot 10^{-5})$	$3.3 \cdot 10^{-3} (3.1 \cdot 10^{-5})$	$3.3 \cdot 10^{-3} (5.5 \cdot 10^{-5})$	0.001
	Distance to Mean of Tilt-x Freq	$2.3 \cdot 10^{-4} (3.3 \cdot 10^{-5})$	$2.8 \cdot 10^{-4} (9.6 \cdot 10^{-5})$	$6.3 \cdot 10^{-4} (1.9 \cdot 10^{-4})$	<0.001
	Bandwidth_tilt x Freq.	$3.4 \cdot 10^{-3} (2.8 \cdot 10^{-4})$	$3.5 \cdot 10^{-3} (3.8 \cdot 10^{-4})$	$4.4 \cdot 10^{-3} (2.9 \cdot 10^{-4})$	<0.001
Clinical description	Grade	4.08 (0.86)	3.32 (1.18)	3.00 (0.93)	0.016
	Gender (F/M)	8/5	4/21	6/18	0.016
	Laterality (L/R)	0/13	1/24	4/20	0.212
	Recruited in Specialized Clinic	0	25	24	<0.001
	BHK quality Score	-2.73 (0.65)	-3.49 (1.25)	-3.44 (1.41)	0.109
	BHK speed Score	0.46 (1.16)	-1.24 (1.00)	-1.10 (0.91)	<0.001

The clustering was done on the digital features only

tively more constant during the handwriting) in comparison with TD children.

Children from cluster 3 (n = 24) were characterized by abnormalities in terms of tilt features. As can be seen in Figure 4.5, children from this cluster had troubles with smoothly changing the inclination of their pen (i.e., the transition between low and high speeds of tilt change was found to be less constant versus in TD children).

Figure 4.5: Comparisons of the SD of speed of pressure change and Bandwidth of Speed of Tilt-x Change Frequencies for the children without dysgraphia from the 3 different clusters. Examples of writing from a child with the most severe difficulties from cluster 2 and cluster 3 are shown.

4.4 Discussion

The clinical annotation of our dataset found 13 (5.63 %) children with dysgraphia in schools. This appears consistent with the 5%-10% prevalence rates reported in the literature as well in the most recent French study [82]. Among these 13 cases of dysgraphia, one child was currently in the first grade. This aligns with the fact that children who are referred to specialized clinics for dysgraphia are usually older. This could be explained by the delay existing between the handwriting training and the early signs of alerts that lead to referrals (in France, the diagnostic of dysgraphia is not recommended prior to the second grade).

On the basis of the clinical annotation of the database defining two datasets (TD children vs. children with dysgraphia), a study was performed to investigate children's handwriting acquisition based on BHK clinical assessment [82] and a set of digital features [21].

From the 12 digital features we selected in this work, it was interesting to notice that only three of them were significantly correlated with the BHK quality score of TD children (without dysgraphia), while all of them were significantly correlated when considering the whole sample (TD and D dataset). In other words, it seems that some of the digital features are not useful in explaining the handwriting quality of TD children. From the three features associated with the handwriting quality of TD children, two of them describe handwriting on a kinematic aspect and one describes such on a static aspect. None of them were features associated in children with dysgraphia [21, 273]. These results suggest that the pressure and tilt aspects of handwriting may be particularly central aspects of dysgraphia [21, 337, 394].

In terms of clinical relevance, our findings show the limitation of the current clinical tests used to assess handwriting quality, as the digital features are for the moment neglected due to the technology used (pen and paper tests). They also prove the benefit digital tablets can bring in the assessment of handwriting. In terms of remediation, it may also be particularly interesting to place more emphasis on these aspects of handwriting, for example by using gaming activities designed on digital tablets in which pressure or tilt can be integrated and manipulated. Indeed, in other fields of learning (e.g., emotion recognition; attention), serious games have shown great attraction and clinical interests for children with neurodevelopmental disorders [61, 164]

In contrast with traditional classifications of dysgraphia that are based on children's comorbid problems such as dyslexia, attention deficit or motor-coordination impairment like in the Deuel classification, [113], we established a new clustering of children with dysgraphia based on low-level motor aspects of handwriting including static, kinematic, pressure and tilt features. The K-means clustering based on our 12 digital features yielded three different subgroups. Cluster 1 gathered children with the less severe cases of dysgraphia, including more girls and those with normal speeds. Clusters 2 and 3 included children with the most severe cases of dysgraphia with a preponderance of boys. Children in cluster 2 presented abnormalities in terms of kinematics and pressure, while children in cluster 3 displayed abnormalities in terms of tilt. We do not know whether the clustering introduced in this paper overlaps with existing classifications and in particular the one proposed by Deuel [113], since the sample size each cluster too small to compare the disorders of the children. We hope to perform such a study in the near future. As expected [2,82], we found that a majority of children with dysgraphia were boys (71%) [82,113,367]. The most severe clusters were also the clusters including more boys. Although being left-handed is believed to be associated with handwriting difficulties in folk psychology [163], we did not find that handedness mediated either BHK scores or clustering of the children with dysgraphia.

The current study needs to be interpreted with consideration of both its strengths and limitations. Digital tablets can measure several features that are relevant to better understand and classify children with dysgraphia. On the basis of the results of this study, we plan to move forward with the development of new handwriting tests capable of running on digital tablets (e.g. an Ipad®) for the purpose of helping the diagnosis of handwriting-acquisition deficit. However, the handwriting data used in this study were acquired in an ecological setting since the children wrote on a paper attached on the tablet. Several studies show that the friction between a pen and a sheet of paper might be very different from the one of a stylus and the surface of some digital tablets [167]. As this friction difference may have an impact on the handwriting, a new database of handwriting traces should be

acquired on a digital tablet to investigate such potential differences.

Secondly, the digital tablets used for the handwriting acquisitions in school and in the specialized clinic were different (Wacom Intuos 3 in specialized clinic vs. Wacom Intuos 4 in school). Despite a careful calibration, the difference in material may have affected some technical aspects of the feature recording. However, to assess whether pressure registration differed between the two tablets, we performed the following experiment: with the pen vertically positioned on the surface of the tablets, 15 different weights were used as an input while the values returned by each tablets were logged. We modelled inputs and outputs in each tablet and between tablets. The correlation found were above 0.99 (p < 0.001), meaning that the impact was likely limited [22].

Finally, it is possible that the transversal design of this study cannot allow for the longitudinal assessment of the development of a typical child or a child with dysgraphia from one grade to another. We believe it will be important to assess the evolution of these digital features longitudinally within the same child during learning or rehabilitation.

Future studies would take into account the RDoC approach of comorbidities presented in section 1.4, instead of clinical categorical diagnosis (presented in Table 4.1), to better understand the interconnection between these dimensional difficulties and the underlying neurobiological difficulties.

4.5 Conclusion

In the previous chapters, we showed how we could tackle the limitations of BHK by using tablets to measure and study handwriting features acquired electronically from dynamic measures (Figure 4.6). The current results open new opportunities for the automatic detection of children with dysgraphia more widely available, for instance in classroom. We also believe that the training of pressure and tilt dynamically may open new therapeutic opportunities through serious games able to manipulate these features.

Data and code availability

The data set that served for statistical analyses performed in the manuscript are available at the following repository (http://osf.io/d845e). The raw data set cannot be shared publicly because of ethical restrictions. Even if the data are de-identified, part of them have been acquired in a medical context and contain sensitive patient information. In addition, the parents of all participants did not give an explicit consent to disclose publicly the basic demographic information and writing tests of their child. The ethics agreement obtained from the University Ethics Committee for this study did not authorize public disclosure of participants' data. We share here an example of writing of a child whose parents gave informed consent for sharing. The complete dataset can be obtained upon request from LPNC: caroline.jolly@univ-grenoblealpes.fr or Psychiatrie de l'Enfant et de l'Adolescent, Pitié Salpêtriére - Charles Foix: hugues.pellerin@aphp.fr and isabelle.babilaere@aphp.fr

Figure 4.6: Review of the automatic handwriting features analysis pipeline

The following chapter, shows how we can use a robotic platform to better understand the process of handwriting longitudinally. We took also into account the measure of the posture beyond the fine motor skill themselves. During a rehabilitation of a clinical case tackling these writing difficulties, we modelized how affective processes in a child-robot interaction could foster the motivation of children. Based on the identification of the different aforementioned domains of handwriting, we proposed specific exercises.

Chapter 5

Tablets to guide the rehabilitation of dysgraphia

"Car cette propriété de créer, de créer de l'information à partir de l'expérience mémorisée et grâce à l'imaginaire, tout homme non handicapé mental la possède à la naissance. S'il la perd c'est son environnement qui en est responsable. [...]

Aussi faut-il ressentir beaucoup de pitié et de sympathie pour tous ces châtrés de l'imaginaire qui déversent leur hargne, leur rogne, comme disait l'autre, contre le marginal qui déambule en promenant son rêve dans les jardins fleuris où nulle rosette ne pousse."

Henri, L. (1974). La nouvelle grille. Laffont, 1974, Paris.

The first study of this chapter is published under the title "The CoWriter robot: improving attention in a learning-by-teaching setup" by Le Denmat, P., Gargot, T., Chetouani, M., Archambault, D., Cohen, D., & Anzalone, S. (2018, November). In 5th Italian Workshop on Artificial Intelligence and Robotics A workshop of the XVII International Conference of the Italian Association for Artificial Intelligence (AI* IA 2018).

The second study of this chapter is published under the title "It is not the robot who learns, it is me" Treating severe dysgraphia using Child-Robot Interaction by Gargot, T., Asselborn, T., Zammouri, I., Brunelle, J., Johal, W., Dillenbourg, P., Archambault D., Chetouani M., Cohen D., & Anzalone, S. M. (2021), Frontiers in Psychiatry, 12, 5. Child and Adolescent Psychiatry, Research Topic: Serious Games in Neurodevelopmental Disorders.
Abstract

Introduction

Writing disorders are frequent and impairing. Rehabilitation requires intensive and long handwriting training in a motivating environment, without fostering anxiety of the children. Social robots may help improving children's motivation and proposing enjoyable and tailored activities.

Materials and methods

Here, we used the *CoWriter* scenario in which a child is asked to teach a robot how to write via demonstration on a tablet.

Results

In a first study, we show that the embodiement of the robot improve the quality of the interaction of adults during a short-term robot interaction. In a second study (combined with a series of serious games we developed to train specifically pressure, tilt, speed and letter liaison controls), we used this set-up in a pilot clinical context to assess feasibility. This set-up was proposed to a 10-year-old boy with a complex neurodevelopmental disorder combining Phonological Disorder, Attention Deficit/Hyperactivity Disorder, Dyslexia, and Developmental Coordination Disorder with severe dysgraphia. Writing impairments were severe and limited his participation to classroom activities despite 2 years of specific support in school and professional speech and motor remediation. We implemented the set-up during his occupational therapy for 20 consecutive weekly sessions. We found that his motivation was restored; avoidance behaviors disappeared both during sessions and at school; handwriting quality and posture improved dramatically.

Discussion

In conclusion, treating dysgraphia using child-robot interaction is engaging, feasible and improves writing. Larger clinical studies are required to confirm that children with dysgraphia could benefit from this set up.

5.1 Introduction

Together with the difficulties of a correct assessment of DCD and, in general, NDD including the specific dimension of writing [415], recent studies have shown that several factors can limit the effectiveness of such interventions [103, 290]. Specifically, most of those programs do not target school-aged children and are not proposed to occur in a school setting, a favorable location for intervention on NDD. On the contrary, many treatments are conducted at the hospital in very "artificial contexts", during episodic observations, bringing a "lack of intensiveness" and a "poor individualization" of the intervention. To tackle these issues, the use of technologies has been proposed to achieve a continuous [13, 14, 152, 211], long-term observation of the children, allowing a tailoring of the therapies to the specific needs of the child. In particular, the implementation of new protocols involving Information and Communication Technologies (ICT) can facilitate a gradual shift from hospital settings to more natural environment, ideally the home of children [53]. This shift will push towards a major involvement of the families and possibly an earlier intervention that is highly recommended. At the same time, ICT can simplify the implementation of complex protocol as well as the use of complex devices, such as Electroencephalographs (EEGs), that can be delivered to the families. Technology would also permit a richer understanding of individuals: in classical approaches, the behavior of the child is assessed at the laboratory, during episodic observations; in contrast, ICTs will consent a fine, continuous, long-term observation of the children, allowing a finer tailoring of the therapies, treating each "unique" child for his "unique" problem. Recently, an increasing number of research teams have focused on the use of social robots in behavioral treatment [115, 313, 355]. Although most research in this field may be regarded as preliminary by clinicians, those kinds of robots emerged as an important tool for children because of the various advantages their use could bring to the therapy, regarding:

- **Complexity:** social robots in NDD therapy could simplify the inner complexity of the social interactions. While interacting, people exchange an enormous amount of information in both verbal and non-verbal forms (speech, words, prosody, facial expressions, emotions, proxemics, and so on). As social robots are entirely controlled by robot programmers, the behaviors they can express and the interaction proposed could be very simple and predictable. Clinicians and robotics engineers can take advantage of this, developing new experimental protocols using social robots, focusing just on one or few aspects of the interaction, simplifying the cognitive load required to "decode" such interactions.
- **Embodiment**: social robots can communicate and interact in a multimodal way with children, but, unlikely to serious games, avatars, or other software agents, they have their own "physical presence" in the real world [25, 211, 223, 315]. The embodiment of social robots will permit physical explorations and interactions with the environment [231] as well as a communication with people based also on gestures and touch, widening the possibility of their employment in therapeutic protocols [52].
- **Shape**: android, human-like, animal-shaped, non-anthropomorphic colored toy: the shapes of social robots used in NDD therapies are different, according to their role in the interaction and to the goal of the interaction itself. In any case, the shape of the robot should contribute to the reduction of the stress of the children during the experiment, making them comfortable and at ease [355, 362].

Studies involving social robots in NDD focus on several targets. Scassellati suggested their use as tools for clinicians to diagnose, treat, and understand NDD [354,355], proposing in particular quantitative metrics of social response for autism diagnosis. According to this idea, several works [?,52] focused on the use of robots as a convenient instrument of clinical research to induce behaviors on children and widen the description of NDD. Cabibihan proposed also some design requirements that should be considered while developing social robot in the specific case of ASD [65]. Dautenhahn employed social robots as therapeutic tool for children with autism [100], focusing in particular on social interactions [331] and joint attention [332]. Others focused on improving eye contact and self-initiated interactions, turn-taking activities, imitation, emotion recognition, joint attention and triadic interactions. See [313] for a systematic review. The state of the art shows us that social robot have potential to engage children in well-structured and adapted therapy. Together combined with the other metrics from pen and postural data, we believe that we can build a complete system to evaluate and train TD and NDD children to gain better handwriting and fine motor skills.

The *CoWriter* research project aims to help children with handwriting difficulties using learning by teaching: the child plays the role of the teacher and the robot acts as a peer (a learner) asking for help to improve its handwriting (Figure 5.1). This approach and has several advantages. Firstly, it increases the child's self-esteem as he/she becomes

the one who "knows and teaches", instead of being the worst student in the classroom. Secondly, it has a positive effect on the child's motivation, as he/she feels responsible for the robot [204] and puts more effort to the task. This particular interaction where the child feels responsible of the robot is called the Protégé effect [206,242]. We hypothetize that this set-up could also be beneficial for patients in their remediation by engaging them longer in the handwriting tasks.

Figure 5.1: The *CoWriter* set-up: the user teaches the robot how to write.

The *CoWriter* scenario has been used so far during short child-robot interactions in order to evaluate the importance of child-robot setting arrangement [208], child attention [241], speed of learning of the robot [81, 204], as well as effect of collaborative learning [126].

5.1.1 Importance of the embodiment of the robot

In this experiment [236], we explored the role in this scenario of the robot, comparing users performances in three different conditions: handwriting sessions with the *CoWriter* robot; handwriting sessions with a virtual agent; handwriting session with the tablet only, guided by a voice (Figure 5.2). The hypothesis is that the social robot would be able to elicit an higher attention than the virtual agent or the vocal guide.

We conducted a pilot study to assess (1) the usability of the setup in a laboratory setting and (2) to assess the relevance of the embodiment of the character in a robot compared with a simple voice or avatar. This study was conducted with 12 adults (7 males, between 12 and 31 y.o.) during one short session. We asked each participant to write 5 different words to improve the writing of the robot. The assessment of the interaction was self-rated by the participants on a standardised scale, the Networked Minds Social

Figure 5.2: The 3 variations of the learning-by-teaching scenario implemented with 3 different levels of embodiment.

Presence Inventory that measure the perceived social presence during an interaction. It is composed of 6 questions, using a 1-7 Likert scale. It allows to compute 4 dimensions:

- the Co-Presence: the user's awareness of the presence of the interaction partner;
- Attentional allocation: the perceived attention received by the partner as well as the attention allocated towards the partner;
- Perceived message understanding: the bidirectional communication understanding between the partners;
- Perceived behavioral interdependence: the mesure of the degrea of the mutual behavioral connection between the partners.

An ANOVA test, found a significant difference in the co-presence that was better in the robot setting than in either the voice or in the avatar setting. The attention allocation was better in the robot setting than with the voice only, but without differences with the virtual agent setting. However, the ANOVA test was not able to reveal any effect in the Perceived message understanding dimension (F2,22 = 1.16; p = 0.33) as well as in the Perceived behavioral interdependence dimension (F2,22 = 1.56; p = 0.23).

This study highlights that participants feel more the physical presence of the robot than its virtual agent. It is surprising, however, to note the absence of difference between the virtual agent and the voice. Results on the *Attention allocation* highlight how the robot is able to elicit more compliance than the vocal guidance. It should be noted in this case the absence of difference between the virtual agent and the robot. Such results can also highlight the possibility of the agent of capturing too much the attention of the user, acting as distraction of the task. The absence of difference in the two other dimensions, *Perceived message understanding* and *Perceived behavioral interdependence*, is not strange due to the particular task chose. In particular, the presence of a physical robot or a virtual agent seems does not impact on the comprehension of the exchange. At the same time, it is possible to hypothesize that the interpersonal exchange is too simple to be impacted by the presence of the artificial agents.

5.1.2 "It is not the robot who learns, it is me"

Is it possible to use this set-up during long-term interaction? Can we use electronics sensors and algorithms to better describe and guide the progress of a child? In this study, we updated the *CoWriter* software with serious games activities in order to do a step-by-step training and make the activities more diverse and engaging. Thus, we could perform a long-term child-robot interaction in a clinical context.

Patient's characteristics prior training

R. was an 8-year-old boy when he was assessed for severe dysgraphia and refusal to write at school. In the past, he tried to break his pen during writing due to frustration and anger, and he needed to repeat his first grade because of lack of writing acquisition (a practice tolerated in France). His parents divorced when R was 3 years old. Family history showed that R's father and mother both had dyslexia, and R's mother had postnatal depression. Personal history included a week of postnanal hospitalization following delivery with forceps and ventilation mask. Apgar scores were 3, 8, 9 and 10. Weight at birth was 2975 g with normal cranial perimeter and size. R's early development was marked by psychomotor agitation. He received physiotherapy at age 1 year. He started to walk at 13 months, but walking was very unstable with a lot of falls. Oral language was subnormal but R had early phonological impairments and he was not understandable when speaking in kindergarden. At age 5 years, he entered a classroom with special education. At age 6 years, he received a diagnosis of Attention Deficit with Hyperactivity disorder (ADHD), and a treatment with methylphenidate (30mg/day) began. When R. was admitted to our department, we conducted an in depth assessment summarized in Table 5.1. He was diagnosed with ADHD, severe dyslexia, and Developmental Coordination Disorder (DCD) with severe dysgraphia that were impairing for schooling. At age 8, he was refusing to use any kind of pens.

In addition to methylphenidate, R received remediation sessions with a reading specialist and was admitted to our special school for multidimensionally impaired children [416]. Given the severity of DCD and dysgraphia, R. also started specific remediation for writing every week (40-minute session) with an occupational therapist. The therapist was limited in R's remediation since he was complaining about writing. The sessions were anxiogenic; he tried to break his pencil when frustrated. The training was progressive to help the child to improve self-confidence and avoid learned helplessness. However, after one year the validated testing (BHK see method) was still impossible to score and R refused to use a pencil in classroom. We therefore discussed with R. and his parents to train handwriting with the *CoWriter* set up.

5.2 Materials and methods

5.2.1 CoWriter set up

The *CoWriter* set up was built in order to combine functional training and cognitive/affective processes during remediation (Figure 5.3). The goal was to stimulate in parallel relativizing and responsibility, on the one hand, and handwriting training, on the other hand. The global architecture of the set-up is detailed in a video demo summarizing the 20 sessions https://ieeetv.ieee.org/a-cowriter-robot-david-cohen. The first component of the set-up is a software that allows the extraction of handwriting automatic features (static, kinematic, tilt and pressure) from a computer tablet during writing. The Wacom

Wechsler Intelligence Scale for Children (WISC IV): 7 years Verbal Comprehension Index: 120 Agitation was important during testing. The cognitive er uation shows heterogeneous abilities. Verbal abilities werking Memory Index: 73 Mutism diagnostic Processing Speed Index: 109 Autism Social interactions: 9 (threshold=10) Autism diagnostic Verbal communication: 6 (threshold=8) R had subliminal social difficulties and significant repetiti behaviors. Diagnosis of autism was not retained at ag from direct assessment. Veral Language assessment (Age 7 and 8 months) Phonology: all scores in the average range. Severe phonological disorder but good other oral language abilities	sessment: age	Results	Comments	
Wechsler Intelligence Scale for Children (WISC IV): 7 years Perceptual Reasoning Index: 107 Autism diagnostic Interview Revised: 5 years Perceptual Reasoning Index: 107 Perceptual Reasoning Index: 107 Autism diagnostic Interview Revised: 5 years Interview Social interactions: 9 (threshold=10) R had subliminal social difficulties and significant repetitive behaviors. Diagnosis of autism was not retained at ag from direct assessment. Berceptual Reasoning Index: 109 Social interactions: 9 (threshold=10) Verbal communication: 6 (threshold=8) Stereotyped behaviors: 7 (threshold=3) Development score: 4 (threshold=1) Oral language Phonology: all scores are pathological (-1.9 to -6.8 SD) from mean Severe phonological disorder but good other oral language abilities Language assessment (Age 7 and 8 months) Lexicon reception: all scores in the average range. Severe dyslexia that could only be		Verbal Comprehension Index: 120	A gitation was important during tasting. The cognitive aval	
Working Memory Index: 73 Processing Speed Index: 109 Autism diagnostic Interview-Revised: 5 years Social interactions: 9 (threshold=10) Verbal communication: 6 (threshold=8) R had subliminal social difficulties and significant repetitive behaviors. Diagnosis of autism was not retained at ag from direct assessment. Development score: 4 (threshold=1) Development score: 4 (threshold=1) Oral language Phonology: all scores are pathological (-1.9 to -6.8 SD) from mean Language assessment (Age 7 and 8 months) Lexicon reception: all scores in the average range.	chsler Intelligence Scale for ildren (WISC IV): 7 years	Scale for years Perceptual Reasoning Index: 107	addition was important during testing. The cognitive eval- uation shows heterogeneous abilities. Verbal abilities were excellent. Attention was poor especially for memory task.	
Processing Speed Index: 109 Processing Speed Index: 109 Autism diagnostic Interview Social interactions: 9 (threshold=10) R had subliminal social difficulties and significant repetitive behaviors. Diagnosis of autism was not retained at ag from direct assessment. Revised: 5 years Verbal communication: 6 (threshold=8) R had subliminal social difficulties and significant repetitive behaviors. Diagnosis of autism was not retained at ag from direct assessment. Stereotyped behaviors: 7 (threshold=3) Development score: 4 (threshold=1) Oral language Phonology: all scores are pathological (-1.9 to -6.8 SD) from mean Language assessment (Age 7 and 8 months) Lexicon reception: all scores in the average range.		Working Memory Index: 73		
Autism diagnostic Revised: 5 years Interview- Social interactions: 9 (threshold=10) R had subliminal social difficulties and significant repetition behaviors. Diagnosis of autism was not retained at age from direct assessment. Revised: 5 years Stereotyped behaviors: 7 (threshold=3) Development score: 4 (threshold=1) Development score: 4 (threshold=1) Oral language Phonology: all scores are pathological (-1.9 to -6.8 SD) from mean Language assessment (Age 7 and 8 months) Lexicon reception: all scores in the average range.		Processing Speed Index: 109		
Autism diagnostic Interview- Revised: 5 years Interview- Verbal communication: 6 (threshold=8) R had submining social difficulties and significant repen- behaviors. Diagnosis of autism was not retained at ag from direct assessment. Verbal communication: 6 (threshold=8) Stereotyped behaviors: 7 (threshold=3) behaviors. Diagnosis of autism was not retained at ag from direct assessment. Development score: 4 (threshold=1) Oral language Phonology: all scores are pathological (-1.9 to -6.8 SD) from mean Severe phonological disorder but good other oral language abilities Language assessment (Age 7 and 8 months) Lexicon reception: all scores in the average range. Severe dyslexia that could only be		Social interactions: 9 (threshold=10)	D had authlineign langin laife authier and simile and some dition	
Stereotyped behaviors: 7 (threshold=3) Development score: 4 (threshold=1) Oral language Phonology: all scores are pathological (-1.9 to -6.8 SD) from mean Language assessment (Age 7 and 8 months) Lexicon reception: all scores in the average range. Severe phonological disorder but good other oral language abilities Severe dyslexia that could only be	tism diagnostic Interview- vised: 5 years	Interview- Verbal communication: 6 (threshold=8)	behaviors. Diagnosis of autism was not retained at age 8 from direct assessment.	
Development score: 4 (threshold=1) Oral language Phonology: all scores are pathological (-1.9 to -6.8 SD) from mean Language assessment (Age 7 and 8 months) Lexicon reception: all scores in the average range. Severe phonological disorder but good other oral language abilities Severe dyslexia that could only be		Stereotyped behaviors: 7 (threshold=3)		
Oral language Language assessment (Age 7 and 8 months) Oral language Phonology: all scores are pathological (-1.9 to -6.8 SD) from mean Severe phonological disorder but good other oral language abilities Severe dyslexia that could only be		Development score: 4 (threshold=1)		
Language assessment (Age 7 and 8 months)Phonology: all scores are pathological (-1.9 to -6.8 SD) from meanSevere phonological disorder but good other oral language abilitiesLanguage assessment (Age 7 and 8 months)Lexicon reception: all scores in the average range.Severe dyslexia that could only be		Oral language		
Phonology: all scores are pathological (-1.9 to -6.8 SD) from meanSevere phonological disorder but good other oral language abilitiesLanguage assessment (Age 7 and 8 months)Lexicon reception: all scores in the average range.Severe phonological disorder but good other oral language abilitiesSevere dyslexia that could only be				
Language assessment (Age 7 and 8 months)(-1.9 to -6.8 SD) from meanSevere phonological disorder but good other oral language abilitiesLanguage assessment (Age 7 and 8 months)Lexicon reception: all scores in the average range.Severe dyslexia that could only be		Phonology: all scores are pathological		
Language assessment (Age 7 and 8 months) Lexicon reception: all scores in the average range. Severe photological disorder but good other oral language abilities Severe dyslexia that could only be		(-1.9 to -6.8 SD) from mean	Course about la signal discorden but and	
Language assessment (Age 7 and 8 months) Lexicon reception: all scores in the average range. Severe dyslexia that could only be			Severe phonological disorder but good	
months) average range. Severe dyslexia that could only be	1guage assessment (Age 7 and 8	Age 7 and 8 Lexicon reception: all scores in the	other oral language admittes	
Severe dystexia that could only be	nths)	average range.	Severe dualaxie that equild only be	
assessed using tasks for the first trimester			assessed using tacks for the first trimester	
Lexicon expression: normal score for		Lexicon expression: normal score for	of the first grade (6 years in France) in	
concrete vocabulary, which all scores ranged between 6 and 30		concrete vocabulary,	which all scores ranged between 6 and 30	
-2 SD for abstract lexicon percentiles.		-2 SD for abstract lexicon	percentiles.	
Suntax recentions all scenes in the summer		Suptax recontions all scores in the average	*	
range.		range.		
Syntax expression: all scores in the		Syntax expression: all scores in the		
average range (-1 SD)		average range (-1 SD)		
Written language		Written language		
assessment is impossible		assessment is impossible		
Written language using reading tests		Written language using reading tests	Savara dualaxia ramaina D has antarad in	
based on second grade (6 years in France)		based on second grade (6 years in France)	the mechanism of reading but with a large	
Language assessment (Age 10)	nguage assessment (Age 10)	Age 10)	delay compared to his age group	
word identification score of non-words is		word identification score of non-words is	denty compared to insuge group.	
-5.5 SD, of regular words is -2.6 SD, of Despite this delay some comprehension of		-5.5 SD, of fegular words is -2.8 SD, of	Despite this delay some comprehension of	
written text was possible as +0.9 SD of		integular words is -5 5D.	written text was possible as +0.9 SD of	
Reading text is painful with time at second grade was the average of 3d grade.		Reading text is painful with time at	second grade was the average of 3d grade.	
-0.4 SD, number of errors at -3.5 SD but a comprehension		-0.4 SD, number of errors at -3.5 SD but a comprehension		
score at +0.9 SD		score at +0.9 SD		
Degradation score=24 Hypotony was obvious and R. had difficulties in motor c		Degradation score=24	Hypotony was obvious and R. had difficulties in motor con-	
Motor Battery Assessment: 8 years trol. Manual dexterity was difficult. R. needed to stop	otor Battery Assessment: 8 years	ent: 8 years	trol. Manual dexterity was difficult. R. needed to stop his	
<1st percentile breathing to focus correctly. The grasping of the per v	jeans jeans	<1st percentile	breathing to focus correctly. The grasping of the pen was	
hypotonic and the pen fell many times. R was right hand			nypotonic and the pen fell many times. R was right handed.	
-4.23 standard deviation from mean		-4.23 standard deviation from mean		
The BHK could not be scored because of too poor quality.	W DIW 0	The BHK could not be scored because of too poor quality	R. could not write in cursive letters. He wrote some capital	
Writing BHK: 8 years (max score = 65)	iting BHK: 8 years	$(\max \text{ score} = 65)$	letters. The movement was chaotic like he was throwing the	
pen. Some letters were impossible to read.			pen. Some letters were impossible to read.	
Writing BHK 9 years The BHK could not be scored because of too poor quality.	iting BHK: 9 years	The BHK could not be scored because of too poor quality	first lines were realized and R wrote only in capitals instead	
(max score = 65) (max score = 65) (max score = 65)	ang brite. 7 years	$(\max \text{ score} = 65)$	of cursive. The size of the letters was very large.	

Table 5.1: Patient's characteristics

tablet (Wacom Cintiq pro) allows the extraction of the pen's position (x, y), the pen tilt in two axes as well as the pressure between the pen and the surface of the tablet. The sampling frequency of the tablet can go up to 200 times per second (Hz). Features have been detailed in [21]. The second component is a robotic platform Nao that remains beside the child. We previously showed that participants' engagement was better with a physical robot than an avatar [236]. During sessions, the child writes with a stylus on a Wacom Cintig Pro connected to a laptop. Ubuntu was installed on the laptop with the CoWriter software [185]. We asked the child to teach Nao how to write. One after another, Nao pretends to write on the Wacom tablet by moving its arm, and the child writes on the tablet to correct the writing of the robot. The CoWriter research project aims to help children with difficulties using an original approach: the child plays the role of the teacher and the robot acts as a student requiring help to improve its handwriting. This approach is called learning by teaching and has several advantages. First, it brings a positive reinforcement of the child's self-esteem as he/she becomes the one who "knows and teaches" and no longer the worst student in the classroom [335]. Second, we can observe a huge gain of motivation as the child, feeling responsible for the robot, is committed to the task with an intensiveness way higher compared to when practicing in a normal environment. This particular interaction where children feel responsible for the robot is called the protégé effect [84]. Various researches have shown that learning with a physical robot can be more efficient than learning from a more classical approach [174, 192]. We hypothesized that this set-up could be more engaging for the patient than a classical pen-and-paper remediation. Furthermore, one of the best drivers of training is evaluation [76]. The teaching procedure is one of the more obvious situations during which one needs to evaluate its own abilities.

The third component of the set-up is the possibility to access a list of serious games computed in the tablet (Figure 5.4). The games evolved progressively based on the feedback from the child and the therapist. As we said previously, during the CoWriter activity, a robot writes a word in cursive with a bad handwriting. The goal is to have the child correct the robot by showing a "good handwriting". The robot then learns from the child's handwriting and adapts its handwriting accordingly. The difficulty of the activity can be adapted by changing word length, frequency and writing difficulty and the speed at which the robot "learns" (Figure 5.4 A). The other games - Dynamico - were computed based on the fact that children with dysgraphia may be distinguished from typically developing children by characteristics related to speed, tilt and pressure when writing [21, 143]. We computed new activities to specifically train these skills. During Tracking (Figure 5.4 B), the robot and the child are doing a track by following a layout in which we can find hidden letters. It is possible to change the level of difficulty of the activity by changing the hidden letter, the speed of the robot pursuing the player, and the width of the path. During Pressure activity (Figure 5.4 C) inspired by Flappy bird game¹, the child controls a robot's head by moving the pen from left to right (between the sign start and the finish line) to control the x position of the robot while the y position is controlled by the amount of pressure the child applies between the pencil and the tablet. In order to avoid the obstacles within the game, the child needs to learn to control the amount of pressure he applies on the tablet. The difficulty of the activity can be adapted by changing the width of the aperture (the gap between bottom and upper wall) and the number of peaks. During the Tilt activity (Figure 5.4 D), the child is using the pen like a joystick to control the robot head along the x and y axis. The goal of the activity is to capture the battery in

¹https://flappybird.io/

Figure 5.3: Cognitive and affective processes and functional training involved in the *CoWriter* set up.

order to recharge the robot while avoiding the bombs. It is possible to increase the level of difficulty by adding more bombs and diminishing their distance from the battery. Finally, the rainbow activity allows making obvious the pauses during handwriting (Figure 5.4 E). In a turn taking with the therapist that mirrors the *CoWriter* activity with Nao, the child writes alternatively on the tablet. First, the therapist writes a word (or a small text). Each time, there is a lift of the pen, the color of the ink changes. The child then needs to write the same word (or text) with the goal of reproducing the same color. If the color matches between the two words (one of child and one of therapist), it means that the child writes while performing pauses and liaisons in an optimal way. The fourth component of the setup is the therapist who controls the rhythm of the therapy session, decides whether or not Nao gives feedbacks (e.g. "Come on, try again"), but can also participate in the gaming session when the child appears bored playing with Nao or asks to play the grasping game with the therapist. One after another, the therapist and the child need to grasp a fruit from a randomly chosen color and avoid the fall of all fruits. Finally, the setup also includes two 2D cameras to follow posture and face and offer specific metrics (Figure 5.4 F).

5.2.2 Experimental design and metrics

To assess longitudinally how R. behaves during therapeutic sessions with the *CoWriter* set up, we monitored the sessions and registered several metrics, either clinical or digital as both can be complementary to describe with more detail the motor difficulties of children

Figure 5.4: Screenshots from the tablet showing the different games used for handwriting training: A. *CoWriter* activity; B. Tracking; C. Pressure; D. Tilt; E. Rainbow; and F. Grasping.

with dysgraphia [143]. We assessed: (i) the acceptability and feasibility of the devises, software and set up in a clinical setting using a qualitative approach with an observer listing all significant events and R's comments during sessions; (ii) how the handwriting improved according to digital metrics and the gold standard clinical testing of handwriting called BHK [82]; (iii) how the posture of the child tracked with a 2D camera evolved through remediation, as it is known that children with dysgraphia show posture impairments during handwriting [132].

To assess writing, we collected BHK every five sessions. Each clinical BHK was randomly and blindly scored by two experts. We also computed several digital metrics to monitor R's progress within each game. Table 5.2 summarizes each metric per game. Finally, we recorded R's posture. The posture the child assumed during the handwriting sessions has been extracted and evaluated by analyzing high definition videos (25 fps) of the BHK writing assessment (5 min writing of the same text). The camera was conveniently placed at a distance of 1.5 m from the front-left of the child. Videos collected were analyzed frame-by-frame through the OpenPose library (Figure ?? A, page ??) [73, 365] to extract a fine temporal evolution of the child skeleton. For each frame, the skeleton is composed of 94 key points in the (u,v) image space representing the position in the image of the body, of the hands and of the facial landmarks of the child. Notably, for each extracted point, the OpenPose library exposes a confidence measure (p). The temporal evolution of the key points is then reconstructed using the framerate of the camera. To enssure a reliable comparison between the metrics extracted from different videos captured on different days, the camera was fixed in its specific position thanks to markers on the floor. Moreover, to minimize further possible errors, data were normalized among videos using the distance between the child's left eye and his left's ear as a fixed, reliable reference, simple to compute. A metric indicating the quality of the child's posture was defined as the distance between his nose and his right-hand since R. was right-handed.

Activity	Possible metrics	Metrics shown in Figure 5.6
		During the CoWriter activity, we tracked
CoWriter		the average number of letters used in
	Word length	the word chosen with the child to teach
		the robot. Shorter words are easier than
		longer one.
Tracking	Ratio between the number of points recorded outside the path and inside the path Time required by the R to reach the end of the path (speed)	During tracking activity, we tracked the success ratio and the child speed. A suc- cess corresponds to the fulfillment of the tracking task respecting the imposed path without the child leaving the path. Since it was a race with the robot, the cursor speed (here the head of the robot) was also tracked.
Processing	Level of difficulties to reach the maze	During the pressure activity, we tracked the difficulty and the time to reach the maze. The child was able to choose the difficulty of the everying. An easier maze
rressure	Time required by the user to reach the end of the maze	was a maze with more space between the obstacles and a more difficult one with a smaller space.
Tilt	Number of collisions with the bombs.	In the tilt activity, due to the very high success rate, we tracked the time to finish
	Time spent before success	uic maze.
Rainhow	Difference between the number of strokes recorded	
Kaindow	by the therapist and the child	

Table 5.2: Digital metrics per CoWriter/Dynamico activities

This metric can be interpreted as a reflection of the body posture in the median anatomical plane. Small measures would indicate a head close to the table, while larger ones would suggest a better seat in his chair. Outliers were extracted and removed from the temporal evolution of the defined metric through a rolling window-based median filter and through the exclusion of aberrant samples lying outside ± 2 standard deviations.

5.3 Results

R. immediately engaged with Nao. During the first sessions he appeared to really believe in the scenario: he asked "where does Nao come from?", "does he have siblings?" He felt competitive and wanted to show him. Then, progressively, he understood that Nao "knew" how to write but was here to help him improve his handwriting: "*It is not the robot who learns, it is me*". In the following sessions, he focused on gaming proposals but Nao sometimes intertwined to support him and he smiled. During the 20 sessions of training, he tried all games, improved dramatically his behaviour regarding schooling, and improved his handwriting. Figure 5.5 shows BHK scores according to time. Both writing quality and speed improved with time. As expected when R. tried to write faster, quality decreased for a brief period of time. At the end of the 20 sessions, around 500 minutes, he was now ready to go back to a regular school where he received special education (see video demo presented at the International Conference on Robotics and Automation-ICRA 2020 conference https://ieeetv.ieee.org/a-cowriter-robot-david-cohen).

Digital low-level metrics are summarized in Figure 5.6. During the *CoWriter* activity, R. was writing short words composed of simple letters like "man" at the beginning of the therapy, while progressively writing longer and more complex words like "jamais" (never) at week 10 or "football" or "serpent" (snake) at week 30 (Figure 5.6 A). During

Figure 5.5: Clinical BHK scores according to time during occupational therapy sessions with *CoWriter/Dynamico*. The z-score shows how many standard deviation the handwriting quality/speed is compared to other children of the same gender and age. A child is diagnosed with dysgraphia when his score is below -1.8 (dot red line). Of note, during the 30 weeks of treatment, R. had 20 sessions in total because of during vacation remediation stops.

the Tracking activity, despite some fluctuation in the metrics that paralleled an increase of the robot's speed between week 10 and 30, we found an increase of both success ratio (which appears to be a proxy of precision) and R's handwriting speed (Figure 5.6 B). During the Pressure activity, the time to reach the end of the maze (being a proxy of R.'s proficiency in the exercise) stayed relatively constant on average (around 15 seconds) despite a clear increase of the exercise difficulty (Figure 5.6 C). This shows an improvement in the performance of R. along the 30 weeks of therapy. During the Tilt activity, we found no decrease of the time R. was taking to collect the five batteries (Figure 5.6 D).

Finally, R improved his posture during the sessions. As shown in Figure 5, the distance between nose and right hand increased from week 1 to week 30: at the beginning of the treatment, R's head was close to the paper when he was writing with an average distance of 21 cm. At the end of the treatment, the average distance increased and the child was less bent on his writing sheet with a distance close to 30 cm.

5.4 Discussion

We performed a long-term child-robot interaction to train the handwriting skills of a child with a complex NDD. The principle of the proposed treatment relies on multiple aims: relativizing and responsibility through a *protégé effect* scenario [84] employing a learningby-teaching paradigm [185, 206]; handwriting skills through a serious games platform proposing activities specifically aimed to exercise pressure, tilt, speed and letter liaison

Figure 5.6: Digital metrics according to time during occupational therapy sessions with *CoWriter/Dynamico* A. *CoWriter* activity. Average number of letters in the words written by R throughout the sessions. The blue line represents the evolution of the average number of letters computed with a linear regression. B. Tracking activity. In red, the Success Ratio (ratio between the number of points recorded outside and inside the path); in blue, child's speed computed as a number of pixel per seconds. The dash lines represent the linear interpolations of both the success ratio and child's speed. During weeks 10 and 20, the robot's speed was increased by the therapists. C. Pressure activity. In red, the time to reach the end of the maze; in blue, the width between the peaks (which is a proxy of the maze difficulty). The dash lines represent the linear interpolation of both the time to reach the end of the maze. D. Tilt activity. In red, the time to finish the activity; the dash lines represent the linear interpolation of the time to finish the activity.

controls [21, 143]. In R's case, we observed a decrease of the avoidance behaviors, a better commitment and an improvement of R's handwriting skills. We believe that a possible explanation for such observations would rely on the shift from the classical pen-and-paper rehabilitation paradigm to the presented scenario. Observations from future experimental studies involving larger samples would eventually confirm this hypothesis. The use of this longitudinal methodology has been made possible by the integration of several domains of expertise related to clinical science, development, computer science and robotics [274]. Interestingly, R's improvement of writing (Figure 1) followed the usual course of writing learning and automatization with steps: first of quality improvement then speed improvements [2,254,352]. R. also changed his posture during his writing progress as expected in learners who mature with writing [132]. However, the role of child robot interaction and *Dynamico* may not be exclusive as the occupational therapist was still present during the sessions. Given the very experimental nature of our scenario, we wanted to ensure that an expert could follow the course of the sessions. In addition during the beginning of the treatment the design was iterative and patient-centered to seek a scenario development focused on the end-user needs [170]. This implies that we tried to integrate feedbacks that

Figure 5.7: Distance between nose and right hand (cm) according to time during occupational therapy sessions with *CoWriter/Dynamico*. Mean (in dark blue), standard deviation (in light blue), linear regression (in dot red) = [0.15 x + 21.44] (R2=0.038)

the occupational therapist provided after the first three sessions. The main innovations were to include the rainbow game within *Dynamico* and to be directly involved in the sessions with the grasping activity. We are aware that the role of the therapist in the presented scenario was not investigated. But we can speculate on its role from the anecdotal experience achieved from the presented case but also from two other contexts in which the identical setup was exploited: in a classical therapy setting with two occupational therapists in Lausanne (3) and in a classroom with children with ASD in Paris. Interestingly, even if the principles of fine motor skills and writing principles were similar, it seems that the strategies of occupational therapists could be quite different. With R, the occupational therapist had a developmental perspective, meaning that the child needed to master basic skills that would ultimately lead to mastering handwriting. She decided not to ask R to perform handwriting activities since R had refused to do so after one year of 'pen-andpaper' occupational therapy with the same professional. In Lausanne, the occupational therapists were more intensive in their approach. The idea was to train writing, since, ultimately, that was the targeted goal. This diversity of approaches among occupational therapists is in line with dysgraphia literature review (see introduction) [37, 132, 188]. In the context of the classroom, the teacher focused on how the children could think about their own strategy and performance, trying to praise them and guide them. While the therapists were very interventionist and wanted to tailor as much as possible the activities of the child to his/her needs, the teacher was interested in the use of the Dynamico device in semi-autonomy with the Nao robot. She said that a more autonomous system "would allow her to focus more on some children for other activities since their pedagogical goals could be different with different learning curves". Regarding serious games included in Dynamico, we proposed numerous scores related to features that were sensitive to changes and that paralleled clinical improvement. We hope in the future to compute a novel version of the serious game including tailored feedback based on these features to guide handwriting training and monitor the progresses of the child in a more autonomous way². These features congruent with the theoretical framework of digital phenotyping have the advantage to be motorized and thus easier to track [199]. The usability of the set up was good for the therapist and the child, and the system was not invasive even after weeks of sessions showing the promise of robotics in education [35]. The number of sessions and the length of the session enlight the good acceptability of the setup. The child had previously avoidance behaviours with the pen and paper remediation. He was pretending to be a cat. He was breaking pencils due to frustration. This behaviour was not repeated during the sessions with the robot. The child could be reluctant and could be rigid about the scheduling of the sessions (the sessions needed to be finished strictly on time.) These comments disappeared through the sessions. The child was accepting more and more the handwriting rehabilitation that was proposed to him. The motivation was increased since he could even asked to be challenged by harder fine motor skills and handwriting exercices. This evaluation is purely clinical, even if several practitioners attended the sessions. Follow-up study would require to use standardised and validated scales to assess the acceptability of the device from the patient and practitioner point of view, the motivation and engagement of the user. Some metrics could be used also from the camera using affective computing approaches. In this feasibility study, the reactions of the children to the robot interventions were measured clinically, even if several practitioners attended the sessions and debriefed the session at its end this method can induce biases. Follow-up study would require to use standardised and validated scales to assess the reactions of the children to the robot intervention. Some metrics could be used also from the camera using affective computing approaches. A formal evaluation of acceptability is planned with an improved version of the Dynamico-Nao setup in both occupational therapy sessions and in a classroom for children with special needs [316]. Although several feature scores improved during R's treatment, it was not the case for the time to finish the tilt activity which did not significantly decrease. One explanation is that during an automated handwriting, the tilt must be controlled and very stable [20]. The change of tilt may not be a relevant feature for treatment assessment despite its relevance for classifying children with dysgraphia compared to typically developing children [21]. An alternative hypothesis could be related to tilt activity in Dynamico. We wonder whether making feedbacks more explicit when the child touches an obstacle would help (sounds of explosion when he touches the bomb for instance). In addition, given the stability of the tilt during handwriting, we wonder whether a new activity training the stability of the tilt while changing the position of the pen would be of interest. Beyond the acceptability and feasibility of this framework, we cannot generalize it or suggest some of its ingredients as a treatment of dysgraphia due to the limitation of a single case longitudinal methodology. Even if the failure of previous approaches to treat R's dysgraphia makes alternative hypotheses clinically unlikely [42], we cannot formally exclude a spontaneous resolution of dysgraphia. A randomized controlled trial with sufficient power will be necessary to make such claims of efficacy. Furthermore, it would be useful to assess the relative importance of either the complex system with a social robot or the writing tablet serious games alone. We also believe that using the serious games - Dynamico - implemented on much easier tablets (e.g. Ipad) would be of interest for scalability³. In this study, we performed analysis on low-level features that allowed giving real-time feedback during serious games directly based on position, pressure, and tilt. Future analysis should take into account more high

²https://www.dynamico.ch/

³https://www.dynamico.ch/

level features such as those described in Asselborn et al. [21] during BHK itself. They would allow to guide rehabilitation by identifying the cluster of dysgraphia the child is in [143], by describing with more details the evolution of the child, since some exercises are more appropriate at the end than at the beginning of the rehabilitation [37]. The social interactions of the robot also had many limitations. We plan to endow it with more social skills to improve (1) the learning scenario, (2) the quality of the feedback, (3) metacognition and self-reflection of the child and (4) motivation. Affective computing would be useful to assess the answers of the child after such behaviors. Robotics showed promising results in the field of special education, especially in the case of ASD, in which the children have interpersonal difficulties. Robots appear to be more predictable and reassuring for them [53, 115, 165, 355]. A key aspect to be improved is also the general ergonomics of the system. While it allowed a rather fast improvement of writing in the case of R., the proposed experience was very heavy for clinical users due to time consuming installation before starting a session, complex wiring and unhandy interfaces. Besides the use of a stand-alone tablet (iPad®) to improve the user interface, we may also improve Human Robot Interaction smoothness with a more stable and social expressive robot (e.g., Qt robot). We conclude that this longitudinal single case shows the feasibility and acceptability of the CoWriter set up. Larger clinical studies are required to confirm that dysgraphia could benefit from this set up. We believe that implementation into the classroom as a regular educational proposal may also be a reasonable goal in particular if a version for stand-alone tablets may be computed.

5.5 Conclusion

We showed how we could use the insights provided by the analysis of the features, to develop specific activities to remediate handwriting. It will be important to improve user experience of the system for therapists to collect more data. This will enable to confirm and refine the models, to better track the progression of the children and to guide adaptatively the rehabilitation process. This finer analysis could help to better understand the rhythm of the therapy: should the therapist focus on a progressive approach based on fine motor skills training before writing or directly target handwriting which is the goal of the reeducation. Like we showed in the introductory chapter, the rehabilitation for every children should not be the goal if the handwriting training is too difficult and can be substituted properly to keyboard typing without disabling the child (Figures 1.4 and 4.6).

However, the social behaviours of the robot were limited in richness and number. In the following chapter, we propose a theoretical framework (Table 6.1) based on the observation of children. It has implemented but has not been yet tested on the field in a rigorous way (comparative way) nor for a sufficient time (long-term interaction).

Data and code availability

The skelleton analysis pipeline for this study can be found in the OSF website https://osf.io/u6bdz/.

Chapter 6

Enhancing the rehabilitation using social robotics

"ROXANE, CHRISTIAN, CYRANO d'abord caché sous le balcon.

ROXANE, entrouvrant sa fenêtre.

Qui donc m'appelle?

CHRISTIAN.

Moi.

ROXANE.

Qui, moi?

CHRISTIAN.

Christian.

ROXANE, avec dédain.

C'est vous?

CHRISTIAN. Je voudrais vous parler.

CYRANO, sous le balcon, à Christian. Bien. Bien. Presque à voix basse.

ROXANE.

Non ! Vous parlez trop mal. Allez-vous-en !

CHRISTIAN.

De grâce !...

ROXANE. Non ! Vous ne m'aimez plus !

CHRISTIAN, à qui Cyrano souffle ses mots. M'accuser, — justes dieux ! — De n'aimer plus... quand... j'aime plus ! ROXANE, qui allait refermer sa fenêtre, s'arrêtant. Tiens, mais c'est mieux !

> CHRISTIAN, *même jeu*.

L'amour grandit bercé dans mon âme inquiète... Que ce... cruel marmot prit pour... barcelonnette !

ROXANE,

s'avançant sur le balcon.

C'est mieux ! — Mais, puisqu'il est cruel, vous fûtes sot De ne pas, cet amour, l'étouffer au berceau !

CHRISTIAN, *même jeu*.

Aussi l'ai-je tenté, mais tentative nulle Ce... nouveau-né, Madame, est un petit... Hercule.

ROXANE.

C'est mieux !

CHRISTIAN,

même jeu.

De sorte qu'il... strangula comme rien... Les deux serpents... Orgueil et... Doute.

ROXANE, s'accoudant au balcon.

Ah! c'est très bien. — Mais pourquoi parlez-vous de façon peu hâtive? Auriez-vous

donc la goutte à l'imaginative ? CYRANO,

tirant Christian sous le balcon et se glissant à sa place. Chut ! Cela devient trop difficile !...parlant à mi-voix, comme Christian.ROXANE.C'est qu'il fait nuit, Dans cette ombre, à
tâtons, ils cherchent votre oreille."Aujourd'hui...Vos mots sont hésitants.C'est qu'il fait nuit, Dans cette ombre, à
tâtons, ils cherchent votre oreille."Pourquoi ?Edmond Rostand, Cyrano de Bergerac, IIIème
acte E. Fasquelle, 1926, première édition, 1898.

Abstract

Introduction

Handwriting rehabilitation is a long process (several months). In this exploratory study, we tested whether a robot companion could be useful to improve motivation during handwriting remediation, thanks to the *protégé effect*. In the first clinical experiments (chapter 5), the behaviours of the social assistive robot were limited. The long-term interaction presented in previous chapter emphasised the need for different social behaviours, to sustain motivation and engagement in the task, and to bypass the *novelty effect*. Here, we proposed a theoretical and operationalized framework describing such behaviours thanks to an exploratory study.

Materials and methods

We developed a wizard of Oz interface (in Python and QML) able (1) to control motor activities and verbal intervention of a Nao robot during the *co-writer* setup, and (2) to annotate children's responses to robot's feedbacks. We explored the usability of the system on four boys with dysgraphia during one or two rehabilitation sessions (60 min each) with their occupational therapists using a robot. Depending on children's reactions, we implemented iteratively different behaviours and tested them operationally.

Results based on early child-robot interactions

Based on children's reaction, we defined and implemented a library of 21 robot's behaviours, corresponding to 4 categories: (1) framing of the scenario, (2) tailored feedback for the child, (3) enhancement of metacognition and self-regulation skills, (4) promotion of the child motivation. During the exploratory study, we found that most of the children's verbatim or behaviours in response to the robot's interventions confirmed the expected effects on the child. However, the user interface did not allow to easily annotate children's immediate responses since the tablet was also controlling the cursor of the laptop. Additionally, the movement of the robot was often problematic due to oscillations of the Nao robot.

Discussion This framework allowed the implementation of a wizard of Oz in Qt creator. The interface was functional in a laboratory setting but usability was poor in a clinical setting. To counter the low clinical usability, a new system is proposed with (1) a standalone tablet (iPad®) to fix the problem of cursor management and improve scalability, (2) a more stable robot able to display social reactions on its face (Qt robot).

Conclusion This pilot study allowed to conceptualize irecheck project. Future studies with the new devices and implementation should assess in a larger sample of children with severe dysgraphia (1) the behaviours and efficacy during a longitudinal study, (2) the specific effect of the social robot compared with a standalone tablet (Dynamico).

6.1 Introduction

Building on top of the lessons learned in the CoWriter studies (chapter 5), this chapter describes strategies (and specifically, robot behaviours) for a long-term child-robot interaction scenario aiming at improving handwriting via the protégé effect. Long-term children robot interactions are still technically challenging after the "novelty effect" fades away. Kanda [214] suggested to have a progressive self-disclosure of the abilities of the robot and to allow for discoveries during the interaction. Leite propose to develop empathic behaviours in the robot. [239]. In our scenario, it seemed important to have a robot in the position of a peer [239].

Specifically, in this chapter, we discuss how we operationalized and implemented such strategies in a proof-of-concept Wizard-of-Oz (WoZ) set-up, preliminarily evaluated for feasibility in a case study involving 5 participants (Section 6.2).

Careful attention is given to the discussion of the rationale motivating our choices in designing the robot's behaviour (in Section 6.3), and in reporting first reactions from the children. In the Discussion (Section 6.5), we will propose some perspectives and limitations that will be important to consider during larger field experiments.

6.2 Materials and methods

6.2.1 Scenario and experimental context

In the CoWriter scenario, a child is first asked to teach a robot how to write. He/she chooses a word, the robot writes it down, then the child is asked to do several fine motor skills activities aimed to train tilt, pressure, speed and letter trajectory. (Figure 5.1). The sessions lasted 45 to 60 minutes. The field pilot studies discussed in this chapter arise from two different case studies:

- **Study 1:** one boy, (10 years old) interacting with the CoWriter set-up with very basic automatic social behaviours for 20 consecutive weekly sessions. The clinical case was fully described in Chapter 5.
- **Study 2:** four boys (7-9 years old) participating in a pilot study to evaluate the feasibility of the introduced social behaviours. Three children interacted with the system for 2 sessions, while one child interacted with the system during a single session of 45 min.

All children were treated for severe dysgraphia, with different diagnosis and often comorbidities (DCD, Autism Spectrum Disorder, ADHD, dyslexia).

6.2.2 WoZ interface

The WoZ interface was developed in Python and QML. A demonstration can be found here https://youtu.be/uwdfpdtqSZQ (Figure 6.1).

6.3 Rationale

The goal of this system is to propose to children with dysgraphia a playful, engaging and efficient reeducation opportunity for their fine motor control skills. We built our rationale

Figure 6.1: **The WoZ Interface.** The therapist can connect to the robot (top-left), choose the activity to engage the child in (mid-left), and annotate the child's responses to the robot's behaviour (bottom-left). On the right side, buttons to trigger various robot behaviours.

for activities that require learning from the child (in our case writing) based on theoretical grounding from psychology chosen from clinical experience with the system, as well as general principles that help a participant to interact with a robot [318]. These include spatio-temporal coordination, coordinated decision making, perception of a partner's effort, adaptative performance of the robot (not too low, not too high), the use of social signals and implicit forms of communications [318]. All the proposed behaviours, their rationales, their expected effect and the early outcomes with child's supporting verbatim are presented in Table 6.1.

6.3.1 Framing

Mystification

The child is part of an engaging handwriting activity in which a social robot is able to establish with him a strong empathic link, thanks to an appropriate exploitation of the protégé effect. The emergence of such connection relies mainly on the ability of the robot to be perceived by the child in a believable way: this can be achieved through its coherent participation to the task in an active, reliable and social way. However, endowing robots with such skills in a real, complex scenario, such as the one considered in this work, can be a very difficult task. In this chapter, we rely on teleoperation to overcome the limits of current technologies in the comprehension of the mutual social interaction between the child and the robot. The idea of using teleoperation to remotely control a social robot (and thus give to the participant interacting with the robot the illusion of an autonomous robot behaviour), called *WoZ*, is largely adopted in Human-Robot Interaction studies [328].

In the specific scenario we consider, the complexity of the robotic system can be further reduced thanks to the imagination of children: we do not really need a robot able to write with a pen, because the simple gesture of pointing toward a cardboard cutout of a tablet (preferably built by the child himself) can be enough to maintain the illusion of writing. The robot can explain such special ability: "you know, I don't need a pen".

In general, a background story, a personality and the mystification of the robot's own abilities arouse in children the projection towards the robot of a sort of social intelligence: the robot is not seen anymore as an object but as a kind of "living creature", a companion with a character, its past experiences, its skills, its weaknesses, and the ability of expressing simple emotions [11]. Milgram already studied the belief we can project on teleoperated humans with the cyranoïd concept [276]. This concept is based on a theater play of Rostand. In this play, Cyrano want to court Roxane, but affraid to be rejected because of his ugly face, he asks the handsome but stupid Christian to repeat his love words to seduce her [340]. Cyrano (like a wizard-of-Oz in robotics terminology) is teleoperating Christina (the cyranoïd in Milgram terminology). Interestingly, even if the mystification with a robot can be limited, children seem prone to believe it, engaging with the robot accordingly.

Lastly, we also hypothesize that small talk expressions such as "Hello", "Bye", "Yes", "No", "Can you repeat ?" and using the name of the child would contribute to the projection of social intelligence on the robot and have a positive impact on the child's engagement with it.

Framing the limits

Our functional analysis (Figure 1.3, in chapter 1) shows that the children could be prone to avoiding motors skills training and writing, as they could trigger negative emotions. Even if avoidance is helpful in the short-term, operant conditioning predicts that it will reinforce the avoidance behaviour and in the long-term, it increases the fear, and the avoidance in a vicious circle [93, 366]. To have a robot which is limited in its behaviour and cannot adapt to the short-term needs of the child is relevant since it prevents the avoidance behaviour of the child.

Low performing robot with a humble attitude

The long-term interaction of case study 1 showed some of the technical limitation of the robot (freezing, falling). Instead of trying to fix all of them, we believe that they are congruent with the scenario of a low performer robot, and we made the robot react to them with sentences such as "Ah, finally, I can stand", "I am sorry, I am tired today", "I am sick", "I am rusty". This allows the child to relativise his/her own writing difficulties. The robot can also amplify a humble attitude that triggers the feeling of responsability in the child.

According to the Observational Learning theory [27] and identification theories [349], children do not only learn by trial and error but also by imitation. This process could be helpful for modelling the request for help and dealing with aggressivity.

Dealing with aggressivity and frustration with humour

Writing can be frustrating for these children. They can be bullied because they cannot perform as well as their classmates. We saw that one child was "bullying" the robot: "I will throw you by the window". We hypothesise that the child was copying what he was experiencing outside [27]. Thus, reversely, it is important that the robot displays good coping behaviours, as suggestions for the child about how to behave if he/she is mocked or bullied. Examples include: "You know, I have muscles in plastics", "I progressed a lot", "I do the best I can". Whenever the child shows frustration or anger about the task, it is important that the robot expresses empathy (e.g. via statements such as "You seem angry", "You seem tired, let's have a break and then start again").

Congruent audio-motor behaviours

While implementing these behaviours, we also added social postures for the robot which are congruent with the verbal utterances and make the system more believable [389]. See also the posture in the demonstration video https://youtu.be/uwdfpdtqSZQ.

6.3.2 Feedback

Increase self esteem by progressive training, clear positive feedback and valorisation

Positive reinforcement is a good strategy to help learning processes and increase selfesteem. The robot can praise the child verbally ("Well done", "Congrats" [277]) or even physically, children asked to do a "High five" that could induce a complicity with the child. To label (social labeling) [33] the child is also a techniques that showed promising results. We propose to explicitly include the robot into the loop of positive reinforcement ("We progressed a lot together today", "We are so good") and we call this process valorisation [277] with inclusion, or labelling [33] with inclusion.

Error acceptance and negative feedback

If the child fails with his/her performance, the robot should show support and relativise the behaviour to help him/her accept the error: "It is ok, it happens", "Take a breath and try again". It is important that the child is able to process and accept the error as an opportunity to learn and to go out of his/her comfort zone [109]. Negative feedback and direct advice are very common but not recommended ("righting reflex" [277]) since they can decrease self-esteem, intrinsic motivation and are incongruent with the scenario.

Multi-sensorial feedback

A visual and auditory automatic feedback was added on the tablet to denote occurrences of the child performing the wrong action during one of the activities. A clear, repetitive feedback facilitates the training, especially if it is multisensory [268]. However, it seems theorerically important to decouple this automatic tablet behaviour with the robot behaviour since, it could be considered as a righting reflex of the partner that could be detrimental to the relationship, interaction and credibility of the set-up [277]

6.3.3 Metacognition and self-regulation

According to the Cognitive Orientation to Daily Occupational Performance (CO-OP) therapeutic model [317], motor planning is as important as the execution of the movement itself. A very close technique used in sport is to visualise the movement before executing it [218]. We operationalise this concept in the robot via sentences such as: "How many times maximum you expect to go out of the trajectory during the speed activity?, "How many bombs do you expect to touch, during the tilt activity?". The robot can also ask "Can you draw the trajectory?" to check whether the child has a motion strategy and to differentiate a lack of training from a difficulty of fine motor skills ("I did not understand, can you explain how to do this letter?"). Furthermore, this behaviour can normalise any request for help the child may make [27].

6.3.4 Motivation

Self determination theory states that there exist two kinds of motivation, intrinsic and extrinsic [262].

Intrinsic motivation

Intrinsic motivation is "an expression of a person's sense of who they are, of what interests them" [108]. Intrinsic motivation leads to better conceptual learning, greater creativity, more cognitive flexibility, and enhanced well-being relative to extrinsic motivation [343].

We think that the framing is very important to sustain intrinsic motivation, alongside progressive training and session preparation. Concerning the former, Csikszentmihalyi [96] showed the importance of focusing on an activity neither too difficult neither too easy, to reach an optimal flow. This motivated the development of levels of increasing difficulties. In addition, while consistency and rationalization are important drivers of human behaviour [175], in order to trigger change talk (patient talk consistent with a targeted behaviour [277]), the robot can check and sollicitates behaviour engagement outside sessions (e.g., "How did you train since last time?", "How do plan to train before the next session?", "Can you bring me a letter for my notebook so I can have a souvenir from you and an example to train my writing?").

Extrinsic motivation

Extrinsic motivation "involves doing an activity because it is instrumental to some separate consequence. [...] Thus, people are extrinsically motivated for an activity when they do it in order to earn money, avoid punishment, or comply with social norms." [108]. We think that the various types of feedbacks embedded in the system are very important to sustain extrinsic motivation.

6.4 **Reactions to the social behaviours**

6.4.1 Framing

Case study 1 (long-term single case study) suggests that the mystification is quite powerful. The child greeted the robot (Nao) and asked if it had cousins. This mystification was maintained for several sessions by the child, even after demystification occurred (identified at the time the child said "It's not really the robot that learns, it's me"). From that moment on, the child looked happy to still act "as if" he was really helping the robot. We propose to coin this phenomenon as the "Santa Claus effect", in which the child is ambivalent about the truth but likes remembering the belief he adhered to at the beginning (just like with Santa Claus and Christmas).

One of the children in study 2 was very avoidant about writing and, at the beginning, only wanted to play something related to trains with the robot. In this case, the limits of the framing (the robot was only here to write and make fine motor skills exercises) were very helpful since they limited avoidance (writing was necessary to interact with the robot). In general, children were very happy of the robot's low performance and humble attitude and could mock the robot which doesn't seem to be a problem theoretically.

6.4.2 Feedback

Positive feedback was observed to facilitate the interaction, helping steer clear from situations that could put the child in learned-helplessness [74]. Specifically, it was very helpful for the children in study 2 to receive a clear multi-sensory feedback on their performance (when they tilted their stylus in a wrong direction, when they were going out of the given path in a path-following activity). In contrast, during study 1, the child became overconfident and wanted to do everything as fast as possible, not caring for his mistakes. As soon as multi-sensory feedback was implemented, it allowed him to limit his impulsivity, a trait often found with ADHD, helping him to take time to plan his strategy.

6.4.3 Metacognition and self-regulation

Whenever the children were able to reflect on their performance, instead of rushing towards the end of the exercise, they would decrease their speed and impulsivity and focus on quality (e.g. "I will try to go out of the trajectory 3 times instead of 4, this time" or "I will use this path" in an activity consisting in controlling a cursor with the tilt of the stylus to reach a reward while avoiding bomb obstacles).

Even in study 1, with the robot not equipped with social behaviours, we saw that the children were prone to challenge themselves progressively and move towards harder tasks.

6.4.4 Motivation

The system allowed a good commitment of the child. In the long-term study, avoidance behaviours decreased, such as producing cat vocalisation, or being rigid about the time schedule. The child even asked whether he could show to a friend what he was doing with the robot.

The improvement of the robot's writing was also an important factor of motivation. For instance, the boy of study 1 could be frustrated because the robot was not learning fast enough and he felt helpless because of that. To overcome that issue, we changed the speed of learning of the robot, pushing it to its maximum. The social behaviours to trigger transfer outside of sessions (e.g., "what can you write for me next time?") were not tested long enough to allow for any type of conclusion about their effects.

6.5 Discussion

6.5.1 Importance of a closed feedback loop

The purpose of this CoWriter set-up, as any other remediation technology, is to have a positive impact on the skill for which remediation is needed. In our case, this calls for very clear metrics to measure the child's writing quality and track its evolution over time. Luckily, the assessment of fine motor skills can be robustly done via the analysis of the pressure, tilt, position and speed of movement of the stylus [21], and we previously showed a strong correlation between fine motor skills and overall handwriting quality, allowing for the definition of "handwriting quality metrics" based on tablet and digital stylus data [21]. It allows a tailored feedback tracking early artefacts (something which is measured and unrelated to the child performance, e.g., we can see such artifacts in electro-encephalography).

6.5.2 Evolution of the robot's behaviours over time

A crucial factor to sustain effective long-term interactions is the robot's ability to evolve and grow over time, e.g. by displaying increasingly complex behaviours. At the same time, the goal of any remediation technology is to become useless, i.e., to empower its user sufficiently to continue to progress without it. The goal of a social robot is "not to reach the myth of media richness, i.e. the belief that the more a robot interacts as a human (understands language, perceives emotions), the better it will be for learning". The goal is to control the necessary "cognitive load induced by the construction of new schemas" [116]. To tackle these two goals, we think that the robot's behaviours could evolve with time in complexity and frequency, e.g., moving from frequent, simple and automatic feedback at the beginning, to fewer and more abstract social behaviours later on. Along this line, a sign of success of the therapy could be complete removal of the robot in the last sessions, replaced by a stylus and tablet, or even pen and paper.

6.5.3 Robot as a peer

In CoWriter, the robot could be considered as a protégé that needs the child's help ("The robot is even worse in writing than me"), as well as a peer with whom the child is doing turn taking activities and sharing interests ("I like trains, what do you like?"). This role of the peer could be further examined by exploring the experiments in the social facilitation paradigm, in which the performance of subjects increase while being observed by others subjects [375, 391]. While we don't think that it would be beneficial, in our context, to place the robot in the role of an instructor ("In this activity, you need to do that and that") or advisor ("Beware, you are going too fast"), we think that the flexibility to change the role will allow to perform more rigorous evaluation in the field. At the end, we believe that the robot's strongest asset will likely be its humble attitude and the limitation of its abilities.

6.5.4 Role of the therapist/teacher

Two different requests emerged from the case studies. The therapists involved in study 2 were asking for a very adaptable and controllable robotic system, allowing them to tailor as much as possible the remediation to the needs of the child. Conversely, in the classroom, the teacher preferred a more autonomous robot, allowing her to focus on the other activities involving other children. The robot in the classroom should therefore decrease the cognitive load on the teacher.

An interesting approach to integrate the two requests in a single framework is the Supervised Progressively Autonomous Robot Competencies (SPARC) approach [358]. In this approach, the robot can learn over time which of its behaviours are relevant, and when, and suggest them to the Wizard (the operator) controlling it, thus reducing its cognitive load while still allowing for full control.

6.5.5 Limitations

Lack of a Field Evaluation

To date, our proposal is mostly theoretical, since we only tested it in pilot observational qualitative studies (study 1 and 2), lacking a rigorous experimental design.

Emergence problem and impact of framing in the long-term

In Figure 1.3, we reported the negative vicious loop that describes writing difficulties insurgence and evolution. In the same way, we could draw the positive loop that is activated with remediation. If the child shows an increases in self-esteem, invests more energy on writing and is given a positive reinforcement [366] on his attitude, ultimately seeing that his/her performance improves, then, he/she will be more prone to invest even more energy in writing, by feeling more confident.

However, a complex system like reeducation can induce the emergence of unsolicited behaviours and attitudes that would make this theoretical framework totally or partly inaccurate. Thus, it is important to mix long term clinical and laboratory approaches to better understand how children learn and are motivated, at the same time taking care of implementation and testing on the field.

6.6 Conclusion

An insight from experimental, and social psychology and remediation seemed useful to develop a Wizard of Oz social robot to improve education, especially in the case of hand-writing, even if the marriage between robotics and social psychology looks unseasy to other researchers [200].

The naive idea of a complex and high performer robot that will be useful for remediation is here theoretically challenged since (1) the scenario and the mystification are fundamental and must be taken into account, (2) a low performer robot is more prone to need help from the child that a high performer robot, (3) the goal is not substitute the teacher (or a therapist) but to alleviate the work overload, to offer more research opportunities, or to perform a specific role, like helping to tackle avoidance behaviours.

However, only early usability data were done and showed that the child could be more engaged with the system when the robot was social.

We are planning to conduct a proper study (with the project IReCHeCk) with this robotic architecture and this scenario with children with severe dysgraphia.

The advantage of taking children with severe dysgraphia even if they are more difficult to recruit and to engage in therapy is that, they could be (1) the end users of the system ; (2) it would be easier to show differences during the remediation since the margin of improvement is larger.

A large data base would also allow (1) to check the relevance of the robot behaviors in the field, which of them are useful, useless, which kind of child behaviours emerge? Is the long-term interaction sustained? Is the attachment, separation with the robot a problem? (2) Is it efficient on writing features in a large sample? Is a randomized control trial feasible? What is the optimal profile of the children that would benefit from this system?

Dimension in the model	Concept and supporting ev- idence	Robot behaviour/proposal	Expected effect on the child	Child's support- ing verbatim or behaviour
Framing	Cyranoïd [276] ; Wizard of Oz [232]	Deception ("I need help", "I am very bad at writing")	Engagement in the child-robot interaction	"It's not really the robot that learns, it's me"
		Small talk ("Hello", "Bye", "Yes", "No", "Can you re- peat")	Engagement in the child-robot interaction	"Do you have cousin ?"
		Naming ("Hello Marcel")	Engagement in the child-robot interaction	"Hello Nao"
	Preventing avoidance, Nega- tive reinforcement [366]	Framing the limits ("You know I am a robot I don't un- derstand much")	Focus on motor skills and writing tasks	"Can we play train with the robot ?"
		Giving instructions ("Can you help me write cat ?")	Focus on motor skills and writing tasks	"Ok"
	Responsability: Protégé ef- fect [206], Relativization	Bad writter ("I am very bad at writing")	Increase self esteem, positive emotional va- lence	"It is even worse than me"
	Observational learning, So- cial cognitive Theory [27]	Ask for help ("Can you help me ?")	Engagement in the child-robot interaction	"Yes, I can try"
	Observational learning, So- cial cognitive Theory [27]	Coping behaviours when at- tacked	Mimicking good cop- ing behaviours when at- tacked	"I will through you out of the window"
Feedback	Positive reinforcement [366]	Valorisation: "High five", "congrats"	smile, engagement in the task, grit, self- esteem	smile, engagement in the task

Table 6.1: Design framework used to implement the behaviours to sustain long-term child-robot interaction

	Labelling [33]	"You are so good"	smile, engagement in the task, grit, self-	smile, engagement in the task
			esteem	
	Valorisation and inclusion,	"We progressed a lot together	smile, engagement in	smile, engagement in
	Positive reinforcement [366]	today"	the task, grit, self-	the task
	?		esteem +	
	Error acceptation [109], Rel-	Support: "It happens", "Take	grit	persistance on the task
	ativization	a breath, and we try again"		
	Rather unrecommended (Ex-	Social Negative feedback?;	increase awareness, in-	
	pert position, righting reflex	Advice ? ("You go to fast")	crease stress, decrease	
	[277] People feel less risk to		self esteem	
	be judged by an avatar than			
	by a human [215]			
	Multi-sensorial feed-	Automatic Negative feedback	increase awareness,	Awareness of the child,
	back [268]	(explosion or skid noise)	increase stress, refine	challenge attitude, de-
			child perception action	crease impulsivity
			loop model	
Metacognition and	Plannification / motor im-	How many bombs you will	increase awareness,	"I just did 4, I will try
self-reflection	agery [43]	hit?"	increase stress, refine	3"
			child perception action	
	<u></u>		loop model	ANT 111 1 1 1 1 1 A
	Check strategy and planifica-	Can you draw the trajectory?	increase awareness, re-	"I will take this path"
	tion [317]		fine strategy, decrease	(while pointing)
			impulsivity-Reaction	
			time	
	Confidance on the perfor-	"Is it too easy, or too difficult	increase awareness	"I want to try the harder
	mance	?"		level"

	Check strategy and planifica-	"I did not understand, can you	increase awareness, re-	engagement in the task
	tion [317]	explain how to do this letter	fine strategy, decrease	
		?"	impulsivity (Reaction	
			time)	
	Empathy : Reflecting feel-	"You look anxious today"	increase awareness	not tried
	ings [333], non specific fac-			
	tors [297])			
Motivation	Flow [96]	Push toward other / harder	Focus on motor skills	"The robot is not learn-
		task	and writing tasks	ing fast enough"
	Modeling - Observational	sharing interest	Acceptance on writing	"ok I can write train,
	learning, Social cognitive		task	then"
	Theory, [27]			
	Congruent speech and be-	Engagement triggering	Transfer outside reed-	not tried
	haviour ; Cognitive disso-		ucation session, make	
	nance [175], Foot in the door		the robot useless	
	[141,311]; Change talk [277]			

Chapter 7

Discussions and Perspectives

In this thesis, we showed how electronic sensors and algorithms open new methods in the way we can describe movement and handwriting in particular. This could help to increase our understanding on how we learn handwriting. This approach uses previously hidden features (as it allow analysing the full dynamic of handwriting with a high sampling rate). We can, thus, describe more precisely and with a new perspective, a well-known process in educational and clinical settings. In addition, we have shown encouraging preliminary results for treatment using these hidden features. Handwriting impairments of some children could be improved using tailored serious games and a robot as a learning companion.

7.1 Writing and technologies

7.1.1 Handwriting is still important despite the development of keyboards and new interfaces

Despite the development of physical keyboards or keyboards in touch screens, handwriting remains important. During the process of learning, the graphomotor aspects (drawing the letters) help children to memorize and to differentiate letters, whereas such movements are not learned while typing, which impairs the memorization of performing the letter [247]. This educational effect was only seen in 5-year old children but not in younger ones. Neuronal activities measured by Electro encephalo graphy (EEG) also differ between handwriting and typing [301]. A recent review, on early writing, comparing handwriting and keyboard typing showed that handwriting outperforms keyboarding to learn how to write [409]. A study showed that the handwriting process of taking notes in university, being cognitively costly, required students to summarize lessons provided during oral presentations and thus improves memorization compared with taking notes with a laptop [287]. Thus, despite availability of laptops computers and electronic tablets, handwriting is still important to learn and improve memorization.

7.1.2 A better understanding of the current diversity of clinical strategies

In the introduction, we showed some principles that were studied to validate different writing rehabilitation strategies. From them, we theorised a trade-off between a progressive and an intensive approach (Figure 1.3) that needs to be better evaluated. However, theses approaches are very different, depend a lot from the culture of the variety of professionals that can take care of these difficulties. For instance, we showed large practical difference between psychomotricians practice in Paris and occupational therapist in Lausanne, due to different theoretical background and training. We did not find a synthetic description of this diversity in Europe. Conducting a European online survey, taking advantage of European networks such as the European Federation of Psychiatric Trainees, the European Society of Child and Adolescent psychiatry would allow to have a better overview about: the diversity of tools used (1) to diagnose handwriting impairments, and (2) to rehabilitate dysgraphia, (3) the diversity of the professionals involved, (4) the economical consequences on the families, and (5) the acceptability of using new technologies. We began to implement such a survey but proofreading and a pilot phase would be necessary before dissemination.

7.2 Generalisability

Future research will need to take into account some precautions concerning data collection and interpretation. In this thesis, we focused mainly on handwriting features. The features extracted strongly depend on the device used to record them (sampling frequency, resolution) and the software used to extract them, which may prevent generalisation of the results. For instance, we were not able to directly use the studied features (presented in chapter 3 and 4 collected on Wacom® intuos), in the rehabilitation part (chapter 5). Even if we used the same hardware, we used a different software that relied on a different sampling method (event time stamps or periodic sampling). Other devices that may be cheaper or easier to use will require to train new models on these new features.

Beyond handwriting features, we showed that it was possible to track posture with different strategies with different technical challenges. Both a simple hardware (like a camera), combined with complex deep learning algorithms (like Openpose [73]), or a more complex hardware (a Kinect®), combined with a more easily interpretable random forest algorithm¹ can measure posture. Recording a large database, or analysing the posture with a complex program raise different issues. In this case there is still an open question between the trade-off of accessibility of the device or algorithm to disseminate more largely this approach.

7.3 Mystification and ethical aspects

The protégé effect is working in this scenario because the child believed that the robot needs him/her to improve its writing. This does not really make sense in an implementation level since the quality of writing is only a given parameter to the robot controlled by the experimenter. Still, this mystification was good enough to initiate a therapeutic childrobot interaction even if this mystification was not sustained, since the child reported "It's not the robot who learns, it is me". Fortunati et al, showed how children had high expectations (stereotypes) toward robots shaped by media, even if the human-like features of fictional robots are more advanced than those reachable by the factual ones [138]. Numerous experiments in psychology showed how human are prone to biases [18, 272] as well as their tendency for mystification and rationalization [34, 148]. This was also done with a human instead of the robot. In experiments with cyranoïds, people are fooled by

¹https://www.fondationorange.com/Pictogram-room

Figure 7.1: Several E-mental health strategies with increasing hardware complexity and professional investment. Apps : applications on smartphone, ICBT: Internet-based Cognitive Behavioural Therapy, SAR: Social Assistive Robotics

a senior experimenter secretly "tele-operating" a child via earphones. People interacting with a child often do not understand that there is an incompatibility between the body and the cognitive function of an individual even with a large difference of age [276]. This question was also raised in the Turing test [353] that tried to provide a method to assess "whether or not a machine can think". If a subject cannot distinguish an interaction with a human and a machine, he assumes that the machine thinks. To explore further these false attributions, we defend that in such an interaction, instead of a binary question ("is this mind-body conjunction possible ?" or "is this machine intelligent"), we could investigate the belief projected by the child on the robot.

Thus, we began to investigate such beliefs during the *journée des classes* (schools days) in EPFL university in a group of 61 children during one day. Classrooms were invited in EPFL university to take part with different experiments developped by researchers. Children were able to interact with Nao proposing the co-writer exercices (only the turn-taking writing activity in this scenario). They then rated their perception and inference about the ability of the robot on a Likert scale. We propose several dimensions that could be evaluated: (1) a simple perception dimension describing abilities performed actually by the robot, e.g. the robot is speaking, is moving, is progressing, (2) inferences induced by the scenario, e.g. the robot is progressing, the robot learns to write, the robot has difficulties to write, (3) arbitrary inferences, e.g. the robot is nowing, the robot thinks I improved, (4) perception of the robot's autonomy, e.g. the robot is controlled by a human, the robot is living, a human programmed the robot. This day showed the feasibility of this kind of study even if data should still be analyzed. It could allow to discriminate between different scenarios.

7.4 E-mental health

Perspectives on the use of technologies in psychiatry

Prevention in mental health is critical albeit still poorly implemented. A prevention would be particularly decisive during during critical sensitive developmental periods [17]. E-mental health approaches could help (1) to decrease the treatment gap, (2) to support prevention, (3) to better understand the optimal care.

Here, we will describe several strategies ranked according to increasing hardware complexity and professional investment (Figure 7.1).

Figure 7.2: E-Goliah rehabilitation app targeting motor and social skills training for ASD

Meta-analyses based on randomised trials clearly indicate that therapist-guided standalone application can result in meaningful benefits for a range of indications. The clinical significance of improvements in purely self-guided interventions is for many disorders less clear [122]. Some very well studied psychotherapeutical principles can be applied via apps: app-guided mindfulness is used for depression [233]², exposition and response prevention for Obsessive Compulsive Disorders (OCD) [220]³. Serious games were developed as accessible proxy of evidence-based therapies in ASD such as the E-Goliah serious game (Figure 7.2 [48, 211]).

Other serious games are tested for visuo-spatial tasks like Tetris® (Figure 7.3) to prevent [145, 202] and treat intrusive memories after a trauma [63, 217], arcade games in ADHD [228], role play and simulation games for psychoeducation⁴. Chatbots is another strategy that was used in depression and anxiety⁵.

Social medias can be used to help patients share their experience together and empower them [291]. Remote consultation (telepsychiatry) deployed rapidly in the context of COVID crisis. In systematic reviews, most controlled studies reported no statistical differences between videoconferencing and in-person psychotherapy in depression [38]. Several meta-analyses [9] and non-inferiority trials [10, 402] showed that Internet Cognitive Behavioural Therapy (online exercises programmed by a therapist) was efficient or even as efficient as face-to-face Cognitive Behavioural Therapy. Systematic reviews showed no evidence that Virtual Reality (VR) is significantly less efficacious than in-vivo exposure in specific phobia like agoraphobia [404]. A preliminary study used VR to enhance sensory integration in ASD [212]. Avatars show promising results in the treatment of hallucinations in schizophrenia [94]. Contrary to robots -especially Social Assistive Robots (SAR)- that are presented in this thesis, these technologies have already reached

²e.g. https://www.petitbambou.com/, https://www.headspace.com/

³e.g. https://www.treatmyocd.com/

⁴https://www.sparx.org.nz/[266]

⁵https://www.facebook.com/owlielechatbot/ , https://www.wysa.io/ https://woebothealth.com/

maturity. For instance, virtual agents could be promising in early stage since, it seems to elicit, in some cases, more easily self-disclosure in socially anxious interactants since participants expect not to be judged [215].

Future research ought to assess the acceptability and training of the professionals to critically use these technologies (from apps to SAR). One needs to assess feasibility of technical promises, implementation in a larger scale, responsibility concerning both the potential inefficacy or side effects that could occur using these technologies, especially if human presence is quite far, for instance with apps. How to fund or even reimburse⁶ new treatments based on Information Communication Technologies (ICT)? Developing specific and convincing methods of validation is difficult since the design of these technologies is often iterative and user-centered and the classical one-shot randomised control trial, which is the gold standard method of evaluation in medicine, does not fit well with this approach.

On the other side, despite the surge of enthusiasm sparked by these opportunities, some authors raised concern about the over presence of screens and their negative impact on development, especially for language disorders [90]. When controlling for confusing factors, larger studies do not show this large detrimental effect and conclude that this effect is "too small to warrant policy change" [252, 299]. However, the use can be very different, future research, would need to distinguish different uses of ICT technologies. Some activities with screen like educational content or co-view with the parent can have a positive effect [253]. It would allow to better understand the advantages and negative effect of these technologies.

⁶https://www.kalb.com/2020/06/16/fda-approves-video-game-for-treating-adhd-in-kids-2/

7.5 A better understanding of Autism Spectrum Disorder

7.5.1 An opportunity for the development of biomarkers

Electronic-based assessment of movement difficulties could lead to the development of bio-markers [418]. This would complement the classical questionnaire-based clinical evaluation, first step for the application of precision medicine in ASD [46]. It could then help to guide rehabilitation thanks to tailored automatic feedback loops. Eye-tracking [140, 307] and event-related pupil dilation [4] in social orientation tasks are promising and affordable methods. Scaling-up those methods, thanks to widespread and affordable devices like smartphones could lead to a better understanding of ASD physiopathology and allow screening of ASD in the long term [123].

7.5.2 Sensorimotor difficulties in ASD, the foundation for other difficulties?

Many cognitive theories have been suggested to underlie the behavioural and developmental manifestations of autism. Evidence suggests that individuals with ASD are slower to process information at a global level, particularly, when a concurrent local information is present [47,131]. However, the prominence and the consensus on the potential explanatory value of these cognitive theories "have declined in the past decade" [249] mainly due to the lack of longitudinal developmental studies to support them [131,249] and to distinguish causal mechanisms and compensatory strategies developed by the child.

When analysing 16 autobiographical writings and 5 interviews with autistic persons, Chamak et al, showed that all of them reported unusual perceptions and information processing as well as impairment in emotional regulation [80]. This suggests that the diagnostic criteria of (1) difficulty of communication and socialization and (2) restricted and repetitive behaviours are only consequences of this peculiar perceptive and emotional processing style.

A developmental sensorimotor approach could be useful. A fundamental approach from cognitive sciences defends that sensory and motor information are integrated in a loop and each refines the other thanks to internal models [411].

Sensorial difficulties are frequent in autistic persons [238, 421]. Higher intensities of sensory issues were associated with more prominent social difficulties and lower adaptive functioning [227]. In the same way, impaired praxis (that included gestures to command, imitation, and tool-use in children) were strongly correlated with the social, communicative, and behavioural impairments that define ASD [121].

The internal models built during development through sensorimotor contigencies [205] are likely early requirements for the development of higher level function like language, cognitive skills and social skills [91]. Impairment of neuronal circuits underpinning sensorimotor functions could trigger an atypical developmental cascade [45, 46] (Figure 7.4). It is important to have a developmental approach since these processes can improve via compensation mechanisms through development.

The social feedback theory states that individuals express on their own face, in a mirror way and unconsciously, the emotions they perceive on the face of other individuals [89,292]. Altering the sensorimotor feedback disrupted visual discrimination of facial

Figure 7.4: Cascade model connecting sensorimotor difficulties to impaired social cognition and socialisation in ASD (inspired by [45])

expressions [292,412]. This suggests that the sensorimotor loop is crucial for understanding social information. This fine sensorimotor tuning to social stimulation could be an early developmental step crucial for the acquisition of social competences.

Helt et al., found a strong relationship between the struggle to reproduce emotions in individuals with ASD, and the insensitivity to facial feedback [181]. Trevisan showed in a meta-analysis that the production of facial expressions was impaired in autism (moderate effect size). Facial expressions of individuals with ASD are less frequent and shorter. These individuals are less likely to share facial expressions with others or automatically mimic the expressions of real faces or pictures with faces stimuli [387].

Repetitive behaviours are the only motor symptomatology included in the current ASD diagnostic criteria of the *Diagnostic and Statistical Manual of Mental Disorders*, fifth edition (DSM-5) [8] and in the *International Classification of Diseases*, 11th edition⁷ (Chapter 1). Here, we propose, based on this sensorimotor perspective, that social difficulties are primarly driven by sensorimotor issues. If this is true, early detection and rehabilitation of these sensorimotor impairments would avoid triggering this detrimental developmental cascade, and therefore limit the subsequent difficulties in social cognition, which then lead to leading to difficult socialization (Figure 7.4).

7.5.3 Computational psychiatry as a way to modelize these sensorimotor difficulties

Computational methods offer opportunities to characterize social difficulties in ASD, with tools like synchrony, imitation measures, interpersonal distance (Chapter 2). However,

⁷https://icd.who.int/en/

they also allow characterizing and simulating internal functionning in ASD.

The goal of computational psychiatry is to describe and modelize with algorithms the difficulties found in mental disorders. It is a recent field with still quite heteregeneous findings. [32, 191].

Pellicano proposed that individuals with ASD perceived the world too realistically and rely less on their internal models. Thus, this could lead to sensory overload [312]. Using the bayesian decision theory, they suggest that those children have hypo-priors. They over-rely on bottom-up sensory evidence [312] and under-rely on their priors models shaped by experience. That could explain, the clinical difficulties of these individuals to manage variable sensory stimuli and their tendency to stick on routines. Lawson used a decision task to assess the learning process in ASD. They showed that adults with ASD overestimate the volatility of the sensory environment, i.e., the behavioural and pupillometric measurements showed that adults with ASD were less surprised than controls when their expectations were violated. Instead of focusing on their inner model of the task, they over-rely on the sensory input [235]. This strategy was also investigated with physiological approach, describing different processing of stimuli change [154, 357] and the activation of autonomic nervous system [31].

The embodiement of a humanoid robot dealing with ecological tasks like a ball interaction with a human experimenter allows modelling these sensorimotor difficuties at a controllable computational level. Idei et al., used a humanoid robot (Nao) controlled by a neural network using a precision-weighted prediction error minimization mechanism, to simulate computationally the motor disturbances of ASD. They showed that both increased and decreased sensory precision could induce the behavioural rigidity characterized by resistance to change characteristic of autistic behavior [194]. In an other experiment, they simulated changes in intrinsic neuronal excitability at the neural level. After the training of the algorithm, it induced hyper sensory precision and overfitting to sensory noise. These changes led to multifaceted alterations at the behavioral level, such as inflexibility, reduced generalization, and motor clumsiness [195].

7.5.4 Toward new therapeutic strategies focusing on the rehabilitation of sensorimotor difficulties

Child's development has been depicted as a non-linear process, where multiple developmental windows restrict the period during which a given function can be learned, i.e., some function needs sometimes to be developed during a certain period and cannot be developed later on due to a reduced brain plasticity [59, 183]. Thus, it is important to propose early remediation respecting the development of the child.

Virtual reality (VR) offers the opportunity (1) to control and reproduce the stimuli presented to the children and (2) to offer a realistic stimulation that mimics an ecological situation (Figure 7.5 A). A sensory overload can trigger behavioural disorders in children with ASD, like tantrums, avoidance, etc. A VR setting could improve the understanding of the therapist, the child and his/her family on the way they process these sensory inputs and help them to cope and to habituate. Such system using a CAVE setup and a 3 dimensional video is installed in Tours⁸ in order to perform progressive exposure therapy to children with ASD with sensory peculiarities. Such system could to help understanding their atypical behavioural responses and how they habituate to these ecological stimulations. Children and adolescent with ASD who have atypical sensory overresponsivity

⁸https://youtu.be/JGACdBOsrf8

Figure 7.5: **Two sensorimotor rehabilitation strategies using information technologies.** A: The Cube: Virtual Reality system to habituate to sensory stimulation, B: Cellulo robot, developped in EPFL, to evaluate and train sensorimotor difficulties of upper arm

exhibit atypical and distinct patterns of brain responses of habituation and generalization of response to new, similar stimuli [162].

Since grasping and upper arm mouvements are one of the first acquired set of mouvements, their study with tangible robots, like Cellulo (Figure 7.5 B), could allow to confirm strategies based on sensorimotor rehabilitation that would prevent the initiation of an impaired developmental cascade⁹.

A better understanding of these sensory peculiarities could: (1) allow preliminary screening with new biomarkers before the evaluation of higher level functioning like social skills, (2) improve our understanding of the development of ASD with computational models, (3) help us imagine management strategies of these sensorimotor anomalies that could be remediated before the florishing of later social difficulties that are still necessary for the diagnosis (Figure 7.4).

7.6 Follow-up of the project

7.6.1 Mercator and CHILI funding for a serious game

The electronic sensors used in the first prototype was a Wacom®. This limits the size of the data collection of the system since it needed to be connected to laptop. A new version of the software funded by Mercator Switzerland foundation and the CHILI laboratory, EPFL, Lausanne will be based on iPad® (Figure 7.6¹⁰), a stand alone tablet more available on the consumer market, that will allow to scale up this system.

The iPad® tablets are easier to use and allow to display real-time stimuli to perform real time feedback like the Wacom® cintiq we used in chapter 5 and 6. However, the contact between a glass and the pen is different from the one between paper and a pen [5], even if it appears possible to detect handwriting difficulties on a tablet in the same way

⁹https://ecnp33-ecnp.ipostersessions.com/Default.aspx?s=1B-AB-90-D2-C6-B9-B3-3C-45-AF-18-21-1C-90-E7-7D

¹⁰https://www.dynamico.ch/

Figure 7.6: Screenshots of Dynamico exercices (from top left to bottom right), adapted games from chapter 5: pressure training game, tracking game, tilt training game, cowriter game and a new game: grasping game.

as for the paper support [23]. All the features presented in chapter 3 and 4 were using this strategy, but did not allow to control dynamicaly the stimuli like a Wacom® cintiq allow with its screen. Two strategies would be possible: to consider that the transfer of the motor abilities of children is trivial from the glass of the screen to paper, or to use other system that allow to stick a material on the surface that can provide the same feeling and resistance¹¹.

The goal of this project could be to develop a scalable system able (1) to screen and help the evaluation of writing for any child, (2) to better understand user experience and use in normal education, and/or specialised care (a better understanding of handwriting development would allow to better identify which kind of children would benefit from a rehabilitation, maybe some children would benefit much more from an adaptation of their environment), (3) to propose tailored adaptative activities to rehabilitate handwriting, to better understand the rhythm of therapy considering the debate between bottom-up and top-down approaches, (4) to validate the efficacy and cost-efficacy of this approach compared with treatment at usual.

The importance of multisensory feedback should also be tested (e.g., audiovisual feedback associated). Such tablets will be used with or without a robot and this will allow to study the specific role of the robot. If the robot is important, we will learn until when it is necessary during rehabilitation.

7.6.2 ANR-FNS funding for a social robot

The *CoWriter* project was funded by a common grant, under the name iReCHeCk ¹², from the Agence Nationale de la Recherche (ANR) in France and Fond National Suisse (FNS) in Switzerland: (1) to scale up the prototype in order to allow studies with a larger sample and (2) to study long-term child-robot interaction in this set-up. It will benefit from an other robot, the Qt Robot, which is more stable than a Nao robot and is able to display

¹¹doodroo for iPad - The Real PaperFeeling screen protector, https://www.doodroo.com/

¹²https://irecheck.github.io/

Figure 7.7: **Implementation of the wizard of Oz scenario on a QT robot.** See a video demonstration of the implementation: https://youtu.be/hHuEMFIXCEo

emotions to sustain engagement with the children [165](Figure 7.7). See 13 and 14 for demos.

A new question is the usability of the system and how different populations (of clinicians and educators) will take charge of it. Standardised scales could help to measure it [58]. On one side, specialists in writing rehabilitation (psychomotricians and occupational therapists) reported their wish to control as much as possible the therapy with a non-autonomous system, such a wizard of Oz system. On the other side, teachers, with which we did some class sessions in schools, want the system to be more autonomous to enable a child with specific needs to work alone on handwriting activities so that they can focus on other activities with the other children. Some questions remain, how to handle turn-taking activities between several children in class, how to make the robot more aware of the environment to react accordingly (suggest behaviours-like the SPARC framework [358]), how the robot is accepted in class and how children accept it, what are the beliefs about its abilities and limitations, compare the practice, funding and acceptability of using new technologies in different contexts. This long-term child-robot interaction in a medical context could allow to better characterize the behaviour of the children and how to adapt the behaviour of the robot [78]. It could be helped by social computing tools assessing non-verbal behaviours, that we described in Chapter 1, but also verbal behaviours [350, 400] and their interaction [399]. This interaction would be particularly interesting in ASD for instance since their difficulty to detect irony is well described [111], where irony "can be considered a case of emergence where, e.g., the verbal and non-verbal components of a message are opposite to one another" [399].

¹³https://youtu.be/iZzBAZbiSVA

¹⁴https://youtu.be/IZbOC772yPs

7.7 Conclusion

New electronic sensors and algorithms allow to track movement more easily and objectively. They allow the implementation of closed feedback loops, that are highly relevant for rehabilitation, especially in handwriting. Rehabilitation can be done with a tablet, combined or not with social assistive robotics. We begin to understand how to use these technologies to tailor education to the special needs of children with NDD. Beyond prototypes, important development is required to improve usability for professionals and children. Larger scales studies, during long-enough periods, will allow to better understand their usability, their acceptability and their efficacy. Ultimately, these technologies could help children with special needs by bridging the gap between adequate adaptations they need and practical possibilities in scholar education. It could foster their inclusion, and allow everyone to learn at his or her own pace. "Our subjective belief and feeling is that we are in charge of our actions. These phenomena appear to be related to our left hemisphere's interpreter, a device that allows us to construct theories about the relationship between perceived events, actions and feelings." Gazzaniga, M. S. (2000). Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition?. Brain, 123(7), 1293-1326.

"Pour résumer, la théorie Bayésienne fournit un modèle mathématique de la manière optimale de mener un raisonnement plausible en présence d'incertitudes. Dès la naissance, le bébé semble doté de compétences pour ce type de raisonnement probabiliste. L'inférence Bayésienne rend également bien compte des processus de perception : étant donné des entrées ambigües, le cerveau en reconstruit l'interprétation la plus probable. La règle de Bayes indique comment combiner, de façon optimale, les a priori issus de notre évolution ou de notre mémoire avec les données reçues du monde extérieur."

Stanislas Dehaene, *Le cerveau statisticien : la révolution Bayésienne en sciences cognitives*, cours de la chaire de psychologie expérimentale du collège de France, 2011-2012

"En effet, ce qu'on appelle la personalité d'un homme, d'un individu, se bâtit sur un bric-à-brac de jugements de valeurs, de préjugés, de lieux communs, qu'il traîne et qui, à mesure que son âge avance deviennent de plus en plus rigides et qui sont de moins en moins remis en question. Et quand une seule pierre de cet édifice est enlevée, tout l'édifice s'écroule. Il découvre l'angoisse. Et cette angoisse ne reculera, ni devant le meutre pour l'individu ni devant le génocide ou la guerre, pour les groupes sociaux, pour s'exprimer. [...] On commence à comprendre par quels mécanismes, pourquoi et comment, à travers l'histoire et dans le présent, se sont établies des échelles hiérarchiques de dominance. Pour aller sur la lune, on a besoin de connaître les lois de la gravitation. Quand on connaît ces lois de la gravitation, cela ne veut pas dire qu'on se libère de la gravitation. Cela veut dire qu'on les utilise pour faire autre chose. Tant que l'on aura pas diffusé très largement à travers les hommes de cette planète la façon dont fonctionne leur cerveau, la façon dont ils l'utilisent et tant qu'on aura pas dit que jusqu'ici ça toujours été pour dominer l'autre, il y a peu de chance qu'il y ait quelque chose qui change."

Henri Laborit, cité par Alain Resnais, Mon oncle d'Amérique, 1980

«Les grandes personnes aiment les chiffres. Quand vous leur parlez d'un nouvel ami, elles ne vous questionnent jamais sur l'essentiel. Elles ne vous disent jamais : "Quel est le son de sa voix ? Quels sont les jeux qu'il préfère ? Est-ce qu'il collectionne les papillons ? "Elles vous demandent : Quel âge a t'il ? Combien a-t-il de frères ? Combien pèse-t-il ? Combien gagne son père ? "Alors seulement, elles croient le connaître. Si vous dites aux grandes personnes : "J'ai vu une belle maison en briques roses, avec des géraniums aux fenêtres et des colombes sur le toit..." elles ne parviennent pas à s'imaginer cette maison. Il faut leur dire : "J'ai vu une maison de cent mille francs." Alors elles s'écrient : "Comme c'est joli ! "

Ainsi, si vous leur dites : "La preuve que le petit prince a existé, c'est qu'il était ravissant, qu'il riait et qu'il voulait un mouton, c'est la preuve qu'il existe" elles hausseront les épaules et vous traiteront d'enfant ! Mais si vous leur dites : "La planète d'où il venait est l'astéroïde B612" alors elles seront convaincues , et elles vous laisseront tranquille avec leurs questions. Elles sont comme ça. Il ne faut pas leur en voulour. Les enfants doivent être très indulgents envers les grandes personnes.»

Antoine de Saint-Exupéry, *Le petit Prince*, chap. IV, cité par Antoine Houlou-Garcia et Thierry Maugenest, *Le Théorème d'Hypocrite*, une histoire de la manipulation par les chiffres de Pythagore au COVID-19, Albin Michel, 2020

Chapter 8

Bibliography

- [1] PEBL psychological test battery, http://pebl.sourceforge.net/battery.html accessed 2019-09-25.
- [2] A. P. Accardo, M. Genna, and M. Borean. Development, maturation and learning influence on handwriting kinematics. *Human movement science*, 32(1):136–146, 2013.
- [3] J.-L. Adrien and M. P. Gattegno. *L'autisme de l'enfant: évaluations, interventions et suivis*. Primento, 2014.
- [4] N. Aguillon-Hernandez, Y. Mofid, M. Latinus, L. Roché, M. R. Bufo, M. Lemaire, J. Malvy, J. Martineau, C. Wardak, and F. Bonnet-Brilhault. The pupil: a window on social automatic processing in autism spectrum disorder children. *Journal of Child Psychology and Psychiatry*, 61(7):768–778, 2020.
- [5] D. Alamargot and M.-F. Morin. Does handwriting on a tablet screen affect students' graphomotor execution? a comparison between grades two and nine. *Human movement science*, 44:32–41, 2015.
- [6] J. Albaret and P. De Castelnau. Diagnostic procedures for developmental coordination disorder. *Developmental motor coordination: A review of current approaches. Marseille, France: Solal*, 2007.
- [7] F. Albinali, M. S. Goodwin, and S. S. Intille. Recognizing stereotypical motor movements in the laboratory and classroom: a case study with children on the autism spectrum. In *Proceedings of the 11th international conference on Ubiquitous computing*, pages 71–80. ACM, 2009.
- [8] American Psychiatric Association. *Diagnostic and statistical manual of mental disorders (DSM-5*®). American Psychiatric Pub, 2013.
- [9] G. Andersson, P. Carlbring, N. Titov, and N. Lindefors. Internet interventions for adults with anxiety and mood disorders: a narrative umbrella review of recent meta-analyses. *The Canadian Journal of Psychiatry*, 64(7):465–470, 2019.
- [10] G. Andersson, H. Hesser, A. Veilord, L. Svedling, F. Andersson, O. Sleman, L. Mauritzson, A. Sarkohi, E. Claesson, V. Zetterqvist, et al. Randomised controlled non-inferiority trial with 3-year follow-up of internet-delivered versus face-

to-face group cognitive behavioural therapy for depression. *Journal of affective disorders*, 151(3):986–994, 2013.

- [11] S. M. Anzalone, A. Nuzzo, N. Patti, R. Sorbello, and A. Chella. Emo-dramatic robotic stewards. In *International Conference on Social Robotics*, pages 382–391. Springer, 2010.
- [12] S. M. Anzalone, E. Tilmont, S. Boucenna, J. Xavier, A.-L. Jouen, N. Bodeau, K. Maharatna, M. Chetouani, D. Cohen, M. S. Group, et al. How children with autism spectrum disorder behave and explore the 4-dimensional (spatial 3d+ time) environment during a joint attention induction task with a robot. *Research in Autism Spectrum Disorders*, 8(7):814–826, 2014.
- [13] S. M. Anzalone, J. Xavier, S. Boucenna, L. Billeci, A. Narzisi, F. Muratori, D. Cohen, and M. Chetouani. Quantifying patterns of joint attention during human-robot interactions: An application for autism spectrum disorder assessment. *Pattern Recognition Letters*, 2018.
- [14] S. M. Anzalone, Y. Yoshikawa, H. Ishiguro, E. Menegatti, E. Pagello, and R. Sorbello. Towards partners profiling in human robot interaction contexts. In *International Conference on Simulation, Modeling, and Programming for Autonomous Robots*, pages 4–15. Springer, 2012.
- [15] A. Anzulewicz, K. Sobota, and J. T. Delafield-Butt. Toward the autism motor signature: Gesture patterns during smart tablet gameplay identify children with autism. *Scientific reports*, 6:31107, 2016.
- [16] F. Apicella, N. Chericoni, V. Costanzo, S. Baldini, L. Billeci, D. Cohen, and F. Muratori. Reciprocity in interaction: a window on the first year of life in autism. *Autism research and treatment*, 2013, 2013.
- [17] C. Arango, C. M. Díaz-Caneja, P. D. McGorry, J. Rapoport, I. E. Sommer, J. A. Vorstman, D. McDaid, O. Marín, E. Serrano-Drozdowskyj, R. Freedman, et al. Preventive strategies for mental health. *The Lancet Psychiatry*, 5(7):591–604, 2018.
- [18] D. Ariely and S. Jones. *Predictably irrational*. Harper Audio New York, NY, 2008.
- [19] H. Asperger and U. T. Frith. 'autistic psychopathy'in childhood. 1991.
- [20] T. Asselborn, M. Chapatte, and P. Dillenbourg. extending the spectrum of dysgraphia: A data driven strategy to estimate handwriting quality. *Scientific Reports*, 10(1):1–11, 2020.
- [21] T. Asselborn, T. Gargot, Ł. Kidziński, W. Johal, D. Cohen, C. Jolly, and P. Dillenbourg. Automated human-level diagnosis of dysgraphia using a consumer tablet. *npj Digital Medicine*, 1(1):42, 2018.
- [22] T. Asselborn, T. Gargot, Ł. Kidziński, W. Johal, D. Cohen, C. Jolly, and P. Dillenbourg. Reply: Limitations in the creation of an automatic diagnosis tool for dysgraphia. *npj Digital Medicine*, 2(1):37, 2019.
- [23] T. L. C. Asselborn. Analysis and Remediation of Handwriting difficulties, Chapter 6. PhD thesis, 2020.

- [24] L. P. Ayres. A scale for measuring the quality of handwriting of school children. Number 113. Russell Sage Foundation. Dept. of Child Hygiene, 1912.
- [25] W. A. Bainbridge, J. Hart, E. S. Kim, and B. Scassellati. The effect of presence on human-robot interaction. In *RO-MAN 2008-The 17th IEEE International Symposium on Robot and Human Interactive Communication*, pages 701–706. IEEE, 2008.
- [26] L. G. Bandini, J. Gleason, C. Curtin, K. Lividini, S. E. Anderson, S. A. Cermak, M. Maslin, and A. Must. Comparison of physical activity between children with autism spectrum disorders and typically developing children. *Autism*, 17(1):44–54, 2013.
- [27] A. Bandura. Social cognitive theory of personality. *Handbook of personality*, 2:154–196, 1999.
- [28] A. Bangerter, S. Ness, M. G. Aman, A. J. Esbensen, M. S. Goodwin, G. Dawson, R. Hendren, B. Leventhal, A. Khan, M. Opler, et al. Autism behavior inventory: A novel tool for assessing core and associated symptoms of autism spectrum disorder. *Journal of child and adolescent psychopharmacology*, 27(9):814–822, 2017.
- [29] R. Banks, S. Rodger, and H. J. Polatajko. Mastering handwriting: How children with developmental coordination disorder succeed with co-op. *OTJR: Occupation, Participation and Health*, 28(3):100–109, 2008.
- [30] A. Barnett, S. Henderson, D. Scheib, and J. Schulz. Development and standardization of a new handwriting speed test: The Detailed Assessment of Speed of Handwriting. *British Journal of Educational Psychology*, 1(1):137–157, 2009.
- [31] N. Bast, L. Poustka, and C. M. Freitag. The locus coeruleus–norepinephrine system as pacemaker of attention–a developmental mechanism of derailed attentional function in autism spectrum disorder. *European Journal of Neuroscience*, 47(2):115–125, 2018.
- [32] S. Beaumont, J. Dhôte, F. Vinckier, S. Palminteri, V. Wyart, R. Jardri, and P. Domenech. Introduction à la psychiatrie computationnelle. *EMC Psychiatrie*, 06 2020.
- [33] J. Beauvois and R. Joule. Petit traité de manipulation à l'usage des honnêtes gens, les psychologues sociaux français. *Éditions Presses Universitaires de Grenoble, PUG*, 2002.
- [34] J.-L. Beauvois, R.-V. Joule, and F. Brunetti. Cognitive rationalization and act rationalization in an escalation of commitment. *Basic and applied social psychology*, 14(1):1–17, 1993.
- [35] T. Belpaeme, J. Kennedy, A. Ramachandran, B. Scassellati, and F. Tanaka. Social robots for education: A review. *Science robotics*, 3(21), 2018.
- [36] J. Benoit, H. Onyeaka, M. Keshavan, and J. Torous. Systematic review of digital phenotyping and machine learning in psychosis spectrum illnesses. *Harvard Review of Psychiatry*, 28(5):296–304, 2020.

- [37] V. W. Berninger, K. B. Vaughan, R. D. Abbott, S. P. Abbott, L. W. Rogan, A. Brooks, E. Reed, and S. Graham. Treatment of handwriting problems in beginning writers: Transfer from handwriting to composition. *Journal of Educational Psychology*, 89(4):652, 1997.
- [38] M. B. Berryhill, N. Culmer, N. Williams, A. Halli-Tierney, A. Betancourt, H. Roberts, and M. King. Videoconferencing psychotherapy and depression: a systematic review. *Telemedicine and e-Health*, 25(6):435–446, 2019.
- [39] U. Bhatt, M. Andrus, A. Weller, and A. Xiang. Machine learning explainability for external stakeholders. arXiv preprint arXiv:2007.05408, 2020.
- [40] U. Bhatt, A. Xiang, S. Sharma, A. Weller, A. Taly, Y. Jia, J. Ghosh, R. Puri, J. M. Moura, and P. Eckersley. Explainable machine learning in deployment. In *Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency*, pages 648–657, 2020.
- [41] E. Billing, T. Belpaeme, H. Cai, H.-L. Cao, A. Ciocan, C. Costescu, D. David, R. Homewood, D. Hernandez Garcia, P. Gómez Esteban, et al. The dream dataset: Supporting a data-driven study of autism spectrum disorder and robot enhanced therapy. *PloS one*, 15(8):e0236939, 2020.
- [42] M. Biotteau, J. Danna, É. Baudou, F. Puyjarinet, J.-L. Velay, J.-M. Albaret, and Y. Chaix. Developmental coordination disorder and dysgraphia: signs and symptoms, diagnosis, and rehabilitation. *Neuropsychiatric disease and treatment*, 15:1873, 2019.
- [43] R. Blank, B. Smits-Engelsman, H. Polatajko, P. Wilson, et al. European academy for childhood disability (eacd): Recommendations on the definition, diagnosis and intervention of developmental coordination disorder (long version). *Developmental medicine and child neurology*, 54(1):54, 2012.
- [44] A. Blöte and L. Hamstra-Bletz. A longitudinal study on the structure of handwriting. *Perceptual and Motor Skills*, 72:983–994, 1991.
- [45] F. Bonnet-Brilhault. L'autisme: un trouble neuro-développemental précoce. *Archives de Pédiatrie*, 24(4):384–390, 2017.
- [46] F. Bonnet-Brilhault, L. Tuller, P. Prévost, J. Malvy, R. Zebib, S. Ferré, C. Dos Santos, S. Roux, E. Houy-Durand, R. Magné, et al. A strategic plan to identify key neurophysiological mechanisms and brain circuits in autism. *Journal of Chemical Neuroanatomy*, 89:69–72, 2018.
- [47] Bonnet-Brilhault, Frédérique et al. *Autisme: réalités et défis*. lemuscadier, inserm, 2020.
- [48] V. Bono, A. Narzisi, A.-L. Jouen, E. Tilmont, S. Hommel, W. Jamal, J. Xavier, L. Billeci, K. Maharatna, M. Wald, et al. Goliah: a gaming platform for homebased intervention in autism-principles and design. *Frontiers in psychiatry*, 7:70, 2016.
- [49] D. Borsboom. A network theory of mental disorders. World psychiatry, 16(1):5–13, 2017.

- [50] D. Borsboom, A. O. Cramer, and A. Kalis. Brain disorders? not really: Why network structures block reductionism in psychopathology research. *Behavioral and Brain Sciences*, 42, 2019.
- [51] S. Boucenna, S. Anzalone, E. Tilmont, D. Cohen, and M. Chetouani. Learning of social signatures through imitation game between a robot and a human partner. *IEEE Transactions on Autonomous Mental Development*, 6(3):213–225, 2014.
- [52] S. Boucenna, D. Cohen, A. N. Meltzoff, P. Gaussier, and M. Chetouani. Robots learn to recognize individuals from imitative encounters with people and avatars. *Scientific reports*, 6:19908, 2016.
- [53] S. Boucenna, A. Narzisi, E. Tilmont, F. Muratori, G. Pioggia, D. Cohen, and M. Chetouani. Interactive technologies for autistic children: A review. *Cognitive Computation*, 6(4):722–740, 2014.
- [54] B. Bourdin and M. Fayol. Is written language production more difficult than oral language production? A working memory approach. *International Journal of Psychology*, 29:591–620, 1994.
- [55] B. Bourdin and M. Fayol. Is graphic activity cognitively costly? a developmental approach. *Reading and Writing*, 13(3-4):183–196, 2000.
- [56] K. Branson, A. A. Robie, J. Bender, P. Perona, and M. H. Dickinson. Highthroughput ethomics in large groups of drosophila. *Nature methods*, 6(6):451–457, 2009.
- [57] L. Breiman. Random forests. *Machine learning*, 45(1):5–32, 2001.
- [58] J. Brooke. Sus: a "quick and dirty'usability. *Usability evaluation in industry*, page 189, 1996.
- [59] J. T. Bruer. A critical and sensitive period primer. 2001.
- [60] N. Bugnariu, C. Young, K. Rockenbach, R. M. Patterson, C. Garver, I. Ranatunga, M. Beltran, N. Torres-Arenas, and D. Popa. Human-robot interaction as a tool to evaluate and quantify motor imitation behavior in children with autism spectrum disorders. In 2013 International Conference on Virtual Rehabilitation (ICVR), pages 57–62. IEEE, 2013.
- [61] K. C. Bul, P. M. Kato, S. Van der Oord, M. Danckaerts, L. J. Vreeke, A. Willems, H. J. Van Oers, R. Van Den Heuvel, D. Birnie, T. A. Van Amelsvoort, et al. Behavioral outcome effects of serious gaming as an adjunct to treatment for children with attention-deficit/hyperactivity disorder: a randomized controlled trial. *Journal of medical Internet research*, 18(2), 2016.
- [62] M. Burger and Q. A. Louw. The predictive validity of general movements–a systematic review. *European journal of paediatric neurology*, 13(5):408–420, 2009.
- [63] O. Butler, K. Herr, G. Willmund, J. Gallinat, S. Kühn, and P. Zimmermann. Trauma, treatment and tetris: video gaming increases hippocampal volume in male patients with combat-related posttraumatic stress disorder. *Journal of Psychiatry* & *Neuroscience: JPN*, 45(3):190027–190027, 2020.

- [64] J.-J. Cabibihan, H. Javed, M. Aldosari, T. Frazier, and H. Elbashir. Sensing technologies for autism spectrum disorder screening and intervention. *Sensors*, 17(1):46, 2017.
- [65] J.-J. Cabibihan, H. Javed, M. Ang, and S. M. Aljunied. Why robots? a survey on the roles and benefits of social robots in the therapy of children with autism. *International journal of social robotics*, 5(4):593–618, 2013.
- [66] P. Caçola, H. L. Miller, and P. O. Williamson. Behavioral comparisons in autism spectrum disorder and developmental coordination disorder: a systematic literature review. *Research in Autism Spectrum Disorders*, 38:6–18, 2017.
- [67] M. Calhoun, M. Longworth, and V. L. Chester. Gait patterns in children with autism. *Clinical Biomechanics*, 26(2):200–206, 2011.
- [68] K. Campbell, K. L. Carpenter, J. Hashemi, S. Espinosa, S. Marsan, J. S. Borg, Z. Chang, Q. Qiu, S. Vermeer, E. Adler, et al. Computer vision analysis captures atypical attention in toddlers with autism. *Autism*, 23(3):619–628, 2019.
- [69] G. C. Campione, C. Piazza, L. Villa, and M. Molteni. Three-dimensional kinematic analysis of prehension movements in young children with autism spectrum disorder: new insights on motor impairment. *Journal of autism and developmental disorders*, 46(6):1985–1999, 2016.
- [70] D. Campolo, F. Taffoni, G. Schiavone, D. Formica, E. Guglielmelli, and F. Keller. Neuro-developmental engineering: Towards early diagnosis of neurodevelopmental disorders. In *New developments in biomedical engineering*. InTech, 2010.
- [71] D. Campolo, F. Taffoni, G. Schiavone, C. Laschi, F. Keller, and E. Guglielmelli. A novel technological approach towards the early diagnosis of neurodevelopmental disorders. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 4875–4878. IEEE, 2008.
- [72] M. Candini, V. Giuberti, A. Manattini, S. Grittani, G. di Pellegrino, and F. Frassinetti. Personal space regulation in childhood autism: Effects of social interaction and person's perspective. *Autism Research*, 10(1):144–154, 2017.
- [73] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh. Openpose: realtime multi-person 2d pose estimation using part affinity fields. *arXiv preprint arXiv:1812.08008*, 2018.
- [74] N. R. Carlson, W. Buskist, and G. N. Martin. Psychology: The science of behavior. 1997.
- [75] K. Carmosino, A. Grzeszczak, K. McMurray, A. Olivo, B. Slutz, B. Zoll, B. Donahoe-Fillmore, and C. J. Brahler. Test items in the complete and short forms of the bot-2 that contribute substantially to motor performance assessments in typically developing children 6-10 years of age. *Journal of Student Physical Therapy Research*, 7(2), 2014.
- [76] M. Carrier and H. Pashler. The influence of retrieval on retention. *Memory & Cognition*, 20(6):633–642, 1992.

- [77] B. Casey, M. E. Oliveri, and T. Insel. A neurodevelopmental perspective on the research domain criteria (rdoc) framework. *Biological psychiatry*, 76(5):350–353, 2014.
- [78] G. Castellano, A. Pereira, I. Leite, A. Paiva, and P. W. McOwan. Detecting user engagement with a robot companion using task and social interaction-based features. In *Proceedings of the 2009 international conference on Multimodal interfaces*, pages 119–126, 2009.
- [79] S. A. Cermak and D. Larkin. *Developmental coordination disorder*. Cengage Learning, 2002.
- [80] B. Chamak, B. Bonniau, E. Jaunay, and D. Cohen. What can we learn about autism from autistic persons? *Psychotherapy and psychosomatics*, 77(5):271–279, 2008.
- [81] S. Chandra, P. Dillenbourg, and A. Paiva. Children teach handwriting to a social robot with different learning competencies. *International Journal of Social Robotics*, pages 1–28, 2019.
- [82] M. Charles, R. Soppelsa, and J. Albaret. Bhk-echelle d'évaluation rapide de l'écriture de l'enfant. *Paris: Editions du Centre de Psychologie Appliquée*, 2003.
- [83] E. Chartrel and A. Vinter. The impact of spatio-temporal constraints on cursive letter handwriting in children. *Learning and Instruction*, 18(6):537–547, 2008.
- [84] C. C. Chase, D. B. Chin, M. A. Oppezzo, and D. L. Schwartz. Teachable agents and the protégé effect: Increasing the effort towards learning. *Journal of Science Education and Technology*, 18(4):334–352, 2009.
- [85] V. L. Chester and M. Calhoun. Gait symmetry in children with autism. *Autism research and treatment*, 2012, 2012.
- [86] C. A. Christensen. The critical role handwriting plays in the ability to produce high-quality written text. *The SAGE handbook of writing development*, pages 284–299, 2009.
- [87] M. Christensen, C. Lim, S. Saha, O. Plana-Ripoll, D. Cannon, F. Presley, N. Weye, N. Momen, H. Whiteford, K. Iburg, et al. The cost of mental disorders: a systematic review. *Epidemiology and Psychiatric Sciences*, 29, 2020.
- [88] D. Cohen, R. S. Cassel, C. Saint-Georges, A. Mahdhaoui, M.-C. Laznik, F. Apicella, P. Muratori, S. Maestro, F. Muratori, and M. Chetouani. Do parentese prosody and fathers' involvement in interacting facilitate social interaction in infants who later develop autism? *Plos one*, 8(5):e61402, 2013.
- [89] N. A. Coles, J. T. Larsen, and H. C. Lench. A meta-analysis of the facial feedback literature: Effects of facial feedback on emotional experience are small and variable. *Psychological Bulletin*, 145(6):610, 2019.
- [90] M. Collet, B. Gagnière, C. Rousseau, A. Chapron, L. Fiquet, and C. Certain. Casecontrol study found that primary language disorders were associated with screen exposure. *Acta Paediatrica*, 108(6):1103–1109, 2019.

- [91] J. Cook. From movement kinematics to social cognition: the case of autism. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 371(1693):20150372, 2016.
- [92] V. Costanzo, N. Chericoni, F. A. Amendola, L. Casula, F. Muratori, M. L. Scattoni, and F. Apicella. Early detection of autism spectrum disorders: from retrospective home video studies to prospective 'high risk'sibling studies. *Neuroscience & Biobehavioral Reviews*, 55:627–635, 2015.
- [93] J. Cottraux. Grille secca. Méthodes et échelles d'évaluation de comportements, pages 64–70, 1985.
- [94] T. K. Craig, M. Rus-Calafell, T. Ward, J. P. Leff, M. Huckvale, E. Howarth, R. Emsley, and P. A. Garety. Avatar therapy for auditory verbal hallucinations in people with psychosis: a single-blind, randomised controlled trial. *The Lancet Psychiatry*, 5(1):31–40, 2018.
- [95] A. Crippa, C. Salvatore, P. Perego, S. Forti, M. Nobile, M. Molteni, and I. Castiglioni. Use of machine learning to identify children with autism and their motor abnormalities. *Journal of autism and developmental disorders*, 45(7):2146–2156, 2015.
- [96] M. Csikszentmihalyi, S. Abuhamdeh, J. Nakamura, et al. Flow, 1990.
- [97] J. Dai, Y. Chen, C. Xia, J. Zhou, C. Liu, and C. Chen. Digital sensory phenotyping for psychiatric disorders. *Journal of Psychiatry and Brain Science*, 5(3), 2020.
- [98] A. M. Daniels and D. S. Mandell. Explaining differences in age at autism spectrum disorder diagnosis: A critical review. *Autism*, 18(5):583–597, 2014.
- [99] J. Danna, J.-L. Velay, and J.-M. Albaret. Dysgraphies. In *Traité de Neurolinguistique*. S. Pinto & M. Sato, Louvain-la-Neuve, de boeck supérieur edition, 2016.
- [100] K. Dautenhahn and I. Werry. Towards interactive robots in autism therapy: Background, motivation and challenges. *Pragmatics & Cognition*, 12(1):1–35, 2004.
- [101] F. J. David, G. T. Baranek, C. A. Giuliani, V. S. Mercer, M. D. Poe, and D. E. Thorpe. A pilot study: coordination of precision grip in children and adolescents with high functioning autism. *Pediatric Physical Therapy*, 21(2):205, 2009.
- [102] G. Dawson. Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. *Development and psychopathology*, 20(3):775–803, 2008.
- [103] G. Dawson, S. Rogers, J. Munson, M. Smith, J. Winter, J. Greenson, A. Donaldson, and J. Varley. Randomized, controlled trial of an intervention for toddlers with autism: the early start denver model. *Pediatrics*, 125(1):e17–e23, 2010.
- [104] G. Dawson and G. Sapiro. Potential for digital behavioral measurement tools to transform the detection and diagnosis of autism spectrum disorder. *JAMA pediatrics*, 2019.

- [105] G. Dawson, K. Toth, R. Abbott, J. Osterling, J. Munson, A. Estes, and J. Liaw. Early social attention impairments in autism: social orienting, joint attention, and attention to distress. *Developmental psychology*, 40(2):271, 2004.
- [106] J. de Ajuriaguerra, M. Auzias, and A. Denner. *L'écriture de l'enfant*. Neuchâtel, CH, delachaux et niestlé edition, 1971.
- [107] R. A. J. de Belen, T. Bednarz, A. Sowmya, and D. Del Favero. Computer vision in autism spectrum disorder research: a systematic review of published studies from 2009 to 2019. *Translational psychiatry*, 10(1):1–20, 2020.
- [108] E. L. Deci and R. M. Ryan. Intrinsic motivation. *The corsini encyclopedia of psychology*, pages 1–2, 2010.
- [109] S. Dehaene. How We Learn: Why Brains Learn Better Than Any Machine... for Now. Viking, 2020.
- [110] E. Delaherche, M. Chetouani, F. Bigouret, J. Xavier, M. Plaza, and D. Cohen. Assessment of the communicative and coordination skills of children with autism spectrum disorders and typically developing children using social signal processing. *Research in Autism Spectrum Disorders*, 7(6):741–756, 2013.
- [111] G. Deliens, F. Papastamou, N. Ruytenbeek, P. Geelhand, and M. Kissine. Selective pragmatic impairment in autism spectrum disorder: Indirect requests versus irony. *Journal of autism and developmental disorders*, 48(9):2938–2952, 2018.
- [112] L. Deschamps, C. Gaffet, S. Aloui, J. Boutet, V. Brault, and E. Labyt. Methodological issues in the creation of a diagnosis tool for dysgraphia. *NPJ digital medicine*, 2(1):1–3, 2019.
- [113] R. Deuel. Developmental Dysgraphia and Motor Skills Disorders. *Journal of Child Neurology*, 10(suppl.):S6–S8, 1995.
- [114] A. Di Martino, D. O'connor, B. Chen, K. Alaerts, J. S. Anderson, M. Assaf, J. H. Balsters, L. Baxter, A. Beggiato, S. Bernaerts, et al. Enhancing studies of the connectome in autism using the autism brain imaging data exchange ii. *Scientific data*, 4(1):1–15, 2017.
- [115] J. J. Diehl, L. M. Schmitt, M. Villano, and C. R. Crowell. The clinical use of robots for individuals with autism spectrum disorders: A critical review. *Research in autism spectrum disorders*, 6(1):249–262, 2012.
- [116] P. Dillenbourg. Germane robots. In *Proceedings of the 17th ACM Conference on Interaction Design and Children*, pages 1–2, 2018.
- [117] H. Doi. Digital phenotyping of autism spectrum disorders based on color information: brief review and opinion. *Artificial Life and Robotics*, 25(3):329–334, 2020.
- [118] R. Downey and M. J. K. Rapport. Motor activity in children with autism: a review of current literature. *Pediatric Physical Therapy*, 24(1):2–20, 2012.

- [119] P. Drotár, J. Mekyska, I. Rektorová, L. Masarová, Z. Smékal, and M. Faundez-Zanuy. Decision support framework for parkinson's disease based on novel handwriting markers. *IEEE Transactions on Neural Systems and Rehabilitation Engineering*, 23(3):508–516, 2014.
- [120] W. Dunn. Profil sensoriel: mesurer l'impact des troubles sensoriels de l'enfant sur sa vie quotidienne. ECPA, 2010.
- [121] M. Dziuk, J. G. Larson, A. Apostu, E. M. Mahone, M. B. Denckla, and S. H. Mostofsky. Dyspraxia in autism: association with motor, social, and communicative deficits. *Developmental Medicine & Child Neurology*, 49(10):734–739, 2007.
- [122] D. D. Ebert, T. Van Daele, T. Nordgreen, M. Karekla, A. Compare, C. Zarbo, A. Brugnera, S. Øverland, G. Trebbi, K. L. Jensen, et al. Internet-and mobilebased psychological interventions: applications, efficacy, and potential for improving mental health. *European Psychologist*, 2018.
- [123] H. L. Egger, G. Dawson, J. Hashemi, K. L. Carpenter, S. Espinosa, K. Campbell, S. Brotkin, J. Schaich-Borg, Q. Qiu, M. Tepper, et al. Automatic emotion and attention analysis of young children at home: a researchkit autism feasibility study. *NPJ digital medicine*, 1(1):1–10, 2018.
- [124] J. D. Eggleston, J. R. Harry, R. A. Hickman, and J. S. Dufek. Analysis of gait symmetry during over-ground walking in children with autism spectrum disorder. *Gait & posture*, 55:162–166, 2017.
- [125] C. Einspieler, J. Sigafoos, K. D. Bartl-Pokorny, R. Landa, P. B. Marschik, and S. Bölte. Highlighting the first 5 months of life: General movements in infants later diagnosed with autism spectrum disorder or rett syndrome. *Research in autism spectrum disorders*, 8(3):286–291, 2014.
- [126] L. El-Hamamsy, W. Johal, T. L. C. Asselborn, J. Nasir, and P. Dillenbourg. Learning by collaborative teaching : An engaging multi-party CoWriter activity.
- [127] R. El Kaliouby, R. Picard, and S. Baron-Cohen. Affective computing and autism. *Annals of the New York Academy of Sciences*, 1093(1):228–248, 2006.
- [128] N. Erez and S. Parush. The hebrew handwriting evaluation. *School of Occupational Therapy. Faculty of Medicine. Hebrew University of Jerusalem, Israel*, 1999.
- [129] B. M. Eskofier, S. I. Lee, J.-F. Daneault, F. N. Golabchi, G. Ferreira-Carvalho, G. Vergara-Diaz, S. Sapienza, G. Costante, J. Klucken, T. Kautz, et al. Recent machine learning advancements in sensor-based mobility analysis: Deep learning for parkinson's disease assessment. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 655–658. IEEE, 2016.
- [130] A. Esposito, T. Amorese, M. Buonanno, M. Cuciniello, A. M. Esposito, M. Faundez-Zanuy, L. Likforman-Sulem, M. T. Riviello, A. Troncone, and G. Cordasco. Handwriting and drawing features for detecting personality traits. In 2019 10th IEEE International Conference on Cognitive Infocommunications (CogInfo-Com), pages 79–84. IEEE, 2019.

- [131] K. Evers, R. Van der Hallen, I. Noens, and J. Wagemans. Perceptual organization in individuals with autism spectrum disorder. *Child Development Perspectives*, 12(3):177–182, 2018.
- [132] K. Feder and A. Majnemer. Handwriting development, competency, and intervention. *Developmental Medicine and Child Neurology*, 49:312–317, 2007.
- [133] F. Ferreri, A. Bourla, S. Mouchabac, and L. Karila. e-addictology: an overview of new technologies for assessing and intervening in addictive behaviors. *Frontiers in psychiatry*, 9:51, 2018.
- [134] E. Finnegan and A. L. Accardo. Written expression in individuals with autism spectrum disorder: A meta-analysis. *Journal of autism and developmental disorders*, 48(3):868–882, 2018.
- [135] P. Fitzpatrick, J. A. Frazier, D. M. Cochran, T. Mitchell, C. Coleman, and R. Schmidt. Impairments of social motor synchrony evident in autism spectrum disorder. *Frontiers in psychology*, 7:1323, 2016.
- [136] A. Fleury, A. Kushki, N. Tanel, E. Anagnostou, and T. Chau. Statistical persistence and timing characteristics of repetitive circle drawing in children with asd. *Developmental neurorehabilitation*, 16(4):245–254, 2013.
- [137] E. Fombonne. Epidemiology of pervasive developmental disorders. *Pediatric research*, 65(6):591–598, 2009.
- [138] L. Fortunati, A. Esposito, M. Sarrica, and G. Ferrin. Children's knowledge and imaginary about robots. *International journal of social robotics*, 7(5):685–695, 2015.
- [139] K. A. Fournier, C. J. Hass, S. K. Naik, N. Lodha, and J. H. Cauraugh. Motor Coordination in Autism Spectrum Disorders: A Synthesis and Meta-Analysis. *Journal* of Autism and Developmental Disorders, 40(10):1227–1240, Oct. 2010.
- [140] M. Franchini, B. Glaser, H. Wood de Wilde, E. Gentaz, S. Eliez, and M. Schaer. Social orienting and joint attention in preschoolers with autism spectrum disorders. *PLoS One*, 12(6):e0178859, 2017.
- [141] J. L. Freedman and S. C. Fraser. Compliance without pressure: the foot-in-the-door technique. *Journal of personality and social psychology*, 4(2):195, 1966.
- [142] F. Fulceri, A. Tonacci, A. Lucaferro, F. Apicella, A. Narzisi, G. Vincenti, F. Muratori, and A. Contaldo. Interpersonal motor coordination during joint actions in children with and without autism spectrum disorder: The role of motor information. *Research in developmental disabilities*, 80:13–23, 2018.
- [143] T. Gargot, T. Asselborn, H. Pellerin, I. Zammouri, S. M. Anzalone, L. Casteran, W. Johal, P. Dillenbourg, D. Cohen, and C. Jolly. Acquisition of handwriting in children with and without dysgraphia: A computational approach. *PloS one*, 15(9):e0237575, 2020.

- [144] T. Gargot, T. Asselborn, I. Zammouri, J. Brunelle, W. Johal, P. Dillenbourg, D. Archambault, M. Chetouani, D. Cohen, and S. M. Anzalone. "it is not the robot who learns, it is me" treating severe dysgraphia using child-robot interaction. *Frontiers in Psychiatry*, 12:5.
- [145] T. Gargot, H. Kisand, A. Miguel, S. Tanyeri, T. R. Soron, B. Serene, G. Feron, N. Žaja, M. J. V. Florido, Ó. Soto-Angona, et al. Preventing post traumatic stress disorder in the general population induced by trauma during the covid pandemic: A simple brief intervention based on cognitive science that could be delivered digitally. *European Journal of Trauma & Dissociation*, page 100193, 2020.
- [146] T. Gargot, S. Recht, and A. Guneysu Ozgur. The imitation game: A perceptionaction loop based, imitation activity with tangible robots for children with asd, accessible on https://ecnp33-ecnp.ipostersessions.com/default.aspx?s=1b-ab-90-d2c6-b9-b3-3c-45-af-18-21-1c-90-e7-7d#. In *The 33th European Congress of Neuro Psychopharmacology (ECNP)*, Sept. 2020.
- [147] M. Garvey, S. Avenevoli, and K. Anderson. The national institute of mental health research domain criteria and clinical research in child and adolescent psychiatry. *Journal of the American Academy of Child & Adolescent Psychiatry*, 55(2):93–98, 2016.
- [148] M. S. Gazzaniga. Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? *Brain*, 123(7):1293–1326, 2000.
- [149] Q. Geissmann, L. Garcia Rodriguez, E. J. Beckwith, A. S. French, A. R. Jamasb, and G. F. Gilestro. Ethoscopes: An open platform for high-throughput ethomics. *PLoS biology*, 15(10):e2003026, 2017.
- [150] Q. Geissmann, L. Garcia Rodriguez, E. J. Beckwith, and G. F. Gilestro. Rethomics: An r framework to analyse high-throughput behavioural data. *PloS* one, 14(1):e0209331, 2019.
- [151] E. Gessaroli, E. Santelli, G. di Pellegrino, and F. Frassinetti. Personal space regulation in childhood autism spectrum disorders. *PloS one*, 8(9):e74959, 2013.
- [152] S. Ghidoni, S. M. Anzalone, M. Munaro, S. Michieletto, and E. Menegatti. A distributed perception infrastructure for robot assisted living. *Robotics and Autonomous Systems*, 62(9):1316–1328, 2014.
- [153] A. Gomez-Marin, J. J. Paton, A. R. Kampff, R. M. Costa, and Z. F. Mainen. Big behavioral data: psychology, ethology and the foundations of neuroscience. *Nature neuroscience*, 17(11):1455, 2014.
- [154] M. Gomot and B. Wicker. A challenging, unpredictable world for people with autism spectrum disorder. *International Journal of Psychophysiology*, 83(2):240– 247, 2012.
- [155] N. Gonçalves, J. L. Rodrigues, S. Costa, and F. Soares. Automatic detection of stereotyped hand flapping movements: two different approaches. In 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, pages 392–397. IEEE, 2012.

- [156] N. Gonçalves, J. L. Rodrigues, S. Costa, and F. Soares. Preliminary study on determining stereotypical motor movements. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pages 1598–1601. IEEE, 2012.
- [157] M. S. Goodwin, M. Haghighi, Q. Tang, M. Akcakaya, D. Erdogmus, and S. Intille. Moving towards a real-time system for automatically recognizing stereotypical motor movements in individuals on the autism spectrum using wireless accelerometry. In *Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing*, pages 861–872. ACM, 2014.
- [158] M. S. Goodwin, S. S. Intille, F. Albinali, and W. F. Velicer. Automated detection of stereotypical motor movements. *Journal of autism and developmental disorders*, 41(6):770–782, 2011.
- [159] E. Gowen and A. Hamilton. Motor abilities in autism: a review using a computational context. *Journal of autism and developmental disorders*, 43(2):323–344, 2013.
- [160] S. Graham. The role of production factors in learning disabled students' compositions. *Journal of Educational Psychology*, 82(4):781–791, 1990.
- [161] D. Green, T. Charman, A. Pickles, S. Chandler, T. Loucas, E. Simonoff, and G. Baird. Impairment in movement skills of children with autistic spectrum disorders. *Developmental Medicine & Child Neurology*, 51(4):311–316.
- [162] S. A. Green, L. Hernandez, K. E. Lawrence, J. Liu, T. Tsang, J. Yeargin, K. Cummings, E. Laugeson, M. Dapretto, and S. Y. Bookheimer. Distinct patterns of neural habituation and generalization in children and adolescents with autism with low and high sensory overresponsivity. *American Journal of Psychiatry*, 176(12):1010– 1020, 2019.
- [163] P. J. Groff. Who are the better writers-the left-handed or the right-handed? *The Elementary School Journal*, 65(2):92–96, 1964.
- [164] C. Grossard, O. Grynspan, S. Serret, A.-L. Jouen, K. Bailly, and D. Cohen. Serious games to teach social interactions and emotions to individuals with autism spectrum disorders (asd). *Computers & Education*, 113:195–211, 2017.
- [165] C. Grossard, G. Palestra, J. Xavier, M. Chetouani, O. Grynszpan, and D. Cohen. Ict and autism care: state of the art. *Current opinion in psychiatry*, 31(6):474–483, 2018.
- [166] H. Guedjou, S. Boucenna, J. Xavier, D. Cohen, and M. Chetouani. The influence of individual social traits on robot learning in a human-robot interaction. In 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pages 256–262. IEEE, 2017.
- [167] J. Guilbert, D. Alamargot, and M.-F. Morin. Handwriting on a tablet screen: Role of visual and proprioceptive feedback in the control of movement by children and adults. *Human Movement Science*, Sept. 2018.

- [168] V. Guinchat, B. Chamak, B. Bonniau, N. Bodeau, D. Perisse, D. Cohen, and A. Danion. Very early signs of autism reported by parents include many concerns not specific to autism criteria. *Research in Autism Spectrum Disorders*, 6(2):589– 601, 2012.
- [169] E. Guinet and S. Kandel. Ductus: A software package for the study of handwriting production. *Behavior research methods*, 42(1):326–332, 2010.
- [170] A. Guneysu Ozgur, A. Özgür, T. Asselborn, W. Johal, E. Yadollahi, B. Bruno, M. Skweres, and P. Dillenbourg. Iterative design and evaluation of a tangible robotassisted handwriting activity for special education. *Frontiers in Robotics and AI*, 7:29, 2020.
- [171] R. H. Haas, J. Townsend, E. Courchesne, A. J. Lincoln, L. Schreibman, and R. Yeung-Courchesne. Neurologic abnormalities in infantile autism. *Journal of child neurology*, 11(2):84–92, 1996.
- [172] L. Hamstra-Bletz and A. Blöte. A longitudinal study on dysgraphic handwriting in primary school. *Journal of Learning Disabilities*, 26:689–699, 1993.
- [173] L. Hamstra-Bletz, J. de Bie, and B. den Brinker. *Concise evaluation scale for children's handwriting*. Lisse, swets 1 zeitlinger edition, 1987.
- [174] J. Han, M. Jo, S. Park, and S. Kim. The educational use of home robots for children. In ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication, 2005., pages 378–383. IEEE, 2005.
- [175] E. Harmon-Jones and C. Harmon-Jones. Cognitive dissonance theory after 50 years of development. *Zeitschrift für Sozialpsychologie*, 38(1):7–16, 2007.
- [176] C. Hasan, R. Jailani, N. M. Tahir, I. M. Yassin, and Z. I. Rizman. Automated classification of autism spectrum disorders gait patterns using discriminant analysis based on kinematic and kinetic gait features. *Journal of Applied Environmental and Biological Sciences*, 7(1):150–156, 2017.
- [177] C. Z. C. Hasan, R. Jailani, N. M. Tahir, and S. Ilias. The analysis of threedimensional ground reaction forces during gait in children with autism spectrum disorders. *Research in developmental disabilities*, 66:55–63, 2017.
- [178] J. Hashemi, M. Tepper, T. Vallin Spina, A. Esler, V. Morellas, N. Papanikolopoulos, H. Egger, G. Dawson, and G. Sapiro. Computer vision tools for low-cost and noninvasive measurement of autism-related behaviors in infants. *Autism research* and treatment, 2014, 2014.
- [179] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning (vol. 1): Springer new york. 2001.
- [180] A. S. Heinsfeld, A. R. Franco, R. C. Craddock, A. Buchweitz, and F. Meneguzzi. Identification of autism spectrum disorder using deep learning and the abide dataset. *NeuroImage: Clinical*, 17:16–23, 2018.

- [181] M. S. Helt and D. A. Fein. Facial feedback and social input: Effects on laughter and enjoyment in children with autism spectrum disorders. *Journal of autism and developmental disorders*, 46(1):83–94, 2016.
- [182] S. E. Henderson, D. A. Sugden, and A. L. Barnett. *Movement assessment battery for children-2*. Harcourt Assessment, 2007.
- [183] T. K. Hensch and P. M. Bilimoria. Re-opening windows: manipulating critical periods for brain development. In *Cerebrum: the Dana forum on brain science*, volume 2012. Dana Foundation, 2012.
- [184] K. Higuchi, S. Matsuda, R. Kamikubo, T. Enomoto, Y. Sugano, J. Yamamoto, and Y. Sato. Visualizing gaze direction to support video coding of social attention for children with autism spectrum disorder. In 23rd International Conference on Intelligent User Interfaces, pages 571–582. ACM, 2018.
- [185] D. Hood, S. Lemaignan, and P. Dillenbourg. The CoWriter project: Teaching a robot how to write. In *Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction Extended Abstracts*, HRI'15 Extended Abstracts, pages 269–269. ACM. event-place: Portland, Oregon, USA.
- [186] C. Horlin, M. Falkmer, R. Parsons, M. A. Albrecht, and T. Falkmer. The cost of autism spectrum disorders. *PloS one*, 9(9):e106552, 2014.
- [187] P. Howlin, S. Goode, J. Hutton, and M. Rutter. Adult outcome for children with autism. *Journal of child psychology and psychiatry*, 45(2):212–229, 2004.
- [188] M. M. Hoy, M. Y. Egan, and K. P. Feder. A systematic review of interventions to improve handwriting. *Canadian Journal of Occupational Therapy*, 78(1):13–25, 2011.
- [189] K. Huckvale, S. Venkatesh, and H. Christensen. Toward clinical digital phenotyping: a timely opportunity to consider purpose, quality, and safety. *NPJ digital medicine*, 2(1):1–11, 2019.
- [190] C. Huron. L'enfant dyspraxique: mieux l'aider, à la maison et à l'école. Odile Jacob, 2011.
- [191] Q. J. Huys, M. Browning, M. Paulus, and M. J. Frank. Advances in the computational understanding of mental illness. *Neuropsychopharmacology*, pages 1–19, 2020.
- [192] E.-j. Hyun, S.-y. Kim, S. Jang, and S. Park. Comparative study of effects of language instruction program using intelligence robot and multimedia on linguistic ability of young children. In *RO-MAN 2008-The 17th IEEE International Symposium on Robot and Human Interactive Communication*, pages 187–192. IEEE, 2008.
- [193] H. Idei, S. Murata, Y. Chen, Y. Yamashita, J. Tani, and T. Ogata. Reduced behavioral flexibility by aberrant sensory precision in autism spectrum disorder: A neurorobotics experiment. In 2017 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), pages 271–276. IEEE, 2017.

- [194] H. Idei, S. Murata, Y. Chen, Y. Yamashita, J. Tani, and T. Ogata. A neurorobotics simulation of autistic behavior induced by unusual sensory precision. *Computational Psychiatry*, 2:164–182, 2018.
- [195] H. Idei, S. Murata, Y. Yamashita, and T. Ogata. Homogeneous intrinsic neuronal excitability induces overfitting to sensory noise: A robot model of neurodevelopmental disorder. 2020.
- [196] C. Ieracitano, N. Mammone, A. Hussain, and F. C. Morabito. A novel multi-modal machine learning based approach for automatic classification of eeg recordings in dementia. *Neural Networks*, 123:176–190, 2020.
- [197] S. Ilias, N. M. Tahir, R. Jailani, and C. Z. C. Hasan. Classification of autism children gait patterns using neural network and support vector machine. In *Computer Applications & Industrial Electronics (ISCAIE), 2016 IEEE Symposium on*, pages 52–56. IEEE, 2016.
- [198] T. R. Insel. Digital phenotyping: technology for a new science of behavior. *Jama*, 318(13):1215–1216, 2017.
- [199] T. R. Insel. Digital phenotyping: a global tool for psychiatry. *World Psychiatry*, 17(3):276, 2018.
- [200] B. Irfan, J. Kennedy, S. Lemaignan, F. Papadopoulos, E. Senft, and T. Belpaeme. Social psychology and human-robot interaction: An uneasy marriage. In *Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction*, pages 13–20, 2018.
- [201] J. M. Iverson and R. H. Wozniak. Variation in vocal-motor development in infant siblings of children with autism. *Journal of autism and developmental disorders*, 37(1):158–170, 2007.
- [202] L. Iyadurai, S. E. Blackwell, R. Meiser-Stedman, P. C. Watson, M. B. Bonsall, J. R. Geddes, A. C. Nobre, and E. A. Holmes. Preventing intrusive memories after trauma via a brief intervention involving tetris computer game play in the emergency department: a proof-of-concept randomized controlled trial. *Molecular psychiatry*, 23(3):674–682, 2018.
- [203] N. C. Jacobson, H. Weingarden, and S. Wilhelm. Using digital phenotyping to accurately detect depression severity. *The Journal of nervous and mental disease*, 207(10):893–896, 2019.
- [204] A. Jacq, S. Lemaignan, F. Garcia, P. Dillenbourg, and A. Paiva. Building successful long child-robot interactions in a learning context. In 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages 239–246. ISSN: 2167-2148.
- [205] L. Jacquey, G. Baldassarre, V. G. Santucci, and K. O'Regan. Sensorimotor contingencies as a key drive of development: from babies to robots. *Frontiers in Neurorobotics*, 13:98, 2019.

- [206] F. Jamet, O. Masson, B. Jacquet, J.-L. Stilgenbauer, and J. Baratgin. Learning by teaching with humanoid robot: A new powerful experimental tool to improve children's learning ability.
- [207] E. Jasmin, M. Couture, P. McKinley, G. Reid, E. Fombonne, and E. Gisel. Sensorimotor and daily living skills of preschool children with autism spectrum disorders. *Journal of autism and developmental disorders*, 39(2):231–241, 2009.
- [208] W. Johal, A. Jacq, A. Paiva, and P. Dillenbourg. Child-robot spatial arrangement in a learning by teaching activity. In 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pages 533–538. ISSN: 1944-9437.
- [209] A. L. Johnson, J. M. Gillis, and R. G. Romanczyk. A brief report: Quantifying and correlating social behaviors in children with autism spectrum disorders. *Research in Autism Spectrum Disorders*, 6(3):1053–1060, 2012.
- [210] M. Jouaiti and P. Henaff. Robot-based motor rehabilitation in autism: A systematic review. *International Journal of Social Robotics*, pages 1–12, 2019.
- [211] A.-L. Jouen, A. Narzisi, J. Xavier, E. Tilmont, N. Bodeau, V. Bono, N. Ketem-Premel, S. Anzalone, K. Maharatna, M. Chetouani, et al. Goliah (gaming open library for intervention in autism at home): a 6-month single blind matched controlled exploratory study. *Child and adolescent psychiatry and mental health*, 11(1):17, 2017.
- [212] K.-E. Jung, H.-J. Lee, Y.-S. Lee, S.-S. Cheong, M.-Y. Choi, D.-S. Suh, D. Suh, S. Oah, S. Lee, and J.-H. Lee. The application of a sensory integration treatment based on virtual reality-tangible interaction for children with autistic spectrum disorder. *PsychNology Journal*, 4(2):145–159, 2006.
- [213] M.-L. Kaiser, J.-M. Albaret, and M. H. Cantell. Assessment of the participation of the children with a developmental coordination disorder (dcd). 2015.
- [214] T. Kanda, R. Sato, N. Saiwaki, and H. Ishiguro. A two-month field trial in an elementary school for long-term human–robot interaction. *IEEE Transactions on robotics*, 23(5):962–971, 2007.
- [215] S.-H. Kang and J. Gratch. Virtual humans elicit socially anxious interactants' verbal self-disclosure. *Computer Animation and Virtual Worlds*, 21(3-4):473–482, 2010.
- [216] L. Kanner et al. Autistic disturbances of affective contact. *Nervous child*, 2(3):217–250, 1943.
- [217] M. Kanstrup, L. Singh, K. E. Göransson, J. Widoff, R. S. Taylor, B. Gamble, L. Iyadurai, M. L. Moulds, and E. A. Holmes. Reducing intrusive memories after trauma via a brief cognitive task intervention in the hospital emergency department: an exploratory pilot randomised controlled trial. *Translational psychiatry*, 11(1):1–15, 2021.
- [218] C. I. Karageorghis and P. C. Terry. *Inside sport psychology*. Human Kinetics Champaign, IL, 2011.

- [219] R. Karlsdottir and T. Stefansson. Problems in developing functional handwriting. *Perceptual and motor skills*, 94(2):623–662, 2002.
- [220] M. A. Katzman, P. Bleau, P. Blier, P. Chokka, K. Kjernisted, M. Van Ameringen, et al. Canadian clinical practice guidelines for the management of anxiety, posttraumatic stress and obsessive-compulsive disorders. *BMC psychiatry*, 14(S1):S1, 2014.
- [221] D. P. Kennedy and R. Adolphs. Violations of personal space by individuals with autism spectrum disorder. *PloS one*, 9(8):e103369, 2014.
- [222] N. A. Khan, M. A. Sawand, M. Qadeer, A. Owais, S. Junaid, and P. Shahnawaz. Autism detection using computer vision. *International Journal of Computer Sci*ence and Network Security (IJCSNS), 17(4):256, 2017.
- [223] C. D. Kidd and C. Breazeal. Effect of a robot on user perceptions. In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), volume 4, pages 3559–3564. IEEE, 2004.
- [224] D. Kindregan, L. Gallagher, and J. Gormley. Gait deviations in children with autism spectrum disorders: a review. *Autism research and treatment*, 2015, 2015.
- [225] A. Kirby, D. Sugden, S. Beveridge, and L. Edwards. Developmental co-ordination disorder (dcd) in adolescents and adults in further and higher education. *Journal* of Research in Special Educational Needs, 8(3):120–131, 2008.
- [226] M. Knapp, R. Romeo, and J. Beecham. Economic cost of autism in the uk. *Autism*, 13(3):317–336, 2009.
- [227] N. Kojovic, L. Ben Hadid, M. Franchini, and M. Schaer. Sensory processing issues and their association with social difficulties in children with autism spectrum disorders. *Journal of clinical medicine*, 8(10):1508, 2019.
- [228] S. H. Kollins, D. J. DeLoss, E. Cañadas, J. Lutz, R. L. Findling, R. S. Keefe, J. N. Epstein, A. J. Cutler, and S. V. Faraone. A novel digital intervention for actively reducing severity of paediatric adhd (stars-adhd): a randomised controlled trial. *The Lancet Digital Health*, 2020.
- [229] G. Koppe, A. Meyer-Lindenberg, and D. Durstewitz. Deep learning for small and big data in psychiatry. *Neuropsychopharmacology*, 46(1):176–190, 2021.
- [230] A. E. Kowallik and S. R. Schweinberger. Sensor-based technology for social information processing in autism: A review. *Sensors*, 19(21):4787, 2019.
- [231] H. Kozima, C. Nakagawa, and Y. Yasuda. Interactive robots for communicationcare: A case-study in autism therapy. In *ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication, 2005.*, pages 341–346. IEEE, 2005.
- [232] K. Kuwamura, T. Minato, S. Nishio, and H. Ishiguro. Personality distortion in communication through teleoperated robots. In 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, pages 49–54. IEEE, 2012.

- [233] W. Kuyken, R. Hayes, B. Barrett, R. Byng, T. Dalgleish, D. Kessler, G. Lewis, E. Watkins, C. Brejcha, J. Cardy, et al. Effectiveness and cost-effectiveness of mindfulness-based cognitive therapy compared with maintenance antidepressant treatment in the prevention of depressive relapse or recurrence (prevent): a randomised controlled trial. *The Lancet*, 386(9988):63–73, 2015.
- [234] J. I. Laszlo and K. M. Sainsbury. Perceptual-motor development and prevention of clumsiness. *Psychological research*, 55(2):167–174, 1993.
- [235] R. P. Lawson, C. Mathys, and G. Rees. Adults with autism overestimate the volatility of the sensory environment. *Nature neuroscience*, 20(9):1293, 2017.
- [236] P. Le Denmat, T. Gargot, M. Chetouani, D. Archambault, D. Cohen, and S. Anzalone. The cowriter robot: improving attention in a learning-by-teaching setup. In 5th Italian Workshop on Artificial Intelligence and Robotics A workshop of the XVII International Conference of the Italian Association for Artificial Intelligence (AI* IA 2018), 2018.
- [237] C. Le Menn-Tripi, R. Blanc, F. Bonnet-Brilhault, and C. Barthélémy. La thérapie d'échange et de développement et la psychomotricité: principes partagés, pratiques complémentaires. *Autisme et psychomotricité. De Boeck-Solal (Eds)*, pages 305– 319, 2013.
- [238] C. Le Menn-Tripi, A. Vachaud, N. Defas, J. Malvy, S. Roux, and F. Bonnet-Brilhault. L'évaluation sensori-psychomotrice dans l'autisme: un nouvel outil d'aide au diagnostic fonctionnel. L'Encéphale, 45(4):312–319, 2019.
- [239] I. Leite, G. Castellano, A. Pereira, C. Martinho, and A. Paiva. Empathic robots for long-term interaction. *International Journal of Social Robotics*, 6(3):329–341, 2014.
- [240] G. Lelord, C. Barthélémy, J. Martineau, N. Bruneau, et al. Free acquisition, free imitation, physiological curiosity and exchange and development therapies in autistic children. *Brain dysfunction*, 1991.
- [241] S. Lemaignan, F. Garcia, A. Jacq, and P. Dillenbourg. From real-time attention assessment to "with-me-ness" in human-robot interaction. In *The Eleventh* ACM/IEEE International Conference on Human Robot Interaction, HRI '16, pages 157–164. IEEE Press. event-place: Christchurch, New Zealand.
- [242] S. Lemaignan, A. Jacq, D. Hood, F. Garcia, A. Paiva, and P. Dillenbourg. Learning by teaching a robot: The case of handwriting. 23(2):56–66.
- [243] Y. Liang, X. Zheng, and D. D. Zeng. A survey on big data-driven digital phenotyping of mental health. *Information Fusion*, 52:290–307, 2019.
- [244] Y. H. Lim, K. Partridge, S. Girdler, and S. L. Morris. Standing postural control in individuals with autism spectrum disorder: Systematic review and meta-analysis. *Journal of autism and developmental disorders*, 47(7):2238–2253, 2017.
- [245] R. Lingam, L. Hunt, J. Golding, M. Jongmans, and A. Emond. Prevalence of developmental coordination disorder using the dsm-iv at 7 years of age: a uk population– based study. *Pediatrics*, 123(4):e693–e700, 2009.

- [246] T. Liu and C. M. Breslin. Fine and gross motor performance of the mabc-2 by children with autism spectrum disorder and typically developing children. *Research in Autism Spectrum Disorders*, 7(10):1244–1249, 2013.
- [247] M. Longcamp, M.-T. Zerbato-Poudou, and J.-L. Velay. The influence of writing practice on letter recognition in preschool children: A comparison between handwriting and typing. *Acta Psychologica*, 119(1):67–79, May 2005.
- [248] S. Longuet, C. Ferrel-Chapus, M.-J. Orêve, J.-M. Chamot, and S. Vernazza-Martin. Emotion, intent and voluntary movement in children with autism. an example: the goal directed locomotion. *Journal of autism and developmental disorders*, 42(7):1446–1458, 2012.
- [249] C. Lord, T. S. Brugha, T. Charman, J. Cusack, G. Dumas, T. Frazier, E. J. Jones, R. M. Jones, A. Pickles, M. W. State, et al. Autism spectrum disorder. *Nature reviews Disease primers*, 6(1):1–23, 2020.
- [250] C. Lord, S. Risi, L. Lambrecht, E. H. Cook, B. L. Leventhal, P. C. DiLavore, A. Pickles, and M. Rutter. The autism diagnostic observation schedule—generic: A standard measure of social and communication deficits associated with the spectrum of autism. *Journal of autism and developmental disorders*, 30(3):205–223, 2000.
- [251] K. Lyall, L. Croen, J. Daniels, M. D. Fallin, C. Ladd-Acosta, B. K. Lee, B. Y. Park, N. W. Snyder, D. Schendel, H. Volk, et al. The changing epidemiology of autism spectrum disorders. *Annual review of public health*, 38:81–102, 2017.
- [252] S. Madigan, D. Browne, N. Racine, C. Mori, and S. Tough. Association between screen time and children's performance on a developmental screening test. JAMA pediatrics, 173(3):244–250, 2019.
- [253] S. Madigan, B. A. McArthur, C. Anhorn, R. Eirich, and D. A. Christakis. Associations between screen use and child language skills: A systematic review and meta-analysis. *JAMA pediatrics*, 2020.
- [254] A. Maeland and R. Karlsdottir. Development of reading, spelling, and writing skills from third to sixth grade in normal and dysgraphic school children. In *Development* of graphic skills: Research perspectives and educational implications, pages 179– 189. J. Wann, A. M. Wing, & N. Sõvik, San Diego, CA, USA, academix press edition, 1991.
- [255] S. Maestro, F. Muratori, F. Barbieri, C. Casella, V. Cattaneo, M. C. Cavallaro, A. Cesari, A. Milone, L. Rizzo, V. Viglione, et al. Early behavioral development in autistic children: the first 2 years of life through home movies. *Psychopathology*, 34(3):147–152, 2001.
- [256] S. Maestro, F. Muratori, M. C. Cavallaro, F. Pei, D. Stern, B. Golse, and F. Palacio-Espasa. Attentional skills during the first 6 months of age in autism spectrum disorder. *Journal of the American Academy of Child & Adolescent Psychiatry*, 41(10):1239–1245, 2002.

- [257] S. Maestro, F. Muratori, A. Cesari, C. Pecini, F. Apicella, and D. Stern. A view to regressive autism through home movies. is early development really normal? *Acta Psychiatrica Scandinavica*, 113(1):68–72, 2006.
- [258] A. Mahdhaoui, M. Chetouani, R. S. Cassel, C. Saint-Georges, E. Parlato, M. C. Laznik, F. Apicella, F. Muratori, S. Maestro, and D. Cohen. Computerized home video detection for motherese may help to study impaired interaction between infants who become autistic and their parents. *International Journal of Methods in Psychiatric Research*, 20(1):e6–e18, 2011.
- [259] M. Mahmud, M. S. Kaiser, T. M. McGinnity, and A. Hussain. Deep learning in mining biological data. *Cognitive Computation*, 13(1):1–33, 2021.
- [260] N. Mammone, C. Ieracitano, and F. C. Morabito. A deep cnn approach to decode motor preparation of upper limbs from time–frequency maps of eeg signals at source level. *Neural Networks*, 124:357–372, 2020.
- [261] M. Mari, U. Castiello, D. Marks, C. Marraffa, and M. Prior. The reach-to-grasp movement in children with autism spectrum disorder. *Philosophical Transactions* of the Royal Society of London B: Biological Sciences, 358(1430):393–403, 2003.
- [262] D. Markland, R. M. Ryan, V. J. Tobin, and S. Rollnick. Motivational interviewing and self-determination theory. *Journal of social and clinical psychology*, 24(6):811–831, 2005.
- [263] M. K. Marko, D. Crocetti, T. Hulst, O. Donchin, R. Shadmehr, and S. H. Mostofsky. Behavioural and neural basis of anomalous motor learning in children with autism. *Brain*, 138(3):784–797, 2015.
- [264] K. L. Marsh, R. W. Isenhower, M. J. Richardson, M. Helt, A. D. Verbalis, R. Schmidt, and D. Fein. Autism and social disconnection in interpersonal rocking. *Frontiers in integrative neuroscience*, 7:4, 2013.
- [265] K. B. Martin, Z. Hammal, G. Ren, J. F. Cohn, J. Cassell, M. Ogihara, J. C. Britton, A. Gutierrez, and D. S. Messinger. Objective measurement of head movement differences in children with and without autism spectrum disorder. *Molecular autism*, 9(1):14, 2018.
- [266] R. Maskeliūnas, R. Damaševičius, C. Lethin, A. Paulauskas, A. Esposito, M. Catena, and V. Aschettino. Serious game ido: Towards better education in dementia care. *Information*, 10(11):355, 2019.
- [267] J. L. Matson and M. S. Nebel-Schwalm. Comorbid psychopathology with autism spectrum disorder in children: An overview. *Research in developmental disabilities*, 28(4):341–352, 2007.
- [268] R. E. Mayer. Multimedia learning: Are we asking the right questions? *Educational psychologist*, 32(1):1–19, 1997.
- [269] D. McCutchen. From novice to expert: implications of language skills and writingrelevant knowledge for memory during the development of writing skill. *Journal* of Writing Research, 3:51–68, 2011.

- [270] J. J. McEachin, T. Smith, and O. Ivar Lovaas. Long-term outcome for children with autism who received early intensive behavioral treatment. *American journal of mental retardation*, 97:359–359, 1993.
- [271] K. McHale and S. Cermak. Fine motor activities in elementary school: preliminary findings and provisional implications for children with fine motor problems. *American Journal of Occupational Therapy*, 46(10):898–903, 1992.
- [272] D. McRaney. You are not so smart. The New York Times® Best Sellers: Books, 2011.
- [273] J. Mekyska, M. Faundez-Zanuy, Z. Mzourek, Z. Galaz, Z. Smekal, and S. Rosenblum. Identification and Rating of Developmental Dysgraphia by Handwriting Analysis. *IEEE Transactions on Human-Machine Systems*, 47(2):235–248, Apr. 2017.
- [274] A. N. Meltzoff, P. K. Kuhl, J. Movellan, and T. J. Sejnowski. Foundations for a new science of learning. *science*, 325(5938):284–288, 2009.
- [275] A. Memari, B. Ghaheri, V. Ziaee, R. Kordi, S. Hafizi, and P. Moshayedi. Physical activity in children and adolescents with autism assessed by triaxial accelerometry. *Pediatric obesity*, 8(2):150–158, 2013.
- [276] S. Milgram, J. E. Sabini, and M. E. Silver. *The individual in a social world: Essays and experiments*. Mcgraw-Hill Book Company, 1992.
- [277] W. R. Miller and S. Rollnick. *Motivational interviewing: Helping people change*. Guilford press, 2012.
- [278] C.-H. Min and A. H. Tewfik. Automatic characterization and detection of behavioral patterns using linear predictive coding of accelerometer sensor data. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pages 220–223. IEEE, 2010.
- [279] X. Ming, M. Brimacombe, and G. C. Wagner. Prevalence of motor impairment in autism spectrum disorders. *Brain and Development*, 29(9):565–570, 2007.
- [280] W. A. Mir, I. Nissar, et al. Contribution of application of deep learning approaches on biomedical data in the diagnosis of neurological disorders: A review on recent findings. In *International Conference on Computational Intelligence, Security and Internet of Things*, pages 87–97. Springer, 2019.
- [281] C. Missiuna, A. D. Mandich, H. J. Polatajko, and T. Malloy-Miller. Cognitive orientation to daily occupational performance (co-op) part i-theoretical foundations. *Physical & occupational therapy in pediatrics*, 20(2-3):69–81, 2001.
- [282] V. A. Mittal and L. S. Wakschlag. Research domain criteria (rdoc) grows up: Strengthening neurodevelopmental investigation within the rdoc framework. *Journal of Affective Disorders*, 216:30, 2017.
- [283] M. Miyahara, S. L. Hillier, L. Pridham, and S. Nakagawa. Task-oriented interventions for children with developmental co-ordination disorder. *Cochrane Database* of Systematic Reviews, (7), 2017.

- [284] M. Miyahara, M. Tsujii, M. Hori, K. Nakanishi, H. Kageyama, and T. Sugiyama. Brief report: motor incoordination in children with asperger syndrome and learning disabilities. *Journal of autism and developmental disorders*, 27(5):595–603, 1997.
- [285] D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman. Preferred reporting items for systematic reviews and meta-analyses: the prisma statement. *Annals of internal medicine*, 151(4):264–269, 2009.
- [286] M. Moore, V. Evans, G. Hanvey, and C. Johnson. Assessment of sleep in children with autism spectrum disorder. *Children*, 4(8):72, 2017.
- [287] P. A. Mueller and D. M. Oppenheimer. The pen is mightier than the keyboard: Advantages of longhand over laptop note taking. *Psychological science*, 25(6):1159– 1168, 2014.
- [288] M. R. Munafò, B. A. Nosek, D. V. Bishop, K. S. Button, C. D. Chambers, N. P. Du Sert, U. Simonsohn, E.-J. Wagenmakers, J. J. Ware, and J. P. Ioannidis. A manifesto for reproducible science. *Nature human behaviour*, 1(1):0021, 2017.
- [289] M. Muñoz-Organero, L. Powell, B. Heller, V. Harpin, and J. Parker. Automatic extraction and detection of characteristic movement patterns in children with adhd based on a convolutional neural network (cnn) and acceleration images. *Sensors*, 18(11):3924, 2018.
- [290] A. Narzisi, C. Costanza, B. Umberto, and M. Filippo. Non-pharmacological treatments in autism spectrum disorders: an overview on early interventions for preschoolers. *Current clinical pharmacology*, 9(1):17–26, 2014.
- [291] J. Naslund, K. Aschbrenner, L. Marsch, and S. Bartels. The future of mental health care: peer-to-peer support and social media. *Epidemiology and psychiatric sciences*, 25(2):113–122, 2016.
- [292] D. T. Neal and T. L. Chartrand. Embodied emotion perception: amplifying and dampening facial feedback modulates emotion perception accuracy. *Social Psychological and Personality Science*, 2(6):673–678, 2011.
- [293] K. Niehaus, editor. *MOCO '17: Proceedings of the 4th International Conference on Movement Computing*, New York, NY, USA, 2017. ACM.
- [294] J. A. Nielsen, B. A. Zielinski, P. T. Fletcher, A. L. Alexander, N. Lange, E. D. Bigler, J. E. Lainhart, and J. S. Anderson. Multisite functional connectivity mri classification of autism: Abide results. *Frontiers in human neuroscience*, 7:599, 2013.
- [295] M. Nobile, P. Perego, L. Piccinini, E. Mani, A. Rossi, M. Bellina, and M. Molteni. Further evidence of complex motor dysfunction in drug naive children with autism using automatic motion analysis of gait. *Autism*, 15(3):263–283, 2011.
- [296] M. B. T. Noor, N. Z. Zenia, M. S. Kaiser, S. Al Mamun, and M. Mahmud. Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of alzheimer's disease, parkinson's disease and schizophrenia. *Brain informatics*, 7(1):1–21, 2020.

- [297] J. C. Norcross and M. J. Lambert. *Psychotherapy relationships that work II.*, volume 48. Educational Publishing Foundation, 2011.
- [298] B. Noris, M. Nobile, L. Piccini, M. Molteni, F. Keller, and A. Billard. Gait analysis of autistic children with echo state networks. In *NIPS*" 06, number LASA-POSTER-2007-001, 2006.
- [299] A. Orben and A. K. Przybylski. The association between adolescent well-being and digital technology use. *Nature Human Behaviour*, 3(2):173–182, 2019.
- [300] L. Orsolini, M. Fiorani, and U. Volpe. Digital phenotyping in bipolar disorder: Which integration with clinical endophenotypes and biomarkers? *International Journal of Molecular Sciences*, 21(20):7684, 2020.
- [301] E. Ose Askvik, F. van der Weel, and A. L. van der Meer. The importance of cursive handwriting over typewriting for learning in the classroom: A high-density eeg study of 12-year-old children and young adults. *Frontiers in Psychology*, 11:1810, 2020.
- [302] A. Overvelde and W. Hulstijn. Handwriting development in grade 2 and grade 3 primary school children with normal, at risk, or dysgraphic characteristics. *Research in developmental disabilities*, 32(2):540–548, 2011.
- [303] S. Ozonoff, G. S. Young, S. Goldring, L. Greiss-Hess, A. M. Herrera, J. Steele, S. Macari, S. Hepburn, and S. J. Rogers. Gross motor development, movement abnormalities, and early identification of autism. *Journal of autism and developmental disorders*, 38(4):644–656, 2008.
- [304] E. Pagliarini, L. Scocchia, M. Vernice, M. Zoppello, U. Balottin, S. Bouamama, M. T. Guasti, and N. Stucchi. Children's first handwriting productions show a rhythmic structure. *Scientific Reports*, 7(1):5516, July 2017.
- [305] R. Palomo, M. BelinchÓn, and S. Ozonoff. Autism and family home movies: a comprehensive review. *Journal of Developmental & Behavioral Pediatrics*, 27(2):S59–S68, 2006.
- [306] C.-Y. Pan and G. C. Frey. Physical activity patterns in youth with autism spectrum disorders. *Journal of autism and developmental disorders*, 36(5):597, 2006.
- [307] E. A. Papagiannopoulou, K. M. Chitty, D. F. Hermens, I. B. Hickie, and J. Lagopoulos. A systematic review and meta-analysis of eye-tracking studies in children with autism spectrum disorders. *Social neuroscience*, 9(6):610–632, 2014.
- [308] A. Paquet, B. Golse, M. Girard, B. Olliac, and L. Vaivre-Douret. Laterality and lateralization in autism spectrum disorder, using a standardized neuro-psychomotor assessment. *Developmental neuropsychology*, 42(1):39–54, 2017.
- [309] A. Paquet, B. Olliac, B. Golse, and L. Vaivre-Douret. Evaluation of neuromuscular tone phenotypes in children with autism spectrum disorder: An exploratory study. *Neurophysiologie Clinique/Clinical Neurophysiology*, 47(4):261–268, 2017.

- [310] A. Paquet, B. Olliac, B. Golse, and L. Vaivre-Douret. Nature of motor impairments in autism spectrum disorder: a comparison with developmental coordination disorder. *Journal of clinical and experimental neuropsychology*, 41(1):1–14, 2019.
- [311] A. Pascual and N. Guéguen. Foot-in-the-door and door-in-the-face: A comparative meta-analytic study. *Psychological Reports*, 96(1):122–128, 2005.
- [312] E. Pellicano and D. Burr. When the world becomes 'too real': a bayesian explanation of autistic perception. *Trends in cognitive sciences*, 16(10):504–510, 2012.
- [313] P. Pennisi, A. Tonacci, G. Tartarisco, L. Billeci, L. Ruta, S. Gangemi, and G. Pioggia. Autism and social robotics: A systematic review. *Autism Research*, 9(2):165– 183, 2016.
- [314] P. Perego, S. Forti, A. Crippa, A. Valli, and G. Reni. Reach and throw movement analysis with support vector machines in early diagnosis of autism. In *Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE*, pages 2555–2558. IEEE, 2009.
- [315] A. Pereira, C. Martinho, I. Leite, and A. Paiva. icat, the chess player: the influence of embodiment in the enjoyment of a game. In *Proceedings of the 7th international joint conference on Autonomous agents and multiagent systems-Volume 3*, pages 1253–1256, 2008.
- [316] M. Pivetti, S. Di Battista, F. Agatolio, B. Simaku, M. Moro, and E. Menegatti. Educational robotics for children with neurodevelopmental disorders: A systematic review. *Heliyon*, 6(10):e05160, 2020.
- [317] H. J. Polatajko, A. D. Mandich, L. T. Miller, and J. J. Macnab. Cognitive orientation to daily occupational performance (co-op) part ii the evidence. *Physical & Occupational Therapy in Pediatrics*, 20(2-3):83–106, 2001.
- [318] H. Powell and J. Michael. Feeling committed to a robot: why, what, when and how? *Philosophical Transactions of the Royal Society B*, 374(1771):20180039, 2019.
- [319] H. F. Prechtl, C. Einspieler, G. Cioni, A. F. Bos, F. Ferrari, and D. Sontheimer. An early marker for neurological deficits after perinatal brain lesions. *The Lancet*, 349(9062):1361–1363, 1997.
- [320] J. Preslar, H. I. Kushner, L. Marino, and B. Pearce. Autism, lateralisation, and handedness: a review of the literature and meta-analysis. *Laterality: Asymmetries of Body, Brain and Cognition*, 19(1):64–95, 2014.
- [321] N. Preston, S. Magallon, L. J. Hill, E. Andrews, S. M. Ahern, and M. Mon-Williams. A systematic review of high quality randomized controlled trials investigating motor skill programmes for children with developmental coordination disorder. *Clinical rehabilitation*, 31(7):857–870, 2017.
- [322] B. Provost, B. R. Lopez, and S. Heimerl. A comparison of motor delays in young children: autism spectrum disorder, developmental delay, and developmental concerns. *Journal of autism and developmental disorders*, 37(2):321–328, 2007.

- [323] N. M. Rad and C. Furlanello. Applying deep learning to stereotypical motor movement detection in autism spectrum disorders. In 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pages 1235–1242. IEEE, 2016.
- [324] N. M. Rad, S. M. Kia, C. Zarbo, G. Jurman, P. Venuti, and C. Furlanello. Stereotypical motor movement detection in dynamic feature space. In 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pages 487–494. IEEE, 2016.
- [325] N. M. Rad, S. M. Kia, C. Zarbo, T. van Laarhoven, G. Jurman, P. Venuti, E. Marchiori, and C. Furlanello. Deep learning for automatic stereotypical motor movement detection using wearable sensors in autism spectrum disorders. *Signal Processing*, 144:180–191, 2018.
- [326] S. Reich, D. Zhang, T. Kulvicius, S. Bölte, K. Nielsen-Saines, F. B. Pokorny, R. Peharz, L. Poustka, F. Wörgötter, C. Einspieler, et al. Novel ai driven approach to classify infant motor functions. *Scientific Reports*, 11(1):1–13, 2021.
- [327] A. M. Reiersen. Early identification of autism spectrum disorder: is diagnosis by age 3 a reasonable goal? *Journal of the American Academy of Child and Adolescent Psychiatry*, 56(4):284–285, 2017.
- [328] L. D. Riek. Wizard of oz studies in hri: a systematic review and new reporting guidelines. *Journal of Human-Robot Interaction*, 1(1):119–136, 2012.
- [329] N. J. Rinehart, B. J. Tonge, J. L. Bradshaw, R. Iansek, P. G. Enticott, and J. McGinley. Gait function in high-functioning autism and asperger's disorder. *European child & adolescent psychiatry*, 15(5):256–264, 2006.
- [330] N. J. Rinehart, B. J. Tonge, R. Iansek, J. McGinley, A. V. Brereton, P. G. Enticott, and J. L. Bradshaw. Gait function in newly diagnosed children with autism: cerebellar and basal ganglia related motor disorder. *Developmental medicine and child neurology*, 48(10):819–824, 2006.
- [331] B. Robins, K. Dautenhahn, R. Te Boekhorst, and A. Billard. Robotic assistants in therapy and education of children with autism: can a small humanoid robot help encourage social interaction skills? *Universal access in the information society*, 4(2):105–120, 2005.
- [332] B. Robins, P. Dickerson, P. Stribling, and K. Dautenhahn. Robot-mediated joint attention in children with autism: A case study in robot-human interaction. *Interaction studies*, 5(2):161–198, 2004.
- [333] C. R. Rogers. The necessary and sufficient conditions of therapeutic personality change. *Journal of consulting psychology*, 21(2):95, 1957.
- [334] S. J. Rogers and J. H. Williams. *Imitation and the social mind: Autism and typical development*. Guilford Press, 2006.
- [335] C. A. Rohrbeck, M. D. Ginsburg-Block, J. W. Fantuzzo, and T. R. Miller. Peerassisted learning interventions with elementary school students: A meta-analytic review. *Journal of educational Psychology*, 95(2):240, 2003.
- [336] S. Rosenblum. Development, reliability, and validity of the handwriting proficiency screening questionnaire (hpsq). *American Journal of Occupational Therapy*, 62(3):298–307, 2008.
- [337] S. Rosenblum, D. Chevion, and P. Weiss. Using data visualization and signal processing to characterize the handwriting process. *Pediatric Rehabilitation*, 9(4):404–417, 2006.
- [338] S. Rosenblum, S. Parush, and P. L. Weiss. The in air phenomenon: Temporal and spatial correlates of the handwriting process. *Perceptual and Motor skills*, 96(3):933–954, 2003.
- [339] S. Rosenblum, P. Waissman, and G. W. Diamond. Identifying play characteristics of pre-school children with developmental coordination disorder via parental questionnaires. *Human movement science*, 53:5–15, 2017.
- [340] E. Rostand. Cyrano de bergerac. Larousse, 2007.
- [341] M. Ruan, P. J. Webster, X. Li, and S. Wang. Deep neural network reveals the world of autism from a first-person perspective. *Autism Research*, n/a(n/a).
- [342] S. Rueckriegel, F. Blankenburg, R. Burghardt, S. Ehrlich, G. Henze, R. Mergl, and P. Hernaiz Driever. Influence of age and movement complexity on kinematic hand movement parameters in childhood and adolescence. *International Journal of Developmental Neuroscience*, 26(7):655–663, 2008.
- [343] R. M. Ryan and E. L. Deci. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. *American psychologist*, 55(1):68, 2000.
- [344] L.-A. R. Sacrey, T. Germani, S. E. Bryson, and L. Zwaigenbaum. Reaching and grasping in autism spectrum disorder: a review of recent literature. *Frontiers in Neurology*, 5:6, 2014.
- [345] C. Saint-Georges, R. S. Cassel, D. Cohen, M. Chetouani, M.-C. Laznik, S. Maestro, and F. Muratori. What studies of family home movies can teach us about autistic infants: A literature review. *Research in Autism Spectrum Disorders*, 4(3):355– 366, 2010.
- [346] C. Saint-Georges, V. Guinchat, B. Chamak, F. Apicella, F. Muratori, and D. Cohen. Signes précoces d'autisme: d'où vient-on? où va-t-on? *Neuropsychiatrie de l'Enfance et de l'Adolescence*, 61(7-8):400–408, 2013.
- [347] C. Saint-Georges, A. Mahdhaoui, M. Chetouani, R. S. Cassel, M.-C. Laznik, F. Apicella, P. Muratori, S. Maestro, F. Muratori, and D. Cohen. Do parents recognize autistic deviant behavior long before diagnosis? taking into account interaction using computational methods. *PloS one*, 6(7):e22393, 2011.
- [348] A. D. Sandler, T. E. Watson, M. Footo, M. D. Levine, W. L. Coleman, and S. R. Hooper. Neurodevelopmental study of writing disorders in middle childhood. *Journal of Developmental and Behavioral Pediatrics*, 1992.
- [349] J. Sandler. Projection, identification, projective identification. Routledge, 2018.

- [350] J. Sanghvi, G. Castellano, I. Leite, A. Pereira, P. W. McOwan, and A. Paiva. Automatic analysis of affective postures and body motion to detect engagement with a game companion. In *Proceedings of the 6th international conference on Humanrobot interaction*, pages 305–312, 2011.
- [351] G. Sapiro, J. Hashemi, and G. Dawson. Computer vision and behavioral phenotyping: an autism case study. *Current Opinion in Biomedical Engineering*, 9:14–20, 2019.
- [352] R. Sassoon, I. Nimmo-Smith, and A. M. Wing. Developing efficiency in cursive handwriting: An analysis of 't'crossing behavior in children. *Computer recognition and human production of handwriting*, pages 287–297, 1989.
- [353] A. P. Saygin, I. Cicekli, and V. Akman. Turing test: 50 years later. *Minds and machines*, 10(4):463–518, 2000.
- [354] B. Scassellati. How social robots will help us to diagnose, treat, and understand autism. In *Robotics research*, pages 552–563. Springer, 2007.
- [355] B. Scassellati, H. Admoni, and M. Matarić. Robots for use in autism research. *Annual review of biomedical engineering*, 14, 2012.
- [356] B. Scassellati, L. Boccanfuso, C.-M. Huang, M. Mademtzi, M. Qin, N. Salomons, P. Ventola, and F. Shic. Improving social skills in children with asd using a longterm, in-home social robot. *Science Robotics*, 3(21):eaat7544, 2018.
- [357] S. Schwartz, B. Shinn-Cunningham, and H. Tager-Flusberg. Meta-analysis and systematic review of the literature characterizing auditory mismatch negativity in individuals with autism. *Neuroscience & Biobehavioral Reviews*, 87:106–117, 2018.
- [358] E. Senft, S. Lemaignan, P. E. Baxter, M. Bartlett, and T. Belpaeme. Teaching robots social autonomy from in situ human guidance. *Science Robotics*, 4(35), 2019.
- [359] F. Serdarevic, A. Ghassabian, T. van Batenburg-Eddes, T. White, L. M. Blanken, V. W. Jaddoe, F. C. Verhulst, and H. Tiemeier. Infant muscle tone and childhood autistic traits: A longitudinal study in the general population. *Autism Research*, 10(5):757–768, 2017.
- [360] S. R. Shahamiri and F. Thabtah. Autism ai: a new autism screening system based on artificial intelligence. *Cognitive Computation*, 12(4):766–777, 2020.
- [361] M. Shetreat-Klein, S. Shinnar, and I. Rapin. Abnormalities of joint mobility and gait in children with autism spectrum disorders. *Brain and Development*, 36(2):91– 96, 2014.
- [362] T. Shibata. An overview of human interactive robots for psychological enrichment. *Proceedings of the IEEE*, 92(11):1749–1758, 2004.
- [363] N. Silva, D. Zhang, T. Kulvicius, A. Gail, C. Barreiros, S. Lindstaedt, M. Kraft, S. Bölte, L. Poustka, K. Nielsen-Saines, et al. The future of general movement assessment: The role of computer vision and machine learning–a scoping review. *Research in Developmental Disabilities*, 110:103854, 2021.

- [364] D. L. Simel and D. Rennie. *The rational clinical examination: evidence-based clinical diagnosis.* McGraw Hill Professional, 2008.
- [365] T. Simon, H. Joo, I. Matthews, and Y. Sheikh. Hand keypoint detection in single images using multiview bootstrapping. In *CVPR*, 2017.
- [366] B. F. Skinner. *Science and human behavior*. Number 92904. Simon and Schuster, 1965.
- [367] B. Smits-Engelsman, A. Niemeijer, and G. van Galen. Fine motor deficiencies in children diagnosed as DCD based on poor grapho-motor ability. *Human Movement Science*, 20:161–182, 2001.
- [368] L. Sparaci, D. Formica, F. R. Lasorsa, L. Mazzone, G. Valeri, and S. Vicari. Untrivial pursuit: measuring motor procedures learning in children with autism. *Autism Research*, 8(4):398–411, 2015.
- [369] P. Spinazze, Y. Rykov, A. Bottle, and J. Car. Digital phenotyping for assessment and prediction of mental health outcomes: a scoping review protocol. *BMJ open*, 9(12):e032255, 2019.
- [370] K. L. Staples and G. Reid. Fundamental movement skills and autism spectrum disorders. *Journal of autism and developmental disorders*, 40(2):209–217, 2010.
- [371] H. Steiner and Z. Kertesz. Effect of therapeutic riding on gait cycle parameters and behavioural skills of autistic children. In 2012 IEEE 3rd International Conference on Cognitive Infocommunications (CogInfoCom), pages 109–113. IEEE, 2012.
- [372] H. Steiner and Z. Kertesz. Effects of therapeutic horse riding on gait cycle parameters and some aspects of behavior of children with autism. Acta Physiologica Hungarica, 102(3):324–335, 2015.
- [373] M. Stel, C. van den Heuvel, and R. C. Smeets. Facial feedback mechanisms in autistic spectrum disorders. *Journal of autism and developmental disorders*, 38(7):1250–1258, 2008.
- [374] J. F. Stins and C. Emck. Balance performance in autism: a brief overview. *Frontiers in Psychology*, 9, 2018.
- [375] B. Strauss. Social facilitation in motor tasks: a review of research and theory. *Psychology of sport and exercise*, 3(3):237–256, 2002.
- [376] S. Suresh. *Nursing research and statistics*. Elsevier Health Sciences, 2014.
- [377] S. Takamuku, P. A. Forbes, A. F. d. C. Hamilton, and H. Gomi. Typical use of inverse dynamics in perceiving motion in autistic adults: Exploring computational principles of perception and action. *Autism Research*, 11(7):1062–1075, 2018.
- [378] P. Teitelbaum, O. Teitelbaum, J. Nye, J. Fryman, and R. G. Maurer. Movement analysis in infancy may be useful for early diagnosis of autism. *Proceedings of the National Academy of Sciences*, 95(23):13982–13987, 1998.
- [379] E. L. Thorndike. Handwriting. Teachers College, Columbia University, 1912.

- [380] S. Tordjman, D. Cohen, N. Coulon, G. Anderson, M. Botbol, and P. Roubertoux. Reprint of reframing autism as a behavioral syndrome and not a specific mental disorder: perspectives from a literature review. *Neurosci Biobehav Rev*, 89:132– 150, 2018.
- [381] E. B. Torres, M. Brincker, R. W. Isenhower III, P. Yanovich, K. A. Stigler, J. I. Nurnberger Jr, D. N. Metaxas, and J. V. José. Autism: the micro-movement perspective. *Frontiers in integrative neuroscience*, 7:32, 2013.
- [382] E. B. Torres and K. Denisova. Motor noise is rich signal in autism research and pharmacological treatments. *Scientific reports*, 6:37422, 2016.
- [383] E. B. Torres, J. Nguyen, S. Mistry, C. Whyatt, V. Kalampratsidou, and A. Kolevzon. Characterization of the statistical signatures of micro-movements underlying natural gait patterns in children with phelan mcdermid syndrome: towards precisionphenotyping of behavior in asd. *Frontiers in integrative neuroscience*, 10:22, 2016.
- [384] E. B. Torres, P. Yanovich, and D. N. Metaxas. Give spontaneity and self-discovery a chance in asd: spontaneous peripheral limb variability as a proxy to evoke centrally driven intentional acts. *Frontiers in integrative neuroscience*, 7:46, 2013.
- [385] B. G. Travers, P. S. Powell, L. G. Klinger, and M. R. Klinger. Motor difficulties in autism spectrum disorder: linking symptom severity and postural stability. *Journal of autism and developmental disorders*, 43(7):1568–1583, 2013.
- [386] C. Trevarthen and J. T. Delafield-Butt. Autism as a developmental disorder in intentional movement and affective engagement. *Frontiers in integrative neuroscience*, 7:49, 2013.
- [387] D. A. Trevisan, M. Hoskyn, and E. Birmingham. Facial expression production in autism: A meta-analysis. *Autism Research*, 11(12):1586–1601, 2018.
- [388] A. K. Triantafyllidis and A. Tsanas. Applications of machine learning in real-life digital health interventions: review of the literature. *Journal of medical Internet research*, 21(4):e12286, 2019.
- [389] C. Tsiourti, A. Weiss, K. Wac, and M. Vincze. Multimodal integration of emotional signals from voice, body, and context: Effects of (in) congruence on emotion recognition and attitudes towards robots. *International Journal of Social Robotics*, 11(4):555–573, 2019.
- [390] A. Tsuji, T. Enomoto, S. Matsuda, J. Yamamoto, and K. Suzuki. Modeling and quantitative measurement method of the tripartite interpersonal distance dynamics for children with asd. In *International Conference on Computers Helping People with Special Needs*, pages 523–526. Springer, 2018.
- [391] L. Uziel. Individual differences in the social facilitation effect: A review and metaanalysis. *Journal of Research in Personality*, 41(3):579–601, 2007.
- [392] L. Vaivre-Douret. Batterie d'évaluations des fonctions neuro-psychomotrices de l'enfant. *Le Carnet PSY*, (2):27–27, 2007.

- [393] B. W. van Der Linde, J. J. van Netten, B. E. Otten, K. Postema, R. H. Geuze, and M. M. Schoemaker. Psychometric properties of the dcddaily-q: a new parental questionnaire on children's performance in activities of daily living. *Research in developmental disabilities*, 35(7):1711–1719, 2014.
- [394] G. Van Galen and J. Weber. On-line size control in handwriting demonstrates the continuous nature of motor programs. *Acta Psychologica*, 100(1-2):195–216, 1988.
- [395] G. Varni, M. Avril, A. Usta, and M. Chetouani. Syncpy: a unified open-source analytic library for synchrony. In *Proceedings of the 1st Workshop on Modeling INTERPERsonal SynchrONy And infLuence*, pages 41–47. ACM, 2015.
- [396] P. Verma and U. Lahiri. Deficits in handwriting of individuals with autism: a review on identification and intervention approaches. *Review Journal of Autism and Developmental Disorders*, pages 1–21, 2021.
- [397] S. Vernazza-Martin, N. Martin, A. Vernazza, A. Lepellec-Muller, M. Rufo, J. Massion, and C. Assaiante. Goal directed locomotion and balance control in autistic children. *Journal of autism and developmental disorders*, 35(1):91–102, 2005.
- [398] J. A. Vilensky, A. R. Damasio, and R. G. Maurer. Gait disturbances in patients with autistic behavior: a preliminary study. *Archives of neurology*, 38(10):646– 649, 1981.
- [399] A. Vinciarelli and A. Esposito. Multimodal analysis of social signals. In *The Handbook of Multimodal-Multisensor Interfaces: Signal Processing, Architectures, and Detection of Emotion and Cognition-Volume 2*, pages 203–226. 2018.
- [400] A. Vinciarelli, A. Esposito, M. Tayarani, G. Roffo, F. Scibelli, F. Perrone, and D.-B. Vo. We are less free than how we think: Regular patterns in nonverbal communication. In *Multimodal Behavior Analysis in the Wild*, pages 269–288. Elsevier, 2019.
- [401] A. Vinter and E. Chartrel. Effects of Different Types of Learning on Handwriting Movements in Young Children. *Learning and Instruction*, 20:476–486, 2010.
- [402] B. Wagner, A. B. Horn, and A. Maercker. Internet-based versus face-to-face cognitive-behavioral intervention for depression: a randomized controlled noninferiority trial. *Journal of affective disorders*, 152:113–121, 2014.
- [403] D. Weber. "toe-walking" in children with early childhood autism. Acta Paedopsychiatrica: International Journal of Child & Adolescent Psychiatry, 1978.
- [404] T. F. Wechsler, A. Mühlberger, and F. Kümpers. Inferiority or even superiority of virtual reality exposure therapy in phobias?-a systematic review and quantitative meta-analysis on randomized controlled trials specifically comparing the efficacy of virtual reality exposure to gold standard in vivo exposure in agoraphobia, specific phobia and social phobia. *Frontiers in psychology*, 10:1758, 2019.
- [405] M. Wedyan and A. Al-Jumaily. Early diagnosis autism based on upper limb motor coordination in high risk subjects for autism. In 2016 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), pages 13–18. IEEE, 2016.

- [406] M. Wedyan and A. Al-Jumaily. An investigation of upper limb motor task based discriminate for high risk autism. In 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), pages 1–6. IEEE, 2017.
- [407] L. Wiggs and G. Stores. Sleep patterns and sleep disorders in children with autistic spectrum disorders: insights using parent report and actigraphy. *Developmental medicine and child neurology*, 46(6):372–380, 2004.
- [408] N. J. Wilson, H. C. Lee, S. Vaz, P. Vindin, and R. Cordier. Scoping review of the driving behaviour of and driver training programs for people on the autism spectrum. *Behavioural neurology*, 2018, 2018.
- [409] S. Wollscheid, J. Sjaastad, and C. Tømte. The impact of digital devices vs. pen (cil) and paper on primary school students' writing skills–a research review. *Computers & Education*, 95:19–35, 2016.
- [410] D. M. Wolpert, K. Doya, and M. Kawato. A unifying computational framework for motor control and social interaction. *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences*, 358(1431):593–602, 2003.
- [411] D. M. Wolpert, Z. Ghahramani, and M. I. Jordan. An internal model for sensorimotor integration. *Science*, 269(5232):1880–1882, 1995.
- [412] A. Wood, G. Lupyan, S. Sherrin, and P. Niedenthal. Altering sensorimotor feedback disrupts visual discrimination of facial expressions. *Psychonomic Bulletin & Review*, 23(4):1150–1156, 2016.
- [413] World Health Organization. Classification of functioning, disability and health (icf). *ICF full version*, 2001.
- [414] R. H. Wozniak, N. B. Leezenbaum, J. B. Northrup, K. L. West, and J. M. Iverson. The development of autism spectrum disorders: variability and causal complexity. *Wiley Interdisciplinary Reviews: Cognitive Science*, 8(1-2):e1426, 2017.
- [415] J. Xavier, C. Bursztejn, M. Stiskin, R. Canitano, and D. Cohen. Autism spectrum disorders: An historical synthesis and a multidimensional assessment toward a tailored therapeutic program. *Research in Autism Spectrum Disorders*, 18:21–33, 2015.
- [416] J. Xavier and D. Cohen. Multidimensionally impairments. In A. Gallagher, C. Bulteau, D. Cohen, and J. Michaud, editors, *Handbook of Clinical Neurology: neu*rodevelopmental and cognitive disabilities (in press). 2020.
- [417] J. Xavier, S. Gauthier, D. Cohen, M. Zahoui, M. Chetouani, F. Villa, A. Berthoz, and S. Anzalone. Interpersonal synchronization, motor coordination, and control are impaired during a dynamic imitation task in children with autism spectrum disorder. *Frontiers in psychology*, 9:1467, 2018.
- [418] J. Xavier, H. Guedjou, S. Anzalone, S. Boucenna, E. Guigon, M. Chetouani, and D. Cohen. Toward a motor signature in autism: Studies from human-machine interaction. *L'Encéphale*, 45(2):182–187, 2019.

- [419] R. Zemouri, N. Zerhouni, and D. Racoceanu. Deep learning in the biomedical applications: Recent and future status. *Applied Sciences*, 9(8):1526, 2019.
- [420] W. Zhang, W. Groen, M. Mennes, C. Greven, J. Buitelaar, and N. Rommelse. Revisiting subcortical brain volume correlates of autism in the abide dataset: effects of age and sex. *Psychological medicine*, 48(4):654, 2018.
- [421] H.-y. Zhou, X.-l. Cai, M. Weigl, P. Bang, E. F. Cheung, and R. C. Chan. Multisensory temporal binding window in autism spectrum disorders and schizophrenia spectrum disorders: A systematic review and meta-analysis. *Neuroscience & Biobehavioral Reviews*, 86:66–76, 2018.
- [422] J. Ziviani and M. Wallen. The development of graphomotor skills. In *Hand function in the child: Foundations for remediation (2nd edition)*, pages 217–236. A. Henderson & C. Pehoski, St. Louis, MO, mosby edition, 2006.

List of abbreviations

- App: Application for tablet or smartphone,
- ASD: Autism spectrum disorder,
- ADHD: Attention Deficit Hyperactivity disorder,
- ADI: Autism Diagnostic Interview-Revised,
- ADOS®-2: Autism Diagnostic Observation Schedule -2,
- BHK: Concise Evaluation Scale for Children's Handwriting,
- BOT-2: Bruininks-Oseretsky Test of Motor Proficiency,
- CARS: Childhood Autism Rating Scale,
- CNN: convolutional neural network,
- CO-OP: Cognitive Orientation to daily Occupational Performance,
- DASH: Detailes Assessment of Speed of Handwriting
- DAMP: Deficits in Attention, Motor control and Perception,
- DBD: Developmental Behaviour Checklist,
- DCD: developmental coordination disorder,
- DCDDaily-Q: developmental coordination disorder daily-questionnaire,

- DSM-5 or DSM: Diagnostic and Statistical Manual of Mental Disorders, fifth edition,
- EEG: Electroencephalography,
- ESSENCE: Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examination,
- GARS: Gilliam Autism Rating Scale,
- HHE: Hebrew Handwriting Evaluation
- Hz: Hertz,
- IEEE: Institute of Electrical and Electronics Engineers,
- ICBS: Infant and Caregiver Behavior Scale,
- ICD-10 or ICD: International Classification of Disease,
- ICT: Information and Communication Technologies,
- Fig: Figure,
- JA: joint attention,
- MABC-2: Movement Assessment Battery for Children,
- M-CHAT: Modified Checklist for Autism in Toddlers,
- M-CHAT-R/F: Modified Checklist for Autism in Toddlers, Revised with Follow-Up (M-CHAT- R/F),
- MCDD: Multiple Complex Developmental Disorders,

- MDD: Multiplex Developmental Disorders,
- MDI: MultiDimendissonal Impairment,
- MRI: magnetic resonance imagery,
- MSEL:Mullen Scales of Early Learning,
- NDDs: neurodevelopmental disorders,
- NDE: Neuro-Developmental Engineering,
- NN: neural networks,
- NP-MOT: Neuro-Psychomotrian evaluation of the child,
- PAC: Pedagogical Analysis and Curriculum,
- PDF: Probability Density Functions,
- PEP-R : Profil Psycho- Educatif (PsychoEducational Profile—Revised),
- QML: Qt Modeling Language, user interface markup language. A language to develop user interface-centric applications,
- PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses,

- RBS-R: Stereotyped Behavior Subscale of the Repetitive Behavior Scale-Revised,
- RDoC: Research Domain Criteria
- RGB-D sensor: red, green, blue depth sensor,
- SD: Standard Deviation,
- SRS: Social Responsiveness Scale,
- SMM: stereotypical motor movements,
- SVM: support vector machine,
- TD children: typically developing children,
- TGMD-2: Test of Gross Motor Development,
- WASI: Wechsler Abbreviated Scale of Intelligence,
- WISC: Wechsler Intelligence Scale for Children,
- WPPSI: Wechsler Preschool and Primary Scale of Intelligence,
- WoZ: Wizard of Oz, a control of the robot by a human operator

Author publications

Presented in this thesis

- Gargot, T., Asselborn, T., Zammouri, I., Brunelle, J., Benkaouar, W., Dillenbourg, P., ... & Anzalone, S. (2021). "*It Is Not the Robot Who Learns, It Is Me.*" *Treating Severe Dysgraphia Using Child-Robot Interaction.* Frontiers in Psychiatry, 12, 596055.
- Gargot, T., Asselborn, T., Pellerin, H., Zammouri, I., M. Anzalone, S., Casteran, L., ... & Jolly, C. (2020). Acquisition of handwriting in children with and without dysgraphia: A computational approach. PloS one, 15(9), e0237575.
- 3. Asselborn, T., **Gargot, T.**, Kidziński, Ł., Johal, W., Cohen, D., Jolly, C., & Dillenbourg, P. (2019). *Reply: Limitations in the creation of an automatic diagnosis tool for dysgraphia*. NPJ digital medicine, 2(1), 1-2.
- 4. Asselborn, T., **Gargot, T.**, Kidziński, Ł., Johal, W., Cohen, D., Jolly, C., & Dillenbourg, P. (2018). *Automated human-level diagnosis of dysgraphia using a consumer tablet*. NPJ digital medicine, 1(1), 1-9.
- Le Denmat, P., Gargot, T., Chetouani, M., Archambault, D., Cohen, D., & Anzalone, S. (2018, November). *The CoWriter robot: improving attention in a learning-by-teaching setup.* In 5th Italian Workshop on Artificial Intelligence and Robotics A workshop of the XVII International Conference of the Italian Association for Artificial Intelligence (AI* IA 2018).

Other publications

- 1. Baessler, F., Zafar, A., **Gargot, T.**, da Costa, M. P., Biskup, E. M., De Picker, L., ... & Dias, M. C. (2021). *Psychiatry training in 42 European countries: A comparative analysis*. European Neuropsychopharmacology.
- Gargot, T., Kisand, H., Miguel, A., Tanyeri, S., Soron, T. R., Serene, B., ... & Frankova, I. (2021). Preventing Post Traumatic Stress Disorder in the general population induced by trauma during the COVID pandemic: A simple brief intervention based on cognitive science that could be delivered digitally. European Journal of Trauma & Dissociation, 5(2), 100193.
- 3. Gargot, T., Arnaoutoglou, N. A., Costa, T., Sidorova, O., Liu-Thwaites, N., Moorey, S., & Hanon, C. (2020). *Can we really teach cognitive behavioral therapy with a massive open online course?*. European Psychiatry, 63(1).

- 4. Costa, T., Arnaoutoglou, N. A., **Gargot, T.**, Sidorova, O., Liu-Thwaites, N., Moorey, S., & Hanon, C. (2020). *The First Massive Open Online course of the European Psychiatric Association on Cognitive and Behavioural Therapy*. Handicap 2020: Technologies pour l'autonomie et l'inclusion, 2020, Paris, France.
- 5. Gargot, T., Koutsomitros, T., & Klotins, R. . *EFPT Psychotherapy Guidebook*, 1st edition, PubPub, 2018, https://epg.pubpub.org/
- da Costa, M. P., Giurgiuca, A., Holmes, K., Biskup, E., Mogren, T., Tomori, S., ... & De Picker, L. (2017). *To which countries do European psychiatric trainees want to move to and why?*. European Psychiatry, 45, 174-181.
- Gargot, T., Dondé, C., Arnaoutoglou, N. A., Klotins, R., Marinova, P., Silva, R., ... & EFPT Psychotherapy Working Group. (2017). *How is psychotherapy training perceived by psychiatric trainees? A cross-sectional observational study in Europe*. European Psychiatry, 45, 136-138.
- 8. Sönmez, E., Ryland, H., De Picker, L., Pinto Da Costa, M., **Gargot, T.**, & Azvee, Z. (2016). *Reply to: Research by psychiatry residents in Indian scenario: Challenges and opportunities*. Asian journal of psychiatry, 24, 65-66.
- Baessler, F., Riese, F., da Costa, M. P., de Picker, L., Kazakova, O., Kanellopoulos, A., ... & Gargot, T. (2015). Becoming a psychiatrist in Europe: the title is recognized across the European Union, but what are the differences in training, salary and working hours?. World Psychiatry, 14(3), 372.

Algorithms and robotics allow to describe how we learn handwriting and how to better help children with difficulties

Handwriting difficulties are frequent and impairing. However, the assessment of motor learning skills is difficult and limits early stage rehabilitation.

Electronic sensors and algorithms can help to measure motor difficulties more easily and objectively. Electronic tablets, for instance, give access to handwriting features that are not usually evaluated in classical assessments. We describe how such digital features (in static, dynamic, pressure, and tilt domains) allow diagnosing dysgraphia and how they evolve during children development. From a finer analysis, three different clusters of dysgraphia emerge, longitudinal studies will allow to underline different patterns of development that seemingly require tailored remediation strategies.

However, those digital features are not used in the context of conventional pen and paper therapies. It is possible to engage children with typical development in handwriting exercises by asking them to teach a robot to write. We implemented a long-term case study (20 sessions, 500 minutes in total) observing a child with severe Developmental Coordination Disorder who did not progress anymore with a classic pen and paper approach by enriching this setup with various training activities using real-time feedback loops (on tilt, pressure, dynamic, pauses). We show how this new method tackles previous child's behavior avoidances, boosting his motivation, and improving his motor and writing skills.

This thesis demonstrates how new writing digital features allow the implementation of innovative handwriting remediation interventions, which rely on fostering children's personal characteristics and adaptation skills.

Keywords: writing, dysgraphia, robotics, electronic tablets, machine learning, autism spectrum disorders, neurodevelopmental disorders