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To my sister,
who left us during the preparation of this thesis. May one day the pain of having a

mental disorder not doubled by the pain of not having a lesional disorder.
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Abstract

Handwriting difficulties are frequent and impairing. However, the assessment of motor
learning is difficult and limits early stage rehabilitation.

Electronic sensors and algorithms can help to measure motor difficulties more easily
and objectively. Electronic tablets, for instance, give access to handwriting features that
are not usually evaluated in classical assessments. We describe how such digital features
(in static, dynamic, pressure, and tilt domains) allow diagnosing dysgraphia and how
they evolve during children development. From a finer analysis, three different clusters
of dysgraphia emerge. We hope that future longitudinal studies will allow to underline
different patterns of development that seemingly require tailored remediation strategies.

However, those digital features are not used in the context of conventional pen and
paper therapies. It is possible to engage typically developping children in handwriting ex-
ercises by asking them to teach a robot to write. We implemented a long-term case study
(20 sessions, 500 minutes in total) observing a child with severe Developmental Coordi-
nation Disorder who did not progress anymore with a classic pen and paper approach by
enriching this setup with various training activities using real-time feedback loops (on tilt,
pressure, dynamic, pauses). We show how this new method tackles the child’s previous
behavior avoidances, boosting his motivation, and improving his motor and writing skills.

This thesis demonstrates how new writing digital features allow the implementation
of innovative handwriting remediation interventions, which rely on fostering children’s
personal characteristics and adaptation skills.

Keywords: writing, dysgraphia, robotics, electronic tablets, machine learning, autism
spectrum disorders, neurodevelopmental disorders, developmental coordination disorder
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Résumé

Les difficultés d’écriture sont fréquentes et handicapantes. Cependant, les difficultés
d’apprentissage moteur sont dans leur ensemble difficiles à évaluer, ce qui limite par
conséquent une rééducation, nécessaire le plus précocement possible.

Des capteurs électroniques et des algorithmes peuvent aider à mesurer ces difficultés
motrices plus facilement et plus objectivement. Les tablettes électroniques par exem-
ple donnent accès à des caractéristiques qui ne sont pas utilisées dans les évaluations
classiques. Nous décrivons comment ces caractéristiques (dans les domaines statiques,
dynamique, de pression et d’inclinaison) permettent un diagnostic de dysgraphie et com-
ment elles évoluent au cours du développement de l’enfant. Grâce à une analyse plus
fine, trois différents clusters de dysgraphie émergent. Des études longitudinales, dans le
futur, devraient permettre de mettre en évidence différents profils de développement, qui
devraient nécessiter des prises en charges plus personnalisées.

Cependant, ces caractéristiques ne sont pas utilisées dans le contexte de la rééducation
conventionnelle papier-crayon. Il est possible d’augmenter ma motivation des enfants
ayant un développement typique en leur demandant d’enseigner l’écriture à un robot.
Nous avons enrichi cette preuve de concept avec des activités permettant des boucles
de rétrocontrôle en direct (inclinaison, pression, dynamique, pauses), et mis en place
une étude de cas à long terme (20 sessions, 500 minutes au total) avec un enfant
avec un trouble du développement de la coordination qui ne progressait plus avec une
rééducation classique papier-crayon. Nous montrons comment cette nouvelle méthode
permet de diminuer les comportements d’évitement de l’enfant, améliore sa motivation et
ses compétences de motricité fine et d’écriture. Cette thèse décrit comment de nouvelles
caractéristiques numériques permettent d’implémenter des interventions de rééducation
de l’écriture, qui se basent sur une adaptation plus personnalisée aux caractéristiques de
l’enfant.

Mots-clefs: écriture, dysgraphie, robotique, tablettes électroniques, apprentis-
sage machine, troubles du spectre autistique, troubles neurodévelopmentaux, trouble
développemental de la coordination
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Résumé substanciel

Les algorithmes et la robotique permettent de décrire com-
ment nous apprenons l’écriture manuscrite, et comment
mieux aider les enfants avec des difficultés dans ce do-
maine

Dans le règne animal, le développement moteur est crucial. Pour Laborit, le mouvement
est notre seule manière d’interagir avec le monde. Selon Wolpert � Nous avons un cerveau
pour une raison, une seule et unique raison, pour produire des mouvements adaptés et
complexes. [. . . ] Le mouvement est la seule manière que [nous] avons d’affecter le
monde autour de nous. [. . . ]. [Notre] cerveau devient obsolète pour les organismes qui
n’ont plus besoin de bouger �. Le développement moteur est un processus complexe. Il
suit des étapes développementales bien précises et nécessite des expositions à des activités
environnementales, qui permettent des apprentissages pratiques, à la fois basiques (par
exemple manger, marcher) et culturels (par exemple écrire).

Certains enfants ont un développement moteur atypique. Dans l’introduction, nous
présentons les prérequis cliniques nécessaires pour comprendre comment les cliniciens di-
agnostiquent et traitent actuellement les enfants ayant un développement moteur atypique,
notamment dans le cas des difficultés d’écriture manuscrite. Nous nous focalisons sur
deux types de troubles neurodéveloppementaux : le Trouble du Spectre Autistique (TSA)
et le Trouble du Développement de la Coordination (TDC). Ces troubles sont fréquents
et handicapants avec des enjeux de santé publique importants. Depuis longtemps, les
pédopsychiatres, les ergothérapeutes et les psychomotriciens ont décrit de manière précise
ces difficultés chez les enfants avec TSA et TDC, et les approches pour les rééduquer.

Cependant, l’évaluation des difficultés motrices de ces enfants est difficile. Les
modèles diagnostics eux-mêmes sont complexes et limités. Cette évaluation est basée
sur des instruments cliniques standardisés semi-quantitatifs qui nécessitent la forma-
tion d’experts. Ils peuvent être subjectifs et ne peuvent pas être utilisés dans un milieu
écologique. Ces contraintes limitent la mise en place d’une rééducation la plus précoce
possible, la plus adaptée aux enfants qui en ont le plus besoin, et la bonne mesure des
progrès des enfants pour individualiser au maximum la prise en charge.

Quelles technologies de l’information et de la communication peuvent être utiles dans
le suivi des difficultés motrices développementales de ces enfants ? Que peut-on en at-
tendre et quelles en sont les limites ? Dans le second chapitre de cette thèse, nous avons
conduit une revue systématique analysant 53 articles, qui montrent comment les capteurs
électroniques peuvent mesurer et les algorithmes aider à classifier la variété des diffi-
cultés du mouvement chez les enfants avec TSA. Ces approches pourraient à terme être
plus rapides, précises, accessibles et reproductibles qu’une évaluation humaine experte.
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De nombreuses expériences ont été faites en laboratoire mais n’atteignent pas encore les
critères de qualité pour une diffusion clinique à large échelle. En effet, ces technolo-
gies sont encore récentes, émergentes, souvent peu intuitives ni utilisables en pratique
courante pour les cliniciens ou les parents. Parmi les progrès récents, des analyses vidéo
permettent le suivi de la posture avec de simples caméras. Cependant, des algorithmes
complexes et lents d’apprentissage profond basés sur des réseaux de neurones artificiels
sont nécessaires. Cet apprentissage profond est en pleine expansion en médecine mais il
nécessite de grosses bases de données annotées qui sont encore rares. La compréhension
et l’interprétabilité pour le spécialiste, et a fortiori, par un enseignant ou un clinicien sont
encore un défi.

Cependant, il est probable que dans le futur, ces méthodes permettront aux praticiens
de distinguer les difficultés motrices des TSA d’autres difficultés motrices (par exem-
ple celles des TDC). Cette approche pourrait permettre de suivre les progrès des enfants
dans des environnements plus écologiques (par exemple à l’école ou à la maison), ainsi
qu’une meilleure compréhension du rôle que jouent les spécificités sensorimotrices dans
le développement du TSA.

Les difficultés de développement moteur apparaissent de manière particulière à l’école
quand l’enfant apprend à écrire. En effet, l’écriture manuscrite est une des capacités
motrices les plus complexes à maı̂triser durant notre vie. Les enfants ont besoin de nom-
breuses années pour la maı̂triser. Peut-on utiliser des stylets et des tablettes électroniques
pour évaluer la qualité et la vitesse de l’écriture manuscrite ? Celles-ci en effet donnent
accès à des éléments factuels qui ne sont pas, ou très difficilement, étudiés actuellement
par les évaluations expertes (par exemple la dynamique temporelle de l’écriture ou la
pression exercée par le stylet). Comment mener l’analyse des données, de l’extraction de
ces caractéristiques numériques reflétant ces éléments factuels à la classification avec un
apprentissage machine, pour garder une procédure précise, mais aussi intelligible et aussi
interprétable que possible ? La transparence et la confiance en ces algorithmes seront, in
fine, aussi importantes que la précision de classification dans des contextes éducatifs et
cliniques.

Dans le troisième chapitre, nous montrons comment nous pouvons utiliser les
tablettes électroniques pour mesurer les difficultés d’écriture manuscrites (la dysgra-
phie) d’enfants, en extrayant des caractéristiques numériques. Nous avons analysé une
base de données d’échantillons d’écriture de 298 enfants collectées sur des tablettes Wa-
com®. L’extraction de ces caractéristiques de l’écriture a permis une classification au-
tomatique très précise de la dysgraphie grâce à un algorithme de forêt aléatoire. Cet
algorithme est bien plus simple à interpréter par le clinicien expert de l’écriture, et à
implémenter que des algorithmes d’apprentissage profond qui automatisent l’extraction
de caractéristiques numériques mais de manière peu compréhensible pour un humain.
Cette méthode utilisée sur des tablettes accessibles dans le commerce permet de classifier
les difficultés d’écriture de manière plus reproductible avec moins de données que le test
de référence actuel en France, le BHK.

Les caractéristiques et cet algorithme de forêt aléatoire peuvent encore être difficile à
bien maı̂triser. De plus, ces caractéristiques pourraient avoir un rôle différent pour clas-
sifier la dysgraphie au cours du développement. Quel est le rôle des caractéristiques les
plus importantes (selon notre classificateur) dans les domaines statiques, dynamiques,
d’inclinaison, de pression ? Est-ce qu’un simple modèle linéaire de ces caractéristiques
pourrait expliquer l’acquisition de l’écriture au cours de l’éducation ? Après l’annotation
des tracés d’écriture avec le test de référence (BHK), nous avons pu compléter l’analyse
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de cette base de données. Dans le 4ème chapitre de cette thèse, nous montrons com-
ment ces caractéristiques évoluent en fonction du développement chez des enfants avec
développement typique et chez des enfants avec dysgraphie. La dysgraphie est-elle un
concept homogène avec des manifestations motrices similaires ? Nous avons utilisé ces
mêmes caractéristiques pour réaliser une nouvelle classification de la dysgraphie. Nous
avons identifié trois différents sous-types révélés par un algorithme de K-moyennes. Des
études longitudinales, dans le futur, devraient permettre de faciliter des prises en charge
plus personnalisées en fonction des spécificités du sous-type et du développement de
l’enfant.

Est-ce que la robotique d’assistance peut être utilisée dans la réhabilitation de
l’écriture ? Quel est l’impact de l’incarnation physique du robot dans l’interaction com-
parée à un simple un avatar ou un soutien vocal ? Dans le 5ème chapitre, nous décrivons le
potentiel d’une approche basée sur un robot pour améliorer la motivation des participants.
Dans ce scénario, un robot lui-même dysgraphique a besoin de l’aide du participant pour
s’améliorer. L’enfant doit fournir des exemples au robot grâce à la tablette. Nous faisons
l’hypothèse que l’enfant, en essayant d’améliorer l’écriture du robot, améliore sa propre
écriture. Cette preuve de concept est utilisable dans une interaction à court terme avec des
enfants au développement typique. L’interaction à court terme semble meilleure avec des
participants qui interagissent avec un robot plutôt qu’avec l’avatar ou la voix seule. Est-ce
que ce système est utilisable dans un contexte clinique ? Quel serait le scénario clinique de
son usage ? Les caractéristiques d’écriture extraites par la tablette électronique ne sont pas
utilisées actuellement dans le contexte de la rééducation conventionnelle papier-crayon.

Nous avons enrichi cette preuve de concept et réalisé une étude longitudinale sur un
sujet, centré sur les besoins d’un utilisateur final potentiel. Celui-ci avait une dysgra-
phie et un TDC sévère dans le cadre d’un trouble du neurodéveloppement complexe.
Il avait suivi d’autres thérapies classiques qui avaient échouées. Cet enfant a pu en-
seigner l’écriture au robot via une tablette et réaliser des jeux sérieux avec des boucles
de rétrocontrôle en direct, basés sur certaines caractéristiques d’inclinaison, de pression,
de dynamique, de pauses. Cette étude (20 sessions hebdomadaires, 500 minutes au total)
a montré le potentiel de cette approche dans un contexte clinique. Cette méthode a per-
mis de diminuer les comportements d’évitement de l’enfant. Elle a permis d’améliorer
sa motivation et ses compétences en motricité fine et d’écriture. Cette étude de cas nous
a permis de définir un modèle de réhabilitation, de tester des stratégies de réhabilitation
sur tablette électronique, de proposer des caractéristiques d’écriture faciles à interpréter
pour surveiller les progrès de l’enfants ainsi qu’une méthode pour mesurer l‘évolution de
la posture pendant la réhabilitation. Ces caractéristiques numériques pourraient perme-
ttre d’implémenter des interventions de rééducation de l’écriture, qui se basent sur une
adaptation plus personnalisée aux spécificités de l’enfant.

Des études de cas préliminaires dans un contexte clinique ont permis d’affiner le rôle
du robot et ses comportement sociaux. Est-il possible d’implémenter ces comportements
avec une stratégie magicien d’Oz sur le robot ? Comment améliorer l’utilisabilité dans
un contexte clinique ? Nous présentons cette conceptualisation théorique, les stratégies
d’implémentation et leurs défis dans le chapitre 6. Ces comportements inspirés de la
psychologie cognitive, sociale et clinique devraient ainsi pouvoir être évalués dans le
futur lors d’une interaction enfant-robot contrôlée, à long terme.

En discussion, nous expliquons pourquoi bien maı̂triser l’écriture manuscrite reste im-
portant malgré le développement des claviers. Elle est primordiale pour l’apprentissage
des lettres et favorise la mémorisation. Nous allons présenter les enjeux de la
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généralisation et les aspects éthiques des études rapportées dans cette thèse. Cette thèse
entre dans le cadre collectif du champ de la E-santé mentale. Ces approches computa-
tionnelles ouvrent de nouvelles perspectives dans la compréhension des TSA qui pour-
raient être expliqués par une cascade développementale avec un mécanisme commun, qui
serait les difficultés sensorimotrices précoces, si fondamentales dans le développement de
l’enfant et de son cerveau. Nous concluons par des projets qui visent à résoudre les défis
techniques et méthodologiques que nous avons relevés pendant ce travail de thèse.

Un résumé à l’oral peut être trouvé à l’adresse https://youtu.be/eJOURvM-y-Q (à 1 h
23 min)
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“Les animaux eux, donc l’homme, qui est un animal, ne peuvent se maintenir en vie
qu’en consommant cette énergie solaire qui a donc été déjà transformée par les plantes.
Et ça exige de se déplacer. Ils sont forcés d’agir à l’intérieur d’un espace. [...] Pour se
déplacer dans un espace, il faut un système nerveux. Et ce système nerveux va agir, va
permettre d’agir sur l’environnement et dans l’environnement. Et toujours pour la même
raison, pour assurer la survie. [...]. Un cerveau, ça ne sert pas à penser, mais ça sert à
agir.”

Henri Laborit cité par Alain Resnais, Mon oncle d’Amérique, 1980

“

Cyrano.

Comme une bombe Je tombe de la lune !

De guiche, impatienté.

Ah çà ! Monsieur !

Cyrano, se relevant, d’une voix terrible.

J’en tombe !

De guiche, reculant.

Soit ! soit ! vous en tombez !. . . c’est peut-être un dément !

Cyrano, marchant sur lui.

Et je n’en tombe pas métaphoriquement !. . .

De guiche.

Mais. . .

Cyrano.

Il y a cent ans, ou bien une minute, — J’ignore tout à fait ce que dura ma chute ! —
J’étais dans cette boule à couleur de safran !”

Edmond Rostand, Cyrano de Bergerac, IIIème acte E. Fasquelle, 1926, première
édition, 1898.
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Pr Cohen, merci de m’avoir fait confiance pour mon master en sciences cognitives et
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m’a beaucoup fait réfléchir. Il a aussi été très motivant de voir que des projets compris
que par des doctorants en informatique, et initialement confinés dans des laboratoires,
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présentes pour faire face aux aléas techniques inévitables de cette travail. Tu as vraiment
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Merci aux petits débrouillards et aux CEMEA qui m’ont appris comment malgré tout
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de la pensée hors silos, et de la réfutation. Un beau projet rhizomatique. En espérant un
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tients que j’ai rencontré qui sèment tous les jours des petites graines en espérant qu’elles
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Résumé vi
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Chapter 1

Introduction

Electronic sensors and algorithms open new approaches to describe movement and espe-
cially handwriting. This could help to improve our understanding of how we learn hand-
writing. It would allow to develop new approaches for the rehabilitation of the children
with the most severe difficulties to master handwriting.

1.1 General objectives

The objectives of this thesis are (1) to describe the state of the art in computational meth-
ods for the assessment of motor impairments in Autism Spectrum Disorder (ASD), a
sub-type of neurodevelopmental disorder (NDD), (2) to develop new approaches to de-
tect children with handwriting difficulties (dysgraphia) based on the assessment of their
fine motor skills, and describe how children learn handwriting, with the help of electronic
tablets and algorithms, (3) to propose new approaches for handwriting rehabilitation with
electronic tablets and robotics that could be applied with children with dysgraphia found
in several NDD.

1.2 Organisation

Motor development is very important. For some authors, movement is our only way to in-
teract with the world (p. viii). According to Wolpert, “we have a brain for one reason and
one reason only, it is to produce adaptable and complex movements, [...] Movement is the
only way [we] have of affecting the world around [us] [...]. This brain becomes obsolete
in organisms that don’t need to move anymore”1. Motor development is a complex en-
deavour. It follows timely organized developmental steps and exposures to environmental
activities, allowing practical training, both basic (e.g., eating, walking) and cultural (e.g.,
writing).

Some children have an impaired motor development. In this introductory chapter, we
will present the clinical background necessary to understand how clinicians diagnose and
treat impaired motor development, especially handwriting difficulties, nowadays. We will
focus on two types of neurodevelopmental disorders (NDD), i.e., Autism Spectrum Dis-
order (ASD) and Developmental Coordination Disorders (DCD). Child and adolescent

1The real reason for brains https://www.ted.com/talks/daniel_wolpert_the_real_
reason_for_brains
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1.2. Organisation

psychiatry, occupational therapy and psychomotricity have extensively described the dif-
ficulties of development of children with ASD and DCD and ways to rehabilitate them.
However, assessments of these motor abilities are based on clinical semi-quantitative stan-
dardised instruments that are time-consuming, require the training of experts and can be
subjective.

How, and which technology, could be helpful to measure and monitor these motor
development difficulties? In the second chapter of this thesis, we conducted a systematic
review that shows how electronic sensors can measure and how algorithms can help to de-
scribe and classify the variety of these movement difficulties in children with ASD. A lot
of these experiments were done in laboratory settings and do not reach clinical research
standards yet. Indeed, these technologies are still recent, emerging, and often not user-
friendly for clinicians and parents. However, it is likely that these methods, in the future,
will enable practitioners to distinguish motor difficulties in ASD from other motors dis-
orders (e.g., DCD). This approach would allow a better monitoring of children’s progress
in more ecological settings (e.g., at home or in school), and a better understanding of the
role that sensorimotor specificities could play in the development of ASD.

Motor development difficulties specifically appear during school when the children
need to learn handwriting. Actually, handwriting is one of the most difficult set of move-
ments that we need to learn in our lifetime. Children need many years to master it. Can
we use electronic tablets to assess the quality and speed of handwriting? How to drive the
data analysis to keep an intelligible pipeline with accurate, but also, as interpretable as
possible, feature extraction and machine learning classification? Transparency and trust-
worthiness could be, at the end, as important as accuracy, in educational and clinical con-
texts. In the third chapter of this thesis, we will show, how we can use electronic tablets
to measure handwriting difficulties (i.e., dysgraphia) of children by extracting computa-
tional features. We analyzed a database of 298 children handwriting samples collected on
Wacom® tablets. These features allowed to classify dysgraphia automatically thanks to a
random forest algorithm with a good accuracy.

These features and random forest algorithm could be still complex to master. Further-
more, they should have a different role to classify dysgraphia through child development.
What are the role of theses most important features (according to our classifier) in kine-
matic, tilt, pressure and geometric categories? Can a simple linear model could explain
the handwriting acquisition throughout education with these features? After the annota-
tion with the reference test (the BHK) and some data cleaning, we could complete the
analysis of our databases. In the fourth chapter, of this thesis, we will see how these fea-
tures develop in both typically developing (TD) children and children with dysgraphia.
Is dysgraphia an homogeneous concept with similar motor presentations? We used these
same features to perform a new classification of dysgraphia with three different subtypes
found revealed by a K-means algorithm.

Could social assistive robotics be used to guide rehabilitation of writing? What it
the impact of the robot embodiment on the interaction compared with a simple vocal
guidance or avatar? In the fifth chapter, we will describe the potential of a robot-based
approach that can foster the motivation of the participants. Is this system usable in a
clinical context? What would be the clinical scenario of its usage? We performed a long-
term interaction single case, user-centered, study that shows the potential of this approach
in clinical practice. It allowed to refine the rehabilitation model, to test rehabilitation
strategies on electronic tablet, to propose easily interpretable features to track progress
and a method measure posture progression during writing rehabilitation.

2



Chapter 1. Introduction

Preliminary case studies in the clinical field allowed to refine the role of the robot
and its social behaviours. Is it possible to implement such behaviours in a wizard of oz
approach on the robot? How to improve usability in a clinical context? We will present
this theoretical framework, these implementation strategies, and challenges in the sixth
chapter.

In the discussion, we will explain why mastering handwriting is still important despite
the development of keyboards. We will present the generalisability and ethical aspects of
the studies reported in this thesis. This research is part of a collective effort to develop
an E-mental health field. These computational approaches open new perspectives in the
understanding of ASD. We will conclude by follow-up projects of this work that would
enable to address technical and methodological limitations that we encountered during
this work.

1.3 Neurodevelopmental Disorders
Neurodevelopemental disorders (NDD) are a group of impairing conditions with onset
during the developmental period (i.e., during childhood). They manifest early in the
life of children, often before children enter grade school [8]. Their diagnosis is clini-
cal, supported by standardized scales. The Diagnostic and Statistical Manual of Mental
Disorders-5 (DSM-5) [8] and the International Classification of Diseases (ICD)2 of the
World Health Organization propose consensual definitions based on observable clinical
description aiming to foster research and communication in medical community and to
facilitate medical decisions. The neurodevelomental disorders are characterized by de-
velopmental deficits that produces impairments of personal, social, academic, or occupa-
tional functioning. The range of difficulties varies widely from very specific limitation
in learning or control of executive function [8] to global impairments of social skills and
intelligence. Comorbidities (i.e., association of disorders) are frequent, and make the
heterogeneity of description even larger.

In practice, NDD regroup intellectual disabilities, communication disorders, ASD,
attention-deficit/hyperactivity disorder, specific learning disorder (e.g., for reading, math-
ematics), motor disorders (Developmental Coordination Disorder, Stereotypic Movement
Disorder and Tic Disorders) and other neurodevelopmental disorders [8]. A recent sys-
tematic review showed that despise the lack of medico-economic studies in the field of
NDD, the cost of NDD per subject is the highest especially for the most severe forms
(with schizophrenia) among all the mental disorders [87].
In this thesis, we will describe the difficulties children have to learn movements and will
specifically focus on the handwriting. These difficulties are often found in Autism Spec-
trum Disorder (ASD) and Developmental Coordination Disorder (DCD).

1.3.1 Autism Spectrum Disorder
Autism Spectrum Disorder (ASD) is among the most disabling and studied neurodevel-
opmental disorders (NDD) in children [47]. It is characterized by impairments in social
interaction, communication (loneliness) and restricted and repetitive behaviours (same-
ness) [8]. The disorder is frequent with a prevalence estimated around 1.5% [251]. Al-
though the onset of ASD symptoms occurs during the first three years of life, the mean age

2https://icd.who.int/en
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1.3. Neurodevelopmental Disorders

of ASD diagnosis ranges from 38 to 120 months [98,327,346]. An early diagnosis allows
to offer an early intervention, which takes advantage of a better neuroplasticity [102,270].

Males are affected 4.2 times more frequently than females [137]. Causes are not com-
pletely elucidated and include both genetic (e.g. chromosome 16p11.2, 1q21.1, 15q11-
q13, 22q13.3, or 22q11.21 deletion/duplication) and environmental factors (e.g. foetal
valproate exposure) [380]. ASD is a lifetime disorder and its burden, for patients and
their families, continues in adulthood as only a minority of them reach a good outcome
and many remain highly dependent on others for support [187]. The cost of ASD for
family and society has been estimated between 22,000 - 28,000e annualy [186, 226].
The management of ASD consists of early psychotherapeutic treatments based on de-
velopmental and behavioural approaches like the Early Start Denver Model [103] or the
Thérapie d’Echange et de Développement [3, 237, 240]. However, these approaches are
very time-consuming and a lot of children do not have access to evidence-based care.

Movement abnormalities have been observed since the first clinical descriptions of
autism by Kanner [216] and Asperger [19] who described patients with ”sluggish” reflexes
or ”clumsy” gait. Meta-analyses have confirmed alterations in motor performances [118,
139] in 85% to 90% of cases [246, 284]. Motor difficulties are significantly correlated to
social, communicative and behavioural impairments that define the disorder [121]. Cook
et al. argued that movement differences between typical children and those with ASD
may contribute to difficulties in reciprocal social cognition [91].

However, motor difficulties do not reach a great attention since repetitive behaviours
are the only motor symptomatology included in the current diagnostic criteria of the in-
ternational classification criteria, namely DSM-5 [8] and the ICD 3.

1.3.2 Developmental Coordination Disorder
Developmental coordination disorder (DCD, previously named dyspraxia) is a neurode-
velopmental disorder that impairs the acquisition and the execution of coordinated motor
skills [8] and perceptual-motor abilities with an impact in daily living in the absence of
any physical, sensory or neurological abnormalities. It has a prevalence of 5% in the
population [245]. DCD is commonly diagnosed after the age of 5 years highlighted by
increasing structured demands of the child’s environment [42]. About half of the chil-
dren with DCD experience difficulties to learn handwriting [172]. Males are affected 2 to
3 times more frequently than females [245]. The symptoms of children diagnosed with
DCD persist in adulthood in 30-87% of them [225].

The care of DCD can be divided into two main categories [42]. The bottom-up cate-
gory with process-oriented (or deficit-oriented) approaches. It assumes that a deficit in a
specific body function or sensory process is responsible for the impaired motor skills of
children. Its aim is to remediate this underlying process deficit, thereby improving motor
performance. The top-down category contains task-oriented (functional skill) approaches,
such as the Cognitive Orientation to daily occupational Performance (CO-OP) [281]. In-
stead of focusing on an underlying deficit, these approaches involve the children by allow-
ing them to choose and train on the activities of daily life they need to master. Children
are encouraged to think about the nature of the difficulties they encounter and how to find
solutions to solve these difficulties and plan them [29, 42]. Systematic analyses showed
that top-down, task oriented approaches seem the most effective whereas the bottom-up
strategies, process oriented are not, despite their popularity [29, 321]. However, this data

3https://icd.who.int/en
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is still limited [283] and should be completed with the most impaired patients that are
often not included in these studies. The cost and length of the diagnosis and rehabilitation
make this evaluation difficult and a more scalable diagnosis and rehabilitation of these
difficulties with new technologies would allow to confirm or not this statement.

1.4 A dimensional approach of Neurodevelopmental Dis-
orders

There is a strong relationship between all the NDD. They are very often associated (we
call these co-occuring disorders, comorbidities in the classical DSM-5 and ICD categor-
ical approach). In total, sixty combinations of NDD would be possible. Some authors
believe that a common core could be shared by all these disorders [47]. Some clinicians
propose a multidimensional approach to overcome the limitations of the categorical ap-
proach and comorbidities: Multiplex developmental disorder (MDD), later renamed Mul-
tiple Complex Developmental Disorder (MCDD), Multidimensional impairment (MDI),
deficits in attention, motor control, and perception (DAMP), or even Early Symptomatic
Syndromes Eliciting Neurodevelopmental Clinical Examination (ESSENCE), develop-
mental dysharmony, developmental psychotic dysharmony, or cognitive dysharmony (see
Figure 1.1 [416] for a review).

The figure1.1 shows the overlap of the different dimensions of the NDD and sugges-
tions to propose a new terminology to have more homogenous categorical diagnosis that
could be useful for clinical practice and research. We do not support this idea because (1)
the proposed categories are not recognized by an international consensus, (2) the number
of comorbidities can be very high and the size of each group can be limited. A proposition
to bypass the categorical approach is proposed with the RDoc approach.

Researchers from adult psychiatry in the National Institute of Mental Health in United
States proposed another approach to bypass the limitations of the categorical DSM-ICD
approach: the Research DOmain Criteria (RDoC) (Figure 1.24). The dimensional ap-
proach assumes the existence of a continuum between mental health and disorders. This
dimensional approach is also relevant in child and adolescent psychiatry, especially in
neurodevelopmental disorders [147], with a specific perspective, which takes into ac-
count the developmental age [77, 282]. This approach (1) assesses the range of func-
tioning regarding the neurobiological, cognitive and behavioural capacities, representing
them along continua of greater or lesser degrees of health or adaptation, (2) investigates
mental disorders through fundamental components of behaviours that cut accross diag-
noses. [147]

In this fundamental diagnostic approach, tailored for research, it is legitimate to un-
derstand motor development, (1) which quality seems to distribute in a continuum of
functioning between normal writing and very poor quality and speed and (2) it can be
found across categorical diagnoses in several NDD disorders like ASD, DCD, but also
Attention-Deficit/Hyperactivity Disorder (ADHD).

In the studies of handwriting (Chapters 3, 4 and 5) presented in this thesis, we will
study ”Sensorimotor Systems”, in particular ”Motor Actions” on a behavior and self-
reported level across different categorical diagnoses.

4retrieved from https://www.nimh.nih.gov/research/research-funded-by-nimh/
rdoc/about-rdoc.shtml
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1.4. A dimensional approach of Neurodevelopmental Disorders

Figure 1.1: Phenomenology and developmental lines in DSM-5 autism spectrum dis-
order and other complex developmental disorders. ASD, DSM-5 autism spectrum
disorder; ESSENCE, early symptomatic syndromes eliciting neurodevelopmental clinical
examinations; DAMP, deficit in attention, motor control, and perception; MCDD, mul-
ticomplex developmental disorder; S(P)CD, DSM-5 social (pragmatic) communication
disorder (Retrieved from Xavier et al., 2020)

.

Figure 1.2: Matrix of the Research Domain Criteria (RDoC)
.
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1.5 Motor difficulties in Neurodevelopmental Disorders
Symptoms of Developmental Coordination Disorder (DCD) can be found in ASD [139].
How ASD and DCD interact is still controversial. Regarding motor dysfunction, the
DSM-5 now recommends to diagnose them as comorbidities [8]. Some authors support
that these two disorders could have similar onset mechanism [161, 284]. Others consider
the motor dysfunction found in DCD and ASD to be different in nature [310, 417]. In
a systematic review, Cacola et al. [66] showed that while DCD and ASD share some
behavioural symptoms, distinctions have been shown in terms of gestural performance,
severity of motor challenges and grip selection. Finally, motor disturbances appear to be
among the first manifestations of developmental abnormalities in ASD and could serve as
markers of the condition in the first years of life before other core symptoms (i.e., social
communication, restricted interests) [168, 303].

Clinical assessment of motor coordination is based on semi-quantitative standardized
instruments such as the Movement Assessment Battery for Children (MABC-2) [182], the
NP-MOT [392], the Test of Gross Motor Development (TGMD-2) [370], the Bruininks-
Oseretsky Test of Motor Proficiency (BOT-2) [75], or the Concise Evaluation Scale for
Children’s Handwriting (BHK) [82] usually done to assess writing. Parental question-
naires are also available such as the DCDDaily-Q [213, 393] or the Dunn question-
naire [120]. For a review of tests to assess DCD, see [6]. However, recommendations
for a set of standardized and fixed assessments are difficult since the autism spectrum
is large and heterogeneous both in terms of child’s commitment with examination and
motor dysfunction. Therefore, assessments often require a subjective input from trained
professionals, beyond the limitations of being time consuming and tedious to rate. The
evaluation sessions regroup several assessments in a row that can be tiring for the child.
It does not allow ecological evaluation of the performance in an everyday context. Thus,
accessibility of these tests is low and waiting list of 6 months and more is common even
in developed countries [178].

1.6 Handwriting difficulties

1.6.1 Importance of handwriting
Handwriting is an essential skill, since children spend up to 60% of their time at school
writing [271]. Despite a broad use of laptops and tablets in schools, handwriting remains
a paramount skill to be acquired during childhood education as it is the basis of core
educational activities such as taking notes, composition and self-expression [37, 54, 160].
Appropriately legible and automated handwriting is necessary for the acquisition of other
higher-order skills such as spelling and story composition. Handwriting is a complex
perceptual–motor task, as it involves attention, perceptual, linguistic and fine motor skills
[55, 132, 269].

1.6.2 Developmental approach of handwriting
Formal handwriting acquisition begins at the age of five years (preschool) and re-
quires about ten years of practice to reach a level of almost complete automation
[44, 83, 106, 132, 342, 352, 401, 422]. During this time, handwriting initially evolves on a
quality level (from first to fifth-Grade) [2,82,173] and then on a speed level (handwriting

7



1.6. Handwriting difficulties

speed mainly evolves starting from the fourth grade) [254, 352]. Interestingly, a gender
effect has been observed in handwriting acquisition, with girls presenting slightly higher
quality and speed scores versus their male peers [82], however no effect of handedness
has been reported thus far.

1.6.3 Dysgraphia
Despite education exposure, 5% to 10% of children never reach a sufficient level of au-
tomation in handwriting [82, 367]. These handwriting difficulties, termed dysgraphia,
affect legibility and/or speed and can seriously impact both children’s behavioural and
academical development [37].

With the rising cognitive demand of school work, these children quickly face more
general difficulties. As they encounter trouble to automatize their handwriting, they can-
not handle simultaneous tasks such as grammar, spelling, or composition. This leads to an
increase of fatigue and decrease of cognitive performance and self-esteem [234, 348]. To
avoid accumulation of school difficulties, it is of prime importance to detect and remediate
these handwriting difficulties as early as possible [86, 132].

1.6.4 Associated difficulties
Given the prerequisites of handwriting acquisition, dysgraphia can be related to language
problems, motor learning and/or motor execution, visual-motor problems, coordination
problems, or cognitive impairments (e.g., attention deficit). In consequence, dysgraphia
can be observed in the context of various NDD such as dyslexia, developmental coordina-
tion disorders, or ADHD [99]. Dysgraphia is not recognised by international classification
of mental disorders, the DSM-5 [8] or the ICD-115 as a disorder per se, but can be a spec-
ifier of neurodevelopmental disorders. Most classifications of dysgraphia suggest three
sub-groups and are usually based on comorbidities. For example, Deuel (Table 1.1 [113])
proposed to differentiate: (1) dyslexic dysgraphia that is often comorbid with ADHD or
dyslexia; (2) spatial dysgraphia that is the consequence of a defect in the understanding of
space; and (3) motor dysgraphia that is often comorbid with a DSM-5 motor acquisition
disorder.

Beyond motor difficulties, dysgraphia is often associated with emotional difficulties.
The difficulties in handwriting could self-perpetuate due to avoidance and anxiety. We
propose a model composed of two vicious loops (Figure 1.3). The one on the left is self-
amplified by an avoidance of the writing stimulus via a negative reinforcement mechanism
[366]. The avoidance, in the short-term, decreases anxiety but in the long term increases
the anxiety and decreases self-esteem. The second vicious loop, shown on the right, is
the consequence of the lack of training. The lack of training, itself decreases the writing
training opportunities, which themselves, limit the improvement of writing. In the end,
the anxiety generated by the practice and the lack of practice induce a mismatch between
what the child can do and what parents and teachers expect from him/her.

1.6.5 Assessment of handwriting difficulties
Assessing the legibility or readability of handwriting is not a new challenge, as studies
relating to this topic exist since the beginning of the twentieth century. The first scaling

5https://icd.who.int/en
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Bad Writing

Avoidance 
of Writing

"I should be better than that", 

"I am not as good as my friends", 

"They think I do it on purpose" 

Anxiety Learning 

Cognitive LoadSelf-Esteem

Progressive Desensitisation Intensive Automatisation

Self-Esteem Opportunities

Figure 1.3: Functional analysis of writing difficulties maintenance. Vicious circles
can appear due to anxiety (left) and lack of practice (right), that can worsen handwrit-
ing. Adapted from [79, 93]. A recent empirical network approach is trying to better
conceptualize how differents psychological and biological factors are deeply intertwined
in feedback loops [49, 50]. Below, possible strategies to break the vicious circles.

Dyslexic dysgraphia

Spontaneously written text is poorly legible, with
textual complexity influencing legibility
Oral spelling severely abnormal
Copying of written text relatively preserved
Drawing relatively preserved
Finger-tapping speed normal

Dysgraphia due to motor
clumsiness

Spontaneously written text is poorly legible
Oral spelling relatively preserved
Copying of written text poorly legible
Drawing usually compromised
Finger-tapping speed abnormal

Dysgraphia due to defect in
understanding of space

Spontaneously written text is poorly legible
Oral spelling relatively preserved
Copying of written text poorly legible
Drawing severely abnormal
Finger-tapping speed normal

Table 1.1: Clinical classification of dysgraphia proposed by Deuel [113]
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method was developed by Thorndike in 1910 [379].
This constituted a very important contribution “not only to the experimental pedagogy

but to the entire movement for the scientific study of education”. Thorndike compared his
invention to the thermometer. “Just as it was impossible to measure temperature beyond
the very hot, hot, warm, cool, etc., of subjective opinion, so it had been impossible to
estimate the quality of handwriting except by such vague standards as one’s personal
opinion that given samples were very bad, bad, very good, etc.” [24]. Until now, two
approaches are used to evaluate handwriting. The first is a global holistic method that
evaluates the handwriting quality as a whole, while the second measures it according to
several predefined criteria.

Many quantitative tests were proposed to evaluate calligraphy. Most quantitative
methods assess handwriting according to several predefined specific criteria. The judg-
ment is made by experts grading these criteria and summing the sub-scores. A number of
tests using this principle have been developed for different alphabets.

The presence of dysgraphia can be assessed via different tests in different alphabets
[21] (Table 1.2). Concerning the Latin alphabet, we can use the Detailed Assessment
of Speed of Handwriting (DASH) [30]; the Ajuriaguerra scale (E scale) [106]; and the
Concise Evaluation Scale for Children’s Handwriting (BHK) which is the gold-standard
test in France for diagnosing dysgraphia. Initially developed in the Netherlands [173],
the BHK has since been adapted for use in other languages including French (Charles et
al [82]). Importantly, as all of these tests are conducted using a pen/pencil and paper, their
scoring is restricted to the analysis of the final, static handwriting product and does not
consider or include any information about the movement dynamics.

These tests are heterogeneous as they were specifically designed to assess the hand-
writing quality for a specific alphabet or a specific age range. Moreover, we can see that
these tests are based on handwriting from different writing tasks (Table 1.2), which might
imply high variability of the results. Finally, an important part of the information is not
taken into account. Only the final product of handwriting is used for analysis, disregarding
the handwriting dynamic, tilt, and, in most cases, the pressure. One of the main drawbacks
of these tests is that the scoring of several parameters relies on human judgment which
makes the test more subjective. Moreover, grading of the BHK test is also time consum-
ing since scoring can take up to 15 minutes. Additionally, as the expert responsible for
the scoring only has access to the final static image of the child’s handwriting, some very
informative handwriting aspects, such as the handwriting dynamics, the pressure between
the pen and the tablet or the pen tilt remains hidden and are, therefore, not used in the
diagnosis. In the same way, posture and grasping style are difficult to assess and must
be done live by an expert evaluator. Finally, the text used in the test is standardised (the
content of the text is always the same). Consequently the test cannot be performed during
ecological writings sessions (e.g., during schools sessions with the text actually written
everyday by the child).
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Validation Age range Test Scoring Alphabet Language Number Dynamic of Pressure Tilt Speed Posture Writing
number [y.o.] duration [min] duration [min] of items handwriting task

Ajuriaguerra [172] 350 6-12 2 5 Latin French 37 7 3* 7 3 3 WT1
BHK [173] 837 6-12 5 10 Latin Multi-language 13 7 7 7 3 7 WT2
BHK-teenager [302] 471 12-18 5 10 Latin Multi-language 9 7 7 7 3 7 WT2
DASH [30] 546 9-16 20 10 Latin English 5 7 7 7 3 7 WT3
HHE [128] 230 6-18 5 0 Hebrew Hebrew 10 7 7 7 7 7 WT4

Table 1.2: Resume of different tests used to diagnose dysgraphia. WT1: Copy a sentence several times, request of quality and speed, WT2: Copy a long text for 5 min, WT3: Copy a sentence several times,
alphabet, geometric figures and composition, WT4: Copy a text containing all letters. *some pressure aspects of handwriting are assessed thanks to carbon paper.
Ajuriaguerra scale (E scale): is a well spread test evaluating the quality of the writing depending on speed and precision. It had a special focus on the posture and style of pen grasping of the child.
Concise Evaluation Scale for Children’s Handwriting (BHK): is the gold standard test to diagnose dysgraphia in Latin alphabet based language [172, 219, 302].
BHK for teenagers: has also been created using the same principles.
Detailed Assessment of Speed of Handwriting (DASH test): evaluates the quality and the speed of the writing in different conditions (quality, speed, writing with a free topic of the child choice).
Hebrew Handwriting Evaluation (HHE): that examines Hebrew handwriting products and assess the legibility through both global and analytic measures.
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Re-assessment of writing with the same tool could cause over-learning (the perfor-
mance during the test is improved because the child become trained to perform always
the same task, such as writing this same words) but could not generalize to other texts for
instance.

The rapid development of digital tablets in the last decade partially allowed us to tackle
some of these problems. It made possible the evaluation not only of the final product
of handwriting (static image) but also of its dynamic. New features become accessible
including the pressure between the pen and the tablet’s surface as well as the pen’s tilt.
Recent studies point that pressure features are useful in the diagnosis of dysgraphia [339].

These tests measure the motor aspect of dysgraphia but other aspects such as emotions
and associated difficulties need to be taken into account.

1.6.6 Rehabilitation of dysgraphia

Concerning rehabilitation, recent reviews and some professionals recommend simple
graphomotor exercises focusing on the primitives of writing (loops, bridges, etc.) to
tackle progressively the avoidance which is frequent in these children. Then, they propose
exercises of increasing complexity, depending on the child performance and motivation
eventually leading to training in writing [42].

Meta-analyses showed that rehabilitation of writing is efficient. However, it requires to
take time (> 1 month) and needs to include handwriting practice, (and not only relaxation
or sensory-based training) [188].

Taking into account our model (Figure 1.3), we can predict a trade-off between (1) an
intensive approach, the most efficient approach at the end to improve handwriting at the
end, but that could induce avoidance/anxiety behaviours, when the writing in itself is too
difficult, and (2) a progressive approach with simpler exercises that could foster motiva-
tion and self-esteem but without a strong evidence of efficacy on their own to improve
directly handwriting.

1.6.7 Compensation of dysgraphia

The approach of disability is very important in this situation since the handwriting it-
self is not compulsory in our life and can be bypassed without too many consequences.
According the World Health Organization, the disability is the conjunction of the envi-
ronment with the person (Figure 1.4 [413]). Some adaptations in the environment can
help to limit the difficulties expressed by the child. Thus, it is possible to decrease the
handwriting requests of children with handwriting difficulties, educating the parents and
teachers about the difficulties [190]6, by providing them printed copy of the class mate-
rial, favor oral evaluation, train the use of laptops for the oldest children, use of specific
softwares7. These adaptations allow to decrease the disability especially in the case when
rehabilitation is not efficient or possible. In practice, both strategies can be proposed in
parallel during the care of children with dysgraphia depending on the evolution of the
child’s symptoms. These strategies are not mutually exclusive in their approach since, a

6https://www.cartablefantastique.fr/la-dyspraxie/
quest-ce-que-la-dyspraxie/

7https://www.cartablefantastique.fr/outils-pour-compenser/
comment-compenser/
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Figure 1.4: Model of disability used by the International Classification of Functioning of
the World Health Organization

remediation strategy would be to help the children to identify their cognitive and motor
strengths and rely on them, to compensate their other difficulties impairing handwriting.

We showed that beyond handwriting difficulties, motor difficulties are frequent and
impairing in NDD. How, and which technology, could be helpful to measure and monitor
these motor development difficulties? To improve the access and the precision of the
evaluation of motor learning skills, we propose to use electronic sensors and algorithms.
In the next chapter, we present a systematic review of the assessment of motor disorders
with such technologies, focusing on the example of ASD.
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Chapter 2

Innovative assessment of motor
disorders

The.: “But, what is semiology?”
Tho.: “It’s feature extraction.”
The.: “Ah, ok!”

Laboratory discussion, CHILI laboratory, EPFL, Lausanne, May, 2019

“While decisions made according to Bayes’ theorem are the academic normative stan-
dard, the theorem is rarely used explicitly in clinical practice. Yet the principles can be
followed without intimidating mathematics.”

Medow, M. A., & Lucey, C. R. (2011). A qualitative approach to Bayes’ theorem.
BMJ Evidence-Based Medicine, 16(6), 163-167.

This chapter is under review in Cognitive Computation journal, under the title Gargot,
T., Archambault, D., Chetouani, M., Cohen, D., Johal , W. Anzalone S. M., “Automatic
assessment of motor impairments in autism spectrum disorders: a systematic review”,.
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Abstract

Introduction
Autism spectrum disorder (ASD) is mainly described as a disorder of communication

and socialisation. However, motor abnormalities are also common in ASD. New tech-
nologies may offer quantitative and automatic metrics to measure movement difficulties.

Objectives
We sought to identify computational methods to automatize the assessment of motor

impairments in ASD.
Methods
We systematically searched for the terms ’autism’, ’movement’, ’automatic’, ’com-

putational’, and ’engineering’ in IEEE (Institute of Electrical and Electronics Engineers),
Medline and Scopus databases and reviewed the literature from inception to 2018. We
included all articles discussing: (1) automatic assessment/new technologies, (2) motor
behaviors, and (3) children with ASD. We excluded studies that included patient’s or par-
ent’s reported outcomes as online questionnaires, that focused on computational models
of movement, but also eye tracking, facial emotion or sleep.

Results
In total, we found 53 relevant articles that explored static and kinetic equilibrium,

like posture, walking, fine motor skills, motor synchrony and movements during social
interaction that can be impaired in individuals with autism. Several devices were used to
capture relevant motor information such as cameras, 3D cameras, motion capture systems,
accelerometers. Interestingly, since 2012, the number of studies increased dramatically
as technologies became less invasive, more precise, and more affordable. Open-Source
softwares have enabled the extraction of relevant data. In a few cases, these technologies
have been implemented in serious games, like “Pictogram Room”, to measure the motor
status and the progress of children with ASD.

Conclusion and implications of key findings
Movement computing opens new perspectives for patient assessment in ASD research,

enabling precise characterizations in experimental and at-home settings, and a better un-
derstanding of the role of sensorimotor disturbances in the development of social cog-
nition and ASD. These methods would likely enable researchers and clinicians to better
distinguish ASD from other motors disorders while facilitating an improved monitoring
of children’s progress in more ecological settings (i.e. at home or school).

2.1 Introduction

Symptoms of developmental coordination disorder (DCD) can be found in ASD [139].
How ASD and DCD interact with one another is still controversial. On the subject of mo-
tor dysfunction, the DSM-5 now recommends diagnosing ASD and DCD as comorbidi-
ties [8]. Some authors support the existence of different disorders that could be caused by
the same mechanisms [161, 284]. Others consider the motor dysfunctions found in DCD
and ASD to be different in nature from one another [310, 417]. In a systematic review,
Cacola et al. [66] showed that, while DCD and ASD share some behavioural symptoms,
distinctions exist in terms of gestural performance, severity of motor challenges, and grip
selection. Finally, motor disturbances appear to be among the first manifestations of de-
velopmental abnormalities in ASD and could serve as markers of the condition in the first
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years of life before other core symptoms (i.e., social communication, restricted interests)
are visible [168, 303].

The clinical assessment of motor coordination in ASD is based on semi-quantitative
standardised instruments such as the Movement Assessment Battery for Children
(MABC-2) [182]; the NP-MOT (Neuro-Psychomotrian evaluation of the child) [392];
the Test of Gross Motor Development (TGMD-2) [370]; the Bruininks-Oseretsky Test of
Motor Proficiency (BOT-2) [75]; or more specifically the Concise Evaluation Scale for
Children’s Handwriting (BHK) [82], which are usually performed to assess writing skills.

Parental questionnaires are also available, including the DCDDaily-Q [213, 393] and
the Dunn questionnaire [120]. For a review about tests to assess DCD, see Albaret et al.
[6]. However, it is difficult to recommend a set of standardised and fixed assessments since
the autism spectrum is large and heterogeneous in terms of a child’s commitment to an
examination and the intensity of motor dysfunction. Therefore, assessments often require
a subjective input from trained professionals, are time-consuming and can be tedious to
rate. The evaluation sessions typically group several assessments in a row. To complete
this evaluation can be tiring for the children. In addition, such assessments do not allow
ecological (in situ), day-to-day context evaluations. Therefore, these tests have a low
access and waiting lists of six or more months are frequent, even in richest countries [178].

Computational technologies offer the opportunity to overcome these obstacles, en-
abling new ways for characterizing children’s behaviour in more natural contexts. This
challenge has been faced by Neuro-Developmental Engineering (NDE) with the goal of
providing “new methods and tools for: (1) understanding neuro-biological mechanisms of
human brain development; (2) [performing] quantitative analysis and modeling of human
behavior during neurodevelopment; [and] (3) assessing neuro-developmental milestones
achieved by humans from birth onwards” [70, 71]. Applications are numerous and in-
clude robotics [53, 210, 222, 356], computer games [164], diagnosis [28, 178, 222] and
behaviour imaging [?, 12, 381]. Machine learning, deep learning [259, 419] in particu-
lar, is more and more used in medicine [259, 388] and psychiatry in particular [229], for
instance to analyse brain imaging data in neurological and psychiatric disorders [296].
Recent reviews and articles showed the usefulness of such tools in child and adolescent
psychiatry: in the detection of motor anomalies in Attention Deficit and Hyperactivity
Disorder (ADHD) [289]; in the assessment of social behaviors in ASD with contact-less
and irritation-free sensors [230]; in the analysis of data from questionnaires and inter-
views [360]. These tools open new, fascinating approaches as described in [341], where
photos taken by children with ASD are studied, revealing the world of autism from a first-
person perspective. Machine learning was also used in neurological disorders, [280] such
as dementia [196] or Parkinson, [129] as a characterization tool, but also for the develop-
ment of new treatments, such as the ones based on brain-computer interfaces [260]. Yet,
a review focusing on the assessment of motor difficulties in children with autism is still
missing.

Here, we present a systematic review of the automatic assessment of movement disor-
ders in children with ASD using new technologies. After briefly describing the different
motor impairments found in ASD, we review NDE attempts to automatize motor dys-
function assessments. Given the variety of motor domains, we propose to distinguish the
areas of (1) equilibrium; (2) motor coordination; and (3) motor synchrony and movements
during social interaction.
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2.2 Methods
We systematically searched the Institute of Electrical and Electronics Engineers (IEEE)1,
Medline2 and Scopus3 databases from inception to October 2018 with the following items:
’autism’ AND ’movement’ AND (’automatic’ OR ’computational’ OR ’engineering’). The
search was limited to articles written in English. We screened all the identified reports,
studies and reviews by reading the titles and abstracts.

2.2.1 Inclusion and exclusion procedure
Eligible studies included those that discussed the following topics: (1) automatic assess-
ment/new technologies, (2) motor behaviours, and (3) children with ASD. We excluded
studies that involved direct cognitive function assessment, patient- or parent-reported out-
comes. We excluded studies with computational models of movement like Idei et al,
2017 [193]. We also excluded eye-tracking studies (see Papagiannopoulou [307] for a
systematic review), emotion expression studies focusing in facial action units in labora-
tory settings (see El Kaliouby et al [127] for a review), driving assessment studies (see
Wilson et al. [408] for a review) and sleep assessments studies (see Moore et al. [286] for
a review) since these points were tackled by reviews cited above. We excluded studies
that included only adults, to limit the variability of the studies.

2.2.2 Data selection
From the relevant articles, we extracted the following information: type of movement
evaluated; level of evidence, according to the “Rational Clinical Examination Levels of
Evidence” table [364]; study design, in terms of the number of subjects included and the
existence of a control group; automatic system used to identify ASD peculiarities (e.g.,
camera, tablets); sampling frequency; type of setting (i.e., experimental laboratory vs.
ecological setting); socio-demographics of the participants (age and sex); clinical assess-
ment; statistical/machine learning method used to explore the data; and the main results
of the study. When subgroups of children with ASD were identified (autism, Asperger’s
syndrome and pervasive developmental disorder-not otherwise specified), the sample size
was pooled under the generic term ASD according to the DSM-5 [8]. The report was
complied according to the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines [285].

2.3 Results
In total, we identified 53 relevant articles dealing with new technologies, motor be-
haviours and including children with ASD. Figure 2.1 details the process and output for
studies selection and inclusion. The included studies were quite heterogeneous as most
movements can be impaired in ASD including equilibrium (such as posture, gait), mo-
tor coordination, and motor synchrony and movements in interaction. Also, they relied
on several devices to capture relevant motor information such as cameras, 3D cameras,
motion capture systems, accelerometers within watches or smartphones. Interestingly,

1https://ieeexplore.ieee.org/Xplore/home.jsp
2https://pubmed.ncbi.nlm.nih.gov/
3https://www.scopus.com/
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since 2012, the number of studies increased dramatically as technologies have become
less invasive, more precise and more affordable (Figure 2.2). In the following sections,
we summarize the main results of the present review. We opted to briefly detail each ASD
motor domain even when no NDE study was found in said domain to indicate further
areas of research that may be appropriate to explore.

Figure 2.1: Flowchart of studies inclusion

Figure 2.2: Number of publications found in PubMed (Medline) according to the
search terms
’autism’ AND ’movement’ AND (’automatic’ OR ’computational’ OR ’engineer-
ing’)
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2.3.1 Equilibrium (N = 24)
Tonus

Hypotonia and ligamentous hyperlaxity are often described in children with ASD
[171, 279, 361]. In a population-based study [359] as well as a retrospective analysis
of parents’ early concern [168], a low muscle tone in infancy predicted autistic traits or
ASD. Children with ASD presenting a disharmonious tonic typology may be encountered
with a hypertonia of trunk muscles and of proximal muscles of the lower limbs, and a hy-
perlaxity of the ankles and of the proximal and distal muscles of the upper limbs (wrists
and shoulders) [309]. However, we did not find any distinct method used to automatically
assess tonus.

Posture analysis (N = 10, Table 2.1)

Posture instability is common in children with ASD (for reviews see [244, 374]), with
an increase in the size of the support polygon and shorter strides [295] that can lead to
difficulties like holding up one’s own head, sitting and walking [201].

Assessment with consumer devices
Travers et al. [385] evaluated the balance and postural stability with a Nintendo Wii™

(Nintendo, Kyoto, Japan) balance board (Figure 2.3A), a device developed for video
games, that has sensors in its four corners and a relatively high sampling frequency (60
Hz). Twenty-six individuals with ASD and 26 age-and-IQ-matched individuals with typ-
ical development stood on one leg or two legs with eyes opened or closed on a Wii bal-
anceboard. They observed a significant intergroup difference in postural stability during
one-legged standing. Closing eyes similarly affected the balance time of both groups. No
difference were found between the groups during two-legged standing.

Figure 2.3: Sensors used to assess posture in ASD:
Nintendo Wii balance board™ (A); Kinect™ (RGB-D sensor) (B).
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Stereotypical behaviours during resting state
Inertial measurement units are sensors that can include a gyroscope (to measure ro-

tation), an accelerometer (to measure acceleration), and a magnetometer (to measure di-
rection, strength, or relative change of the magnetic field). Some can be used to measure
motor stereotypies.

Albinali, Min and Goodwin proposed to use wireless three-axis accelerometers and
pattern recognition algorithms to automatically detect body rocking and hand-flapping
in six children with ASD [7, 157, 158, 278]. On average, pattern recognition algorithms
correctly identified approximately 90% of stereotypical motor movements repeatedly ob-
served in both laboratory and ecological environments such as classrooms.

Rad et al. [323–325] used wireless inertial sensing technology to detect stereotypi-
cal motor movements in children with ASD. A Deep learning algorithm allowed them to
outperform the traditional classification scheme on the handcrafted features but the in-
terpretability remains difficult since the features automatically extracted are difficult to
understand.

RGB-D sensors (RGB-D for ”red, green, blue - depth”) extend common cameras with
depth information. The Kinect™ (Microsoft Corp., Redmond, WA, USA), in particular,
is a RGB-D camera developed to pair with video games, to assess user positioning with
depth analysis. The Kinect™ v1 uses structured light and projects bi-dimensional pat-
terns to estimate the dense depth information of the scene: reflections of such patterns
allow the computation of three-dimensional information of the objects in the environ-
ment. The Kinect™ v2 uses in addition time of flight of the signal between the camera
and the object, making it less sensitive to the illumination conditions than the Kinect™
v1. Goncalves [155, 156] used simultanenously an accelerometers located in a watch and
a Kinect™ system (Figure 2.3B) to measure stereotypic hand-flapping movements in chil-
dren with ASD. A dynamic time warping algorithm was used to classify the data from the
Kinect™ system. The accelerometers appeared to be more accurate than the Kinect™,
which presents the advantage not to require the child to wear any device or marker.

Resting state during magnetic resonance imaging
From resting-state functional magnetic resonance imaging scans performed on 304

children with ASD and 304 control group children, Torres et al. examined the noise-to-
signal ratio of micro-movements present in time-series of extracted head motions [382].
After complex pretreatment and data analysis, the authors hypothesized the existence of
micro-movements as potential biomarkers of ASD.

Gait (N = 14, Table 2.2)

Walking pattern appears to be altered in people with ASD [397, 398]. Several abnormal-
ities have been described in ASD including toe-walking [403], variable stride length and
duration, incoordination, head and trunk positionning abnormalities, reduced plantar flex-
ion, and increased dorsiflexion [67] (for an in depth review, see Kindregan et al. [224]).
During our research, we found 14 studies investigating automatically gait difficulties in
ASD (Table 2.2).

Gait analysis with infrared cameras
The field of NDE has proposed several attempts to assess and quantify gait-related

ASD characteristics. Nobile et al. [295] set up a system composed of eight infrared cam-
eras (Elite System™, Bts® Bioengineering, Milan, Italy). The use of several cameras
allowed the authors to follow each part of the body at any time (limits the occlusion).
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They explored gait on a 10 m walkway in children with ASD (N=16) and controls (N=16)
who were equipped with markers. Children with ASD showed a significantly shorter step
length and wider step width and a marginally slower mean velocity. The range of motion
in the hips and knees was also significantly reduced. Using an automatic motion anal-
yser (Vicon Motion Systems, Oxford, UK) made of markers and six cameras, Longuet
et al. [248] showed that the steps of children with ASD (N=11) were generally smaller
and slower than those of controls (N=9). Movements of the head, shoulders and hips
were more variable in children with ASD. Using the same setup, Eggleston et al. [124]
found that children with ASD (N=10) exhibited unique lower-extremity joint asymme-
tries. Further, Calhoun et al. [67] reported significant differences between children with
ASD (N=12) and controls (N=22) regarding cadence, and kinematics of peak hip and an-
kle. However, Chester and Calhoun [85] did not find any differences in asymmetry during
walking between the two groups studied.

Attempts to automatize the diagnosis
Noris et al. [298] measured a collection of three-dimensional coordinates from 14

markers applied to the joints of the lower-body area of 22 children (11 children with ASD,
11 controls) using an infrared camera (motion-capture). Using an echo state network (a
form of recurrent neural networks – NN) they were able to extract differences in the
cycles evolution and could stratify children with ASD and controls with an accuracy of
up to 91%.

Ilias et al. [197] used a NN and a support vector machine (SVM) to classify temporal,
spatial, kinetic and kinematic gait parameters of 32 controls subjects and 12 children
with ASD. They acheived an accuracy of 95%, a sensitivity of 100% and a specificity
of 85% for the SVM. Hasan et al. [176] performed a stepwise discriminant analysis to
select features and then established three layers of an artificial NN to classify gait with
an accuracy of 91.7%, a sensitivity of 93.3% and a specificity of 90.0%. Torres [383]
used a motion capture system (Polhemus Liberty™, 240 Hz continuous gamma family
of probability distribution, ; Polhemus, Colchester, VT, USA) to check for differences
between children with and without ASD and with Phelan McDermid syndrome, a rare
genetic syndrome that has a high penetrance of ASD. In all atypical cases, they found
excess noise and randomness.

Pressure systems
Rinehart et al. [330] asked 11 children with ASD and 11 controls to walk on a

GAITRite Walkway (CIR Systems Inc., Franklin, NJ, USA) and observed that a greater
difficulty was experienced by children with ASD regarding walking along a straight line
and dealing with the coexistence of variable stride length and duration. Children with
ASD were also less coordinated. They were rated by the experimenter as more variable
and inconsistent (i.e., they showed reduced smoothness) compared to the control group.
Postural abnormalities were noted in the position of the head and trunk of the ASD group.

Rinehart et al. used the Clinical Stride Analyser (B & L Engineering, CA, USA)
(Figure 2.4), a pressure system, to evaluate children’s walk [329]. The group with ASD
(N=10) showed a significant increase in stride-length variability in comparison with the
control group (N=10) and Asperger’s disorder (N=10) participants. No quantitative gait
deficits were found for the Asperger’s disorder group.

Hasan et al. [177] used two force plates embedded in the middle of a walkway to
measure the ground reaction force during gait. Children with ASD (N=15) had a different
ground reaction force than the control group individuals (N=25), especially throughout
the first half of the stance phase. Specifically, they showed a higher maximum braking
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Figure 2.4: The clinical stride analyser® (B & L Engineering, CA, USA)

force, lower relative time to maximum braking force, and lower relative time to zero force
during mid-stance. Children with ASD were also found to have a reduced second peak of
vertical ground reaction force in the terminal stance.

Pre/post therapy study
Steiner et al. [371, 372] used a gait analyser constructed with four cameras and Ariel

Performance Analysis System™ (Ariel Dynamics, Trabuco Canyon, CA, USA), to com-
pare the effects of riding therapy on children with ASD (N=26). Half of study partici-
pants performed the riding therapy with horses, while the other half composed the control
group. Of note, the length of the gait cycle became more stable in the sagittal plane after
the riding therapy.

Overall, these gait study set-ups were quite precise, achieving classification models
with high accuracies. However, using those techniques for clinical evaluation seems dif-
ficult and costly: such studies required trained teams, the activities recorded were highly
specific and the generated models seemed difficult to be generalized to ecological scenar-
ios.

2.3.2 Fine motor skills requiring hand dexterity and visuomotor co-
ordination (N = 11, Table 2.3)

Young children with ASD have poorer fine motor skills in tasks like object handling,
grasping and visual-motor tasks [207,322]. It seems there is an higher rate of left-handed
people in the ASD population but the methods of evaluation used are heterogeneous and
the results are inconclusive [308, 320]. Children with ASD also display differences in
movement planning and execution [261].

Grasping (N = 7)

Sacrey et al. [344] showed in a review that grasping in ASD is impaired. Researchers tried
to characterize this impairment using different kind of technical aids, as infrared cameras,
accelerometers, gyroscopes and more complex robotics systems.

Infrared cameras
Crippa et al. [95] revealed that simple upper-limb movement could be assessed by

a three-dimensional infrared camera optoelectronic 60-Hz SMART-D system™ (Behav-
ior Tracking System Bioingegneria, Garbagnate Milanese, Italy), with picked up markers
placed on the wrists and hands of participants. This system was useful to classify the
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movements of low-functioning children with ASD (n=15) versus controls (n=15) using
an SVM classifier, based on seven features related to the goal-oriented part of the move-
ment. The system obtained an accuracy of 96.7 %. Campione [69] used the same system
showing that children with ASD (N=9) took a longer time to complete the whole reach-
ing movement. However, kinematics of the grasp component were spared in ASD, while
early kinematics of the reach component were atypical. During a grasp and throw task
with a ball, Perego et al. [314] asked children with ASD (N=10) and controls (N=10)
to wear markers on the shoulders, elbows and wrists. The same SMART™ system was
used. Using an SVM algorithm to discriminate the diagnostic of children by the means
of upper-limb kinematics, during reaching and throwing, these authors revealed a differ-
ence in the overall number of movement they performed, the total duration of movements
and wrist angle whilst reaching. The SVM algorithm proved to be able to separate the
two groups: an accuracy of 100% was achieved with a soft margin algorithm, while an
accuracy of 92.5% was achieved with a more conservative one.

These methods are more invasive than RGB-D sensors and can be used only for very
specific tasks taking just few minutes. Indeed, the markers that children need to wear can
restrict their movements and cannot be used in ecological settings.

Accelerometers, gyroscopes and robotics system
Several studies have examined grasping from sensors (inertial measurement units)

included directly within the targeted object. Campolo et al. developed a ball with sensors
to characterize the grasping of children with ASD [71]. David et al. compared children
with ASD (N=13) to control peers (N=13) and found prolonged latency between grip and
load forces, an elevated grip force at the onset of load force, and increased movement
variability, which can be taken as signs of temporal dyscoordination in ASD [101].

Wedyan and Al-Jumaily [405, 406] used wearable sensors and sensor insides shapes
to measure movements during three upper-limb tasks: (1) throwing a small ball into a
transparent plastic then inserting the ball into a tube; (2) placing a block into a large open
box, then making a tower with four blocks; and (3) inserting a shape into a small slot.
Both studies extracted features of interest automatically, using linear discriminant analy-
sis. The first task was deemed as the best to classify a high risk versus low risk of autism
with an accuracy of 81.67% using an Extreme Learning Machine (ELM), a type of NN.
Marko et al. [263] analyzed the reaching movements of children with (N=20) or without
(N=20) ASD while holding the handle of a robotic manipulandum. In random trials, the
reach action was perturbed, leading to errors that were perceived either through vision or
proprioception. Children with ASD outperformed control children when learning from
errors that were perceived through proprioception, but underperformed control children
when learning from errors that were perceived through vision.

Pointing (N = 1)

Torres et al. [381] used a different motion capture system (Polhemus Liberty™, 240 Hz;
Polhemus, Colchester, VT, USA) and the MouseTracker software (Freeman and Ambady,
2010 ; Medford, MA 02155, USA). The participants performed two pointing tasks: one
with and one without a decision-making task on a touch screen. The authors defended
that ASD could be characterised by micro-movements and argued that they correspond to
the re-afferent feedback signal, giving rise to precise stochastic signatures of movement
fluctuations over time.
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Touching and drawing (N = 2)

Anzulewicz et al. [15] used tablets with touch-sensitive screens and embedded inertial
movement sensors (iPad Mini™; Apple, Cupertino, CA, USA). They asked children with
ASD (N=37) and controls (N=45) to play two serious games (a video game developed for
educative and diagnostic purpose, i.e., cutting fruits and sharing them and then drawing
and colouring a chosen shape). Different decision forests models of the children’s motor
patterns were employed to classify ASD against controls The most effective algorithm
achieved an accuracy of 93%. Children with ASD displayed greater force at impact and
a different pattern of force output onto the device during gestures. Fleury et al. used an
electronic tablet (Wacom™ Co., Ltd., Kazo, Japan) to record drawing of circles under
different conditions (with dominant and non-dominant hands and, for each, (1) continu-
ously, (2) discontinuously and (3) continuously as fast as possible) of 23 children with
ASD and 20 controls. Children with ASD showed an intact ability to consistently pro-
duce continuous movements, but an increased degree of variability in the production of
discontinuous movements [136].

Writing (N = 1)

Writing evaluation has shown that patients with ASD have lower handwriting scores.
In addition, the handwriting quality of ASD participants is impaired with bigger size of
letters and lower measures of legibility (for a review see Finnegan [134] and Verma [396]).
We failed to find in the literature any automatic assessment of writing in children with
ASD although recent research is available on the subject for control children [21, 143].
However, Sparaci [368] showed that a virtual pursuit rotor exercice [1] with a pen on a
tablet was harder for patients with ASD than for controls to perform.

2.3.3 Movement used in social interactions (N = 12, Table 2.4)
Monitoring movements involved in social interaction is important because these difficul-
ties are the best described and are required for ASD diagnosis. Affective computing [127]
has shown that it is possible to measure the synchrony of motion history with performing
metrics that are now openly available such as Python SyncPy library [395].

Motor coordination or synchrony (N = 4)

Fitzpatrick et al. [135] used sensors attached to the end of two pendulums manipulated
by a teenager and by her/his parent to record angular displacements. Such displacements
were tracked with a magnetic motion tracking system (Polhemus Liberty™, Polhemus,
Colchester, VT, USA) and a 6-D Research System software (Skill Technologies, Inc.,
Phoenix, AZ, USA). In particular, they compared the displacements from teenagers with
(N=9) or without ASD (N=9) showing that adolescents with ASD synchronised less spon-
taneously or intentionally.

Fulceri et al. [142] found similar results during an interpersonal motor coordination
task. Both static and dynamic movements were measured through a wearable embedded
system that integrated information from a tri-axial gyroscope and a tri-axial magnetometer
and accelerometer.

Marsh et al. used rocking chairs with a Polhemus Fastrak magnetic tracking system™
(Polhemus, Colchester, VT, USA) to assess interpersonal synchrony between children and
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their parents. These authors showed that children with ASD (N=8), opposed to controls
(N=15) experienced a disruption of spontaneous synchronisation [264].

Cameras or cameras with a depth sensor (RGB-D camera) have been used to eval-
uate motor turn-taking and motor synchrony. Delaherche et al. [110] video-recorded
cooperative-joint action tasks and automatically extracted features that characterised in-
teractive behaviours such as auditive turn-taking or synchronised gestures. Features char-
acterizing the gestural rhythms of the researchers and the duration of their gestural pauses
were particularly accurate for discriminating their interactions with patients with ASD
(N=7) and controls (N=14).

Interpersonal distance

In general, interpersonal distance is larger among children with ASD [72, 151, 334, 390].
However, sometimes, children with ASD can position themselves very close to other peo-
ple, violating others’ personal space [221]. We failed to find, in literature, automatic as-
sessments of interpersonal distance in children with ASD. This kind of evaluation would
come as soon as multiple-people-tracking technology4, such as the open access libraries
OpenPtrack5, will allow a continuous and efficient tracking of people in a room. Specifi-
cally, by employing several cameras, such systems will automatically assess the interper-
sonal distances between children, evaluating if any child is isolated and stay far from the
others or not.

Motor imitation (N = 4)

Social deficits in ASD have been linked to imitations difficulties [334]. Motor imitation
has been investigated by NDE in several protocols. Xavier et al. [417] used an imitation
task with a virtual tightrope walker standing and moving. They compared children with
ASD (N=29), children with developmental coordination disorder (DCD; N=17) and con-
trols (N=39). They showed that (1) interpersonal synchronisation (as evidenced by the
synchrony between the participant’s and the tightrope walker’s bars) and (2) motor coor-
dination (as evidenced by the synchrony between the participant’s bar and its own head
axis) increased with age and were more impaired in children with ASD. Motor control
was more impaired in the ASD group than in the DCD and control groups.

Boucenna et al. [51] and Guedjou et al. [166] developed a robotic interactive system,
based on a camera, in which a child imitates the robot’s motor postures and then the robot
imitates the child’s motor postures. The system was able to extract a motor signature
indicating when the robot was interacting with children with ASD (N = 15) as compared
to control children (N = 15) or adults (N=11). The system required more computational
power, i.e., more neurons in the neuron networks to achieve posture recognition in indi-
viduals with ASD than in control children. [166].

Bugnariu et al. [60], showed that children with ASD (N=4) had poorer performance
while imitating a robot than control children (N=4). Authors collected the children’s
movements through a motion-capture system with markers and exploited them using dy-
namic time-warping. This algorithm is interesting due to its ability of matching the tem-
porally inexact nature of imitation.

4https://www.epfl.ch/labs/cvlab/research/research-surv/research-body-surv-index-php/
5http://openptrack.org/
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Joint attention (N = 2)

Impairment in joint attention (JA) is a key symptom of ASD that appears early in devel-
opment [105]. Most researchers have used eye trackers (a video camera with an infrared
light source following the subject’s gaze) to show that initiating and responding to joint
action from someone else are positively correlated with social orienting [209]. However,
as gaze usually anticipates head movements during natural interaction, an estimation of
JA can also be achieved focusing to the head pose, exploiting RGB or RGB-D data.

Using this method, Anzalone et al. showed that JA was impaired in children with
ASD [12], proposing new metrics to describe it through head pose and posture [13].

Orientation to social signals and name calling (N= 2)

Martin et al. used a computer vision-based head-tracking software (Zface6) while expos-
ing children to different social and non-social stimuli [265]. Children with ASD exhibited
larger yaw displacement, indicating pronounced head-turning, and a higher head yaw and
roll speed, indicating faster head-turning and face inclination. These dynamics were spe-
cific to the social stimuli condition. However, they did not find a difference in vertical
movement (pitch). Aside from the specific study, this approach could be also useful to
diagnose head stereotypies such as repetitive head-banging. Authors suggest that the chil-
dren with ASD might be unable to regulate incoming social information. Possible disrup-
tions in motor planning and head movements early in development may have cascading
effects in later social engagement.

Campbell et al. used a tablet to display videos to 22 children with ASD and 82 controls
(1.5-2.6 y.o.). Only 8% of toddlers with ASD oriented to name-calling on more than
one trial as compared with 63% of toddlers in the control group (p=0.002). Orienting
latency was on average significantly longer for toddlers with ASD (2.02 vs 1.06 seconds,
p=0.04) [68].

2.3.4 Ecological assessment (N = 6, Table 2.5)
Although this field is still limited, we found 6 studies with technologies used in an ecolog-
ical context (Table 2.5). We believe that the ability to automatically measure behaviours
in an ecological context will offer great opportunities in the future.

Accelerometers (N = 2)

Accelerometers were first used in the assessment of sleep in children with ASD [407].
By putting a GT3X device (Actigraph, Pensacola, FL, USA) on the right hip for seven
consecutive days, Memari et al. [275] showed a reduction in physical activity in ASD
participants during adolescence. However, Pan and Frey and Bandini [26, 306] did not
observe any difference in physical activity.

Videos collected at home (N=4)

Home movies have been used for years to investigate early infant development before a
diagnosis of ASD is made. Some authors have found that this approach can improve di-
agnosis [378], while others did not replicate this result [303]. Many analysis have been

6http://zface.org/
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conducted by manually annotating videos [16, 305]. In infants with ASD, researchers
have observed a reduced response to their name, a reduced looking towards others, a
lower quality and quantity of eye contact, a decrease of positive facial expressions and
of inter-subjective behaviours for instance during a joint attention task (for a review see
Saint Georges et al. [345] and Costanzo et al. [92]). Infant motor symmetry and gait
were explored by Maestro et al. [255–257]. Infants who went on later to develop autism
showed more asymmetry and gait dysfunction than control children. Using the same Pisa
home movie database, Cohen et al. [88] and Saint-Georges et al. [347] employed a com-
putational analyses of synchrony and a motherese classifier [258] to refine assessments of
early interaction. They showed specific patterns of early caregiver-infant interaction, in
those who go on to develop ASD.

Recently, Egger et al. [123] developed a smartphone application to reach 1756 families
who uploaded 4441 videos recorded in their child’s natural settings. Using the software
IntraFace to automatically annotate face behaviours, they identified significant differences
in emotion and attention according to age, sex, and ASD risk status. The face direction
and emotion expression can also be assessed with the software OpenFace. This strategy
was for instance used by Higuchi et al. [184], who showed how a computer interface
helped observers in performing video coding of social attention, and how human judgment
compensates technical limitations of the automatic gaze analysis.

2.4 Discussion

2.4.1 Main findings
This review showed that many motor activities can be tracked automatically in ASD with
a good level of sensitivity. Exploiting such devices and techniques, differences between
children with ASD and controls were described in all the domains of movements, ob-
taining sometimes high levels of accuracy. Additionally, these techniques allowed the
detection of stereotypical motor movements.

This ’neurodevelopmental engineering’ field [70, 71] is a rapidly evolving area of
research that could provide more objective evaluations, especially during screening, but
also an improved understanding and monitoring of the development of children with ASD
or other neurodevelopmental disorders [104, 351].

In the presented studies, the devices used to measure movements showed different
advantages in terms of sampling frequency, spatial precision, or adaptation to behavior
subtypes and costs (Figure 2.5) [64]. Some of these devices allow the capture of large
amounts of ecological data, while being cheap, and available in the consumer market.
With time, they will become less invasive, more affordable and more available for eco-
logical contexts.

The number of studies collecting data in natural environments has been usually mod-
est, due to the challenges faced in their completion. However, thanks to new technologies,
such studies become more and more feasible. Assessment using tablets (writing, touch-
ing, pointing), for instance, is an emerging field that employs data collected at home
from young children aged from three to six years old. Posture and stereotypies can be
evaluated with cheap sensors like accelerometers or devices developed initially for video
games (Kinect™ and Wii™ balance board) as early as three years old. Such sensors are
very useful for ecological contexts. At the same time, some studies have been realised
in semi-structured environments as classrooms. These locations are interesting as more
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easily approachable than the home or other unstructured scenarios, because of the partial
control of the environment they offer, together with the possibility of collecting structured
data.

Within the presented technologies, more and more motor activities are being in-
vestigated: posture, walking, grasping... Even when we consider social difficulties in
ASD, we can measure the behaviours involved in social interactions, including head
pose, synchrony or interpersonal distance. Other motor activities like writing could be
targeted thanks to the development of hardware and analysis methods implemented in
tablets [21, 143, 144]). Gait has been evaluated in a larger number of studies (N= 14,
Table 2.2). However, children needed to be older to do the proposed assessment (from
five years old on). We think that this strategy is limited for ASD screening since other
evaluations are easier to do in ecological settings at an earlier age.

Figure 2.5: Properties of motion sensors in terms of sampling frequency,
spatial resolution and temporal scales of use

The different computational methods employed in the explored studies highlighted
also a trade-off between interpretability and accuracy (Figure 2.6). In particular, different
strategies of data analysis have been applied to extract automatically movement disor-
ders in ASD. Some teams have developed sets of features able to model the movements,
improving the interpretability of the obtained models. Other teams applied advanced ma-
chine learning approaches, like deep learning, directly to raw data. While the latter can
be more accurate and improve rapidly [259], the interpretability of the outcome is more
complicated. Indeed, explainability and interpretability [39, 40] and acceptability [189]
are important and difficult goals, beyond the objective of accuracy that could limit im-
plementation in the field with end-users . Some data analysis strategies permit real-time
feedbacks whereas others have higher computational cost and such feedbacks are not
feasable. Some of these algorithms have made possible the use of less-invasive and more
accessible devices, as the tracking technologies that do not use body markers, (a sim-
ple camera could be sufficient): OpenFace [123] instead of an eye-tracker or Open Pose
(Figure 2.7A) instead of a motion capture system.
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Figure 2.6: Properties of main machine learning methods in terms of interpretability
and accuracy. Deep learning are the most recent machine learning methods based on
Neural networks.

Figure 2.7: Screenshots from the use of Open Pose (A) and from the serious game
Pictogram Room (B)

2.4.2 Limitations

The quality of evidence obtained in the explored studies does not reach the clinical stan-
dards for routine diagnostic assessment. Most of the studies do not report how and
if they limited the risk of biases. Blinding of the diagnosis when validating a system
and pre-registration of the protocol could limit such biases. Often, the clinical data are
not precised and even the gold standard clinical assessements (i.e., Autism Diagnostic
Interview-Revised –ADI– or Autism Diagnostic Observation Schedule –ADOS®-2) are
not performed [250]. The highest medical standards would require the recruitment of
large series of consecutive patients [376]. An open science framework with accessible
data and software would enable easier replications in different populations to increase the
generalisation of the results [288].

Large datasets would require a centralised collection of data that would ensure easier
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Chapter 2. Innovative assessment of motor disorders

characterisation and clustering. However, medical data are sensitive and their use is as-
sociated with security and confidentiality issues. For example, home movies or data from
smartphones [123] need secured internet transfer and storage on distant powerful com-
puter for data analysis. From another perspective, the development of open science sug-
gests the need of sharing data and algorithms to improve transparency and reproducibility.
Beyond privacy issues and open-source strategies, data and algorithms would require ap-
propriate business models for private companies investigating in the field.

Our systematic review was completed on October 2018. It is likely that given the
recent increase of publications in the field (Figure 2.2), the diversity of motion sensors,
(Figure 2.5) and analysis methods (Figure 2.6), new systematic reviews will be necessary
in the future with more specific scopes. Questions to explore may cover (1) the youngest
children, since the expected therapeutic outcomes would be larger with early rehabilita-
tion, (2) motion sensors that would be the least invasive (best tolerance for the children),
and the most easily scalable to a wide audience, (3) data analysis methods that would be
the most accurate, and (4) data analysis methods and user interfaces that would enable the
best interpretability and trust among end-users.

2.4.3 Perspectives
We think that movement computing [293] of automatically measured movement would
be useful to help the assessment and monitoring of individuals with ASD. Similar terms
are coined regarding other areas of automatic assessment: social computing, affective
computing, and vision computing.

Electronic sensors allow the precise measure of behaviour. Thanks to this approach,
the study of behaviour, ethology, is undergoing its own transition towards data sciences,
which has prompted the terms ‘ethomics’. This field of research is very active in fruit
flies studies with specific devices [149], data analysis package [150] that can be applied
in large groups in these insects [56]. Algorithms and sensors to measure such interactions
in humans and especially in ASD are presented in Table 2.4. However, while promising,
the ethomic approaches focus on the behavior of simple animals in closed environments.
Recent advances in computational methods and technologies promise the possibility of
harnessing behavioral data from more complex systems, as humans, in interactive set-
tings, where behaviors of each agent emerge from cognitive loops that include explicit
representations of the others. In this regard, OpenPtrack 7 can be seen as a promising
technology to capture the complexity of such group interactions. Due to the recent emer-
gence of these tools and databases, the field of ethomics is far from being as developed
as genomics or connectomics that can already be supported by large scale databases.
We think that these technologies will achieve this goal. Behavioural assessment could
help in identifying more homogenous endophenotypes. This new theoretical framework
known as ethomics seeks to assess behaviour extensively, in a reproducible way, as it
is now done in genetics (genomics), brain connections (connectomics) or proteins (pro-
teomics) [153]. The concept digital phenotyping is also emerging. It represents a new
approach aimed at measuring human behavior by using smartphone and personal devices
sensors, smartphone apps, keyboard interaction, and various features of subject voice and
speech. [198,243,300]. This digital phenotyping approach could be useful thanks to com-
puter vision [107, 351] for instance colour analysis to extract changes in cardiac pulse or
pupillary responses [117] , sensory dysfunction analysis [97]. While ASD is the most

7http://openptrack.org/

31



2.4. Discussion

studied disorder in the digital phenotyping field [243], several reviews were also done to
assess the role of digital phenotyping in (1) bipolar disorders [300] , (2) schizophrenia
and other psychotic disorders [36] , (3) depression [203], (4) addiction disorders [133].
We agree with Spinazze et al. [369], stating that it is important to (1) describe the dif-
ferent forms of captors, data sources and analysis methods (Figures 2.5 and 2.6), (2)
compare the most used sensors and most assessed movements to compare ASD with con-
trols (summary tables) and (3) to propose frameworks to map digital traces and health
conditions [45, 91, 146, 386].

Several teams [15,381,418] have suggested that these assessment methods will allow
researchers to define a motor signature of ASD. In this context, the proprioceptive feed-
back that allows online guidance of movement may be disrupted, creating resonance and
control errors [381]. If this motor signature is specific, we would not expect to find it
in children with DCD, intellectual disabilities or attention-deficit/hyperactivity disorder,
while it would be often associated with ASD. It would be necessary to disentangle dif-
ferent kinds of movements such as (1) goal directed movements (as pointing to a target
under request), (2) automatic movement such as motor mirroring, (3) cultural movements
as writing that could involve different cerebral computations and thus lead to different
difficulties.

Children with ASD are highly variable between themselves [267, 414]. The sample
size of the studies is often small because patients with ASD are difficult to enroll in
experiments given their impairments (e.g. in communication) and behaviour disturbances.
In addition, most of the reported studies are cross-sectional. These technologies could be
useful to follow longitudinally the spontaneous evolution of children to understand how
and to what extent care can restore a better developmental trajectory. During treatment,
these methods could also be useful to provide motor feedback that can benefit both patient
and therapist, like it was done for dysgraphia in DCD [144].

Open access and annotated benchmark datasets in the field would be helpful to eval-
uate various classification methods, select the best ones and improve reproducibility like
it did in other domains [229, 259]. ABIDE dataset allowed to analyse functional brain
peculiarities using MRI data [114, 180, 294]. However, from this dataset, Zhang et al.
concluded that the neuroanatomy of ASD does not exist, but is highly age and gender
dependent [420].

In a recent systematic review assessing computer vision in ASD, Belen et al. presented
several datasets used in computer vision and concluded that ”until recently autism datasets
have been relatively small when compared to other datasets in which machine learning has
seen tremendous application” [107].

A very recent DREAM dataset, collected during Robot Enhanced Therapy, has several
advantages [41](1) the dataset is openly accessible and would enable to become bench-
mark database on which different teams could perform different classification algorithms,
(2) the number of patients is important (n=61), (3) the diagnosis is based on ADOS, a
gold standard test, (4) the data were collected longitudinally, (5) the therapy sessions are
evidence-based (Applied Behavior Analysis), (6) the motion sensors (RGB, RGB-D, sen-
sorized table, 25 Hz) were not invasive and did not need to be worn by the patients [41].
No data analysis have been published on this database yet.

General movement assessment (GMA) can be assessed from birth to 3 months old.
This motors signs assessment was developed and validated in the field of cerebral palsy
[62, 319] but could also be used to detect motor signs that could predict ASD difficul-
ties [125]. A recent systematic reviewed showed that a wide variety of tracking and
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detection tools for computer vision-based GMA exist. However, a “method-of-choice”
for automated GMA does not exist yet [363]. Though, we can see yet good results with
simple RGB and openpose and a shallow multilayer neural network algorithm [326].

There is a lack of cognitive models to bridge the gap between cognitive sciences and
NDE. From a theoretical point of view, future research should be combined with computa-
tional approaches of ASD [159,377]. Torres et al. [384] in particular, believe that integrat-
ing a perception-action perspective would be fruitful since movement production in ASD
has been linked to a movement-perception deficit, which looks to be a prerequisite for the
understanding of intentions of others, posture, and facial expressions and thus social abil-
ities and communication. These sensorimotor competencies could be the primum movens
of an atypical developmental cascade that should be further validated [45, 91, 146, 386].
The new methods described in this review, for measuring motor difficulties could open
new insights in the development of ASD and, in general, of social cognition. The devel-
opment of sensorimotor abilities occurs before the development of communication and
socialisation skills. Sensory difficulties are frequent in children with ASD [238, 421].
Severe sensory issues are associated with more prominent social difficulties and lower
adaptive functioning [227]. In the same way, impaired praxis (that includes gestures to
command, imitation, and tool-use in children) is strongly correlated with the social, com-
municative, and behavioural impairments that define ASD [121]. Future research should
assess whether this fine sensorimotor reaction to social scenes could be an early develop-
mental step required for the early acquisition of social competences [373, 410].

In addition, with the development of easy-to-use devices that can track and monitor
movements easily, several serious games are emerging. For instance Pictogram Room
(University of Valencia, Valencia, Spain) allows the tracking of the posture of the child
with a Kinect™ (Figure 2.7B). This posture tracking is displayed on a screen and with
an augmented reality system. The game can ask the child to catch some virtual items
or to adopt special postures, to perform rehabilitation. Other systems could allow the
development of adapted robotic behaviours for interactions with children with ASD [144,
313].

2.5 Conclusion
Movement disorders are found in ASD. However, there is no clear theoretical or clinical
framework that could easily explain all of them. The motor assessment of ASD is usu-
ally clinical, costly and tedious. New technologies offer the possibility for researchers
to measure more objectively the specificities of movement disorders in ASD and even-
tually could lead to characterizing a specific motor signature of ASD or of subgroups of
individuals with ASD based on motor signature. It is likely necessary to begin to col-
lect large amounts of standardised movement data to better understand the specificities
of movement disorders in ASD and to enable descriptions allowing the screening and
identification of more objective endophenotypes.

In the following chapters, we will take the specific example of handwriting. These dif-
ficulties are frequent and not only found in ASD. Handwriting is one of the most difficult
and usual movement one’s need to master through lifespan. Can we use electronic tablets
to assess the quality and speed of handwriting? How to drive the data analysis to keep
an intelligible pipeline with accurate, but also, as interpretable as possible, feature extrac-
tion and machine learning classification? Transparency and trustworthiness could be, at
the end, as important as accuracy, in educational and clinical contexts. Does it open new
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insight on features that were not accessible so far with classical motor semiology. After
this analysis part, we will show how we used openpose in Chapter 5, during rehabilitation
that enable the meaure of body pose with a simple camera and a Neural Network.

Authors contribution
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wrote the first draft, DC: proposed the general idea, wrote the first draft; SA: designed
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Table 2.1: Automatic assessment of posture

Author
name

Evidence
(1: best;
5: worst)

ASD (N) Control (N) Technology used Frequency Setting Sociodemographics
of the participants

Clinical assessment Statistical/machine
learning methods used to
analyse the data

Main results of the study

Travers et
al., 2013

4 26 26 Wii balance board 60 Hz Lab 16-30 years (2 females, 24
males in the ASD group and
2 females, 24 males in the
control group)

WASI, ADOS or ADI, SRS,
RBS-R

ANOVA Difference in postural stability during one-
legged standing but not during two-legged
standing

Albinali et
al.,2009

4 6 0 Wireless accelerometers, left
wrist and right wrist using
wristbands, and on the torso

60 Hz Home and lab 12-20 years (sex not
reported)

DSM-IV-TR , RBS-R Time and frequency domain
features computed for each
acceleration stream, decision
tree (C4.5 classifier in the
WEKA toolkit)

In the classroom, an overall recognition accu-
racy of 88.6% (TP: 0.85; FP: 0.08)

Min et al.,
2010

5 4 0 3-axis accelerometer,
microcontroller and
Bluethooth module for
wireless communication with
the base station

50Hz Lab Not reported Nor reported Linear predictive coding
(LPC)

Detection of the self-stimulatory patterns with
an average of 92.7%.

Goodwin
et al., 2011

4 6 0 MITes3-axis wireless
accelerometer

60 Hz lab and class 13-20 years (all males, all
ASD)

DSM-IV-TR, RBS-R, CARS Decision Tree (C4.5 classifier
in the WEKA toolkit)

Pattern recognition algorithms identified ap-
proximately 90% of SMM repeatedly ob-
served in both settings

Goodwin
et al., 2014

4 6 0 Wockets set to transmit
three- axis ± 4g motion data

90 Hz Classroom 12-20 years (all males, all
ASD)

DSM-IV-TR, RBS-R, CARS Decision tree (C4.5 classifier
in the WEKA toolkit) and
SVM

They observed an average accuracy across all
participants over time ranging from 81.2%
[true positive rate (TPR): 0.91; false positive
rate (FPR): 0.21] to 99.1% (TPR: 0.99; FPR:
0.01)for all combinations of classifiers and
feature sets.

Rad et al.,
2016

4 6 5 EXLs3 sensor records
three-axis accelerometer,
gyroscope and magnetometer
data

90-100 Hz Lab and class 13-20 years (all males, all
ASD)

DSM-SIV-TR, RBS-R,
CARS

Long short-term memory
with CNN

Transferring the raw feature space to a dy-
namic feature space via the proposed archi-
tecture enhances the performance of auto-
matic Stereotypical Motor Movements detec-
tion system especially for skewed training
data.

Rad et al.,
2016

4 6 5 EXLs3 sensor records
three-axis accelerometer,
gyroscope and magnetometer
data

90-100 Hz Lab and class 13-20 years (all males, all
ASD)

DSM-IV-TR, RBS-R, CARS CNN preliminary evidence that feature learning and
transfer learning embedded in deep architec-
tures can provide accurate SMM detectors in
longitudinal scenarios.

Rad et al.,
2018

4 6 5 EXLs3 sensor records
three-axis accelerometer,
gyroscope and magnetometer
data

90-100 Hz Lab and class 13-20 years (all males, all
ASD)

DSM-IV-TR, RBS-R, CARS CNN to extract features and
then long short-term
memory,

Feature learning via CNN outperforms hand-
crafted features in SMM classification, Includ-
ing temporal dynamics of the signal using
LSTM improves the detection rate

Goncalves
et al., 2012

5 5 0 RGB-D, Microsoft Kinect™
sensor and gesture
recognition algorithms

30 Hz Lab 3-15 years (sex not reported) Not reported Dynamic time warping Kinect™ sensor detected 83% of the stereo-
typical movements.

Torres et
al., 2016

4 304 301 Functionnal MRI 0.3 Hz -
1.5 Hz

Lab 6-50 years (269 males, 35
females in the ASD group
and 247 males, 54 females in
the control group)

ADOS Gamma PDF, Kruskal–Wallis
test

Specific noise-to-signal levels of head move-
ments as a biologically informed core feature
of ASD

WASI : Wechsler Abbreviated Scale of Intelligence ; ADOS : Autism Diagnostic Observation Schedule ; ADI-R: Autism Diagnostic Interview, SRS: Social Responsiveness Scale, RBS-R : Stereotyped Behavior Subscale of the Repetitive Behavior Scale-Revised, CARS: Childhood Autism
Rating Scale, DSM: Diagnostic and Statistical Manual of Mental Disorders, PDF: Probability Density Functions, SMM: stereotypical motor movements, MRI: magnetic resonance imagery, CNN: convolutional neural network, SVM: Support Vector Machine
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Table 2.2: Automatic assessment of Gait

Author
name

Evidence
(1: best;
5: worst)

ASD Control Technology used Frequency Setting Sociodemographics
of the participants

Clinical assessment Statistical /machine
learning methods used to
analyse the data

Main results of the study

Nobile et
al, 2011

3-4 16 16 Infrared cameras
(optoelectronic technique
with passive markers)

100 Hz Lab 6-14 years (12 males and 4
females in each group)

DSM-IV-TR, ADOS, ADI-R,
WISC-III-R

ANCOVA, correlation Shorter stride legth and wider step width and a marginally
slower velocity. The range of motion in the hips and knees
was significantlty reduced, stiffer gait in which the usual flu-
idity of walking is lost

Longuet et
al, 2012

4 11 9 Automatic motion analyser
(VICON system) with six
cameras having a sampling
frequency of 200 Hz

200 Hz lab 6-13 years (sex not reported) PEP-R, CARS ANOVA, Kruskal–Wallis
one-way analysis of variance
on ranks

Smaller and slower steps. Movement of the head, shoulders
and hips were more variable in children with ASD

Eggleston
et al, 2017

5 10 0 Eight-camera motion capture
system (120 Hz, Vicon
Motion Systems)

120 Hz Lab 5-12 years (6 males, 4
females all ASD)

DSM-IV criteria only Model Statistic technique Unique lower extremity joint asymmetries

Calhoun et
al, 2011

5 12 22 Eight camera motion capture
system and four force plates
(Vicon MCam motion
capture system) Twenty
reflective markers

60 Hz Lab 5 to 9 years (10 males, 2
females in the ASD group
and 10 males, 12 females in
the control group)

Not reported ANOVAs and Kruskal–
Wallis tests

Difference for cadence, peak hip and ankle kinematics

Chester et
al., 2012

5 12 22 Eight camera Vicon motion
capture system and four
Kistler force plates

60 Hz for
cameras and
600 Hz for
forces plates

Lab 5 to 9 years (10 males, 2
females in the ASD group
and 10 males, 12 females in
the control group)

Not reported MANOVAs No asymetry differences during walking

Noris et
al., 2006

5 11 11 a motion capture system with
14 fluorescent markers are
applied to the joints of the
lower body of the child as
well as to the shoulders and
neck

not reported Lab 4-10 years (9 males, 2
females in each group)

Not reported Echo state network (a form
of reccurent neural network),
PCA

Accuracy of classification of 91% using only half of the com-
plete walk cycle provides good results already

Ilias et al.,
2016

5 12 32 16 passive bilateral reflective
plug-in-gait (PIG) markery

Not reported Lab 6-12 years (sex not reported) Not reported Neural network and SVM Accuracy of classification of 95 % and sensitivity of 100%
and a specificity of 85 % for the SVM

Hasan et
al., 2017

5 24 24 Eight-camera (Vicon
T-series) motion capture and
two force plates

100 Hz for
cameras and
1,000 Hz for
forces plates

Lab 4-12 years (18 males, 6
females in ASD group and
12 males, 12 females in the
control group)

Not reported t-tests and Mann-Whitney U
tests, Linear discriminant
analysis (LDA) and quadratic
discriminant analysis (QDA)

LDA classifier with kinetic gait features as input predictors
produces better classification performance with 82.50% of
accuracy and lower misclassification rate.

Torres et
al., 2016

4 3 11 Weak electro-magnetic field
created by the sensing system
(Polhemus Liberty,
Colchester, VT, USA)
recording

240 Hz Lab 10-12 years old (3 males in
the ASD group) and 5-19
years old (5 females and 6
males) in the control group);

DSM-5, ADOS, ADI-R,
MSEL, Vineland

They estimated the
parameters of the continuous
gamma family of probability
distributions and calculated
their ranges. These estimated
stochastic signatures were
then mapped on the Gamma
plane to obtain several
statistical indexes for each
child

Typical walking signatures are absent in all children with
ASD. They found an excess noise, a narrow range of
probability-distribution shapes across the body joints and a
distinct joint network connectivity pattern.

Rinehart
et al., 2006

4 11 11 GAITRite Walkway
(electronic walkway with
pressure sensors embedded
in a horizontal grid)

200 Hz Lab 4-7 years (8 males, 3 females
in each group)

DSM-IV, DBC, ADI-R,
WPPSI-R, WISC-III

Coefficient of variability,
t-test

Greater difficulty walking in a straight line, reduced stride
regularity (i.e., adjusted ataxia ratio) with increased variabil-
ity in velocity, and the coexistence of variable stride length
and duration.

Rinehart
et al., 2006

3 20 10 Clinical Stride Analyzer
(electronic foot-switch in
each shoe (i.e., under the sole
of the participant’s feet)

80 Hz Lab 6-14 years (4 females, 16
males in the autism group
and 2 females and 8 males in
the control group)

DSM-IV criteria, ADI-R, IQ ANCOVA Increase of stride-length variability in their gait in compari-
son to control and Asperger participants, both clinical groups
were rated as showing abnormal arm posturing, however,
only the Asperger’s group were rated assignificantly differ-
ent from controls in terms of head and trunkposturing.
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Table 2.2: Automatic assessment of Gait

Author
name

Evidence
(1: best;
5: worst)

ASD Control Technology used Frequency Setting Sociodemographics
of the participants

Clinical assessment Statistical /machine
learning methods used to
analyse the data

Main results of the study

Hasan et
al., 2017

5 15 25 Two force plates were used
to measure the 3D ground
reaction forces data during
walking.

1,000 Hz Lab 4-12 years (11 males, 4
females in the ASD group
and 12 males, 13 females in
the control group)

Not reported Time-series parameterisation
techniques were employed to
extract 17 discrete features
from the 3D ground reaction
forces waveforms. t-test and
Mann-Whitney U test,
stepwise discriminant
analysis to select features,
three-layers neural network

91.7% accuracy, 93.3% sensitivity and 90% of specificity

Steiner et
al., 2012

5 26 0 4 digital camcorder (PAL) :
Ariel Performance Analysis
System

60 Hz Lab 10-13 years old (12 males
and 14 females in the ASD
group)

PAC time-series analysis
(displacement function) and
part of the gait cycle (stance
and swing phase). The third
method was measured joint
angles in each plane

The length of the gait cycle become more stable in the sagittal
plane for children with riding therapy

Steiner et
al., 2015

5 26 0 4 digital camcorder (PAL) :
Ariel Performance Analysis
System

60 Hz Lab 10-13 years old, (12 males
and 14 females)

PAC T-probe, paired T probe,
chi-squares, Mann–Whitney
test, ANOVA

The length of the gait cycle became significantly more stable
in the sagital plane after the therapy

ADI-R: Autism Diagnostic Interview-Revised, ADOS: Autism Diagnostic Observation Schedule, CARS: Childhood Autism Rating Scale, DBD: Developmental Behaviour Checklist, DSM: Diagnostic and Statistical Manual of Mental Disorders, ICBS: Infant and Caregiver Behavior Scale,
M-CHAT: Modified Checklist for Autism in Toddlers, MSEL :Mullen Scales of Early Learning, PAC: Pedagogical Analysis and Curriculum, PEP-R : Profil Psycho- Educatif (PsychoEducational Profile—Revised), WISC: Wechsler Intelligence Scale for Children, WPPSI: Wechsler Preschool
and Primary Scale of Intelligence,
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Table 2.3: Automatic assessment of motor coordination and hand dexterity

Author
name

Evidence
(1: best;
5: worst)

ASD Control Technology used Frequence Setting Sociodemographics
of the participants

Clinical assessment Statistical/machine
learning methods used to
analyse the data

Main results of the study

Crippa et
al., 2015

4 15 15 Infrared cameras (3-D
optoelectronic SMART
system)

60 Hz Lab 2-4 years old (12 males and 3
females in ASD group, 13
males and 2 females in
control group)

DSM-5, ADOS, Griffiths
mental development scales

ANCOVA, Fisher
discriminant ratio, SVM

The machine-learning method was able to successfully clas-
sify participants by diagnosis. The classification accuracy
reached a maximum accuracy of 96.7% (specificity 93.8%
and sensitivity 100%) by using seven features selected by
the Fisher discriminant ratio-based technique

Campionne
et al., 2016

4 9 11 Infrared cameras (3-D
optoelectronic SMART
system)

60 Hz Lab 4-5 years old (7 males and 2
females in ASD group, 7
males and 4 females in
control group)

DSM-5 ADOS, WPPSI–III,
MABC

Mixed analyses of variance Kinematics of the grasp component was spared in autism,
whereas early kinematics of the reach component was atyp-
ical.

Perego et
al., 2009

5 10 10 Infrared cameras (3-D
optoelectronic SMART
system). Markers on
shoulder, elbow, medial and
lateral position of the wrist.

60 Hz Lab 2-4 years old in both groups IQ SVM Accuracy of 100% with a soft margin algorithm and an ac-
curacy of 92.5% with a more conservative one

Torres et
al., 2013

4 34 44 Motion caption system
(Polhemus Liberty, 240 Hz)

240 Hz Lab 3.5-61 years old (24 males,
10 females in the ASD group
and 23 males, 21 females in
the control group)

Stanford-Binet, ADOS,
GARS

Shape and scale of the
Gamma familly of
probability distribution

Micromovement assessment could allow to characterize and
make subtypes of ASD

David et
al., 2009

5 13 13 High impedance load
cellplaced orthogonally to
each other to capture children
pression.

125 Hz Lab 8-19 years old (2 females and
13 males in each group)

IQ, Social Communication
Questionnaire (SCQ)

3-level hierarchical linear
model

Participants with ASD demonstrated prolonged latency be-
tween grip and load forces, elevated grip force at onset of
load force, and increased movement variability.

Wedyan et
al., 2016

5 17 HR 15 Magneto-inertial platform
worn by infants on their
wrists

50 Hz lab 1-3 years (9 males and 8
females in the HR group ; 8
males and 7 females in the
low risk)

High risk infants due to an
older sibling with autism

Linear Discriminant Analysis
(LDA) to extract features,
Support Vector Machine
(SVM) and Extreme
Learning Machine (ELM) to
analyse them

The study shows that the accuracy results that were obtained
from part two (insert a ball into a clear tube) in the both
classifier (SVM and ELM) Accuracy is 75.0%, and 81.67%,
respectively.

Wedyan et
al., 2017

5 17 HR 15 Wearable sensors and sensors
inside shapes

50 Hz Lab 1-3 years (9 males and 8
females in the HR group ; 8
males and 7 females in the
low risk)

High risk infants due to an
older sibling with autism

linear discriminant analysis
to extract features, SVM and
extreme learning machine to
analyse them

The maximum classification accuracy for a task that inserts
the ball into a clear tube open at both sides with mean accu-
racy 75.0% and 81.67% with SVMs and ELM respectively.

Marko et
al., 2015

4 20 20 Robotic manipulandum 100 Hz Lab 8–12 years (18 males, 2
females in ASD group, 16
males and 4 females in
control group)

ADOS or ADOS-2, ADI-R,
WISC-IV

ANOVA, generalized linear
model, Chi-squares

Abnormal patterns of motor learning in children with
autism spectrum disorder, showing an increased sensitivity
to proprioceptive error and a decreased sensitivity to visual
error

Anzulewicz
et al., 2016

4 37 45 tablet (iPad mini) 10 Hz Home 3–6 years old (25 males an
12 females in ASD group, 32
males and 13 females in the
control group)

ICD criteria Machine learning :
ExtraTree, random forest,
regularized greedy forest

Greater forces at contact and with a different distribution of
forces within a gesture, and gesture kinematics were faster
and larger, with more distal use of space. 93% accuracy of
classification of ASD children vs controls

Fleury et
al., 2013

4 23 20 Wacom Cintiq 15- digitizing
tablet and pen

142.8 Hz Lab 4 -8 years old 3 female in
each group)

DSM-IV, ADI-R, ADOS,
Stanford–Binet Intelligence
Scale-5

Hierarchical linear regression Children with ASD have an intact ability to consistently
produce continuous movements, but increased variability in
production of discontinuous movements.

Sparaci et
al., 2015

4 16 54 Digitalised pen and tablet
(Wacom) with virtual pursuit
rotor exercise

25 Hz Lab 5-11 years old (16 males and
no female in ASD group, 28
males and 26 females in the
control group)

IQ (Raven’s Colored
Progressive Matrices task),
ADOS, Beery Visual Motor
Integration Test

ANOVA Virtual Pursuit Rotor was harder for children with ASD than
for TD controls matched for chronological age and intelli-
gence quotient, but both groups displayed comparable mo-
tor procedure learning (i.e., similarly incre- mented their
TT). However, closer analysis of CTT, DT, and DP as well
as 2D trajectories, showed different motor per- formance
strategies in ASD, highlighting difficulties in overall actions
planning

DSM: Diagnostic and Statistical Manual of Mental Disorders, ADI-R: Autism Diagnostic Interview Revised, ADOS: Autism Diagnostic Observation Schedule, Movement Assessment Battery for Children (MABC-2), GARS: Gilliam Autism Rating Scale, WISC: Wechsler Intelligence Scale
for Children, WPPSI: Wechsler Preschool and Primary Scale of Intelligence, ICD-10 : International Classification of Disease,
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Table 2.4: Automatic assessment of movement used in social interactions

Author
name

Evidence
(1: best;
5: worst)

ASD Control Technology used Frequency Setting Sociodemographics
of the participants

Clinical assessment Statistical/machine
learning methods used to
analyse the data

Main results of the study

Fitzpatrick
et al., 2016

4 9 9 Pendulums using a magnetic
motion tracking system
(Polhemus Liberty, Polhemus
Corporation, Colchester, VT,
USA)

100 Hz Lab 12–17 years old, (8 males, 1
female in ASD group ; 7
males and 2 females in the
control group)

DSM-IV-TR, ADOS-2,
WASI

ANOVA Less synchronisation in spontaneous and intentional interper-
sonal motor coordination than controls

Fulceri,
2018

4 11 11 Wearable magneto-inertial
sensor fixed through a
support on both child and
experimenter right wrists

4 Hz Lab 5-10 years ; (10 males, 1
female in the ASD group 9
males, 2 females in the
control group)

DSM-IV, ADOS , WPPSI ANCOVAs, t-Tests Impairment in joint action coordination when they had to rely
only on kinematic information. They were not able to pay
more attention to the kinematic cues in absence of a visual
goal.

Marsh et
al., 2013

4 8 15 Rocking chair and magnetic
tracking system (Polhemus
Fastrak, Polhemus
Corporation, Colchester,
VT).

60 Hz Lab 2-8 years old , ( 8 females, 7
males in the control group)

ADOS, Mullen Scales of
Early Learning

ANOVA Disruption of spontaneous and intentional synchronisation

Delaherche
et al., 2013

4 7 14 Single camera placed above
the participants

25 Hz Lab 4-11 years old ( 6 males and
1 female in the ASD group ,
12 males, 2 females in the
control group)

ICD-10, Vineland or
PsychoEducational
Profile-Revised

Mann–Whitney
non-parametric tests, SVM
classifier, continuous
classifiers (SVR)

Features characterizing the gestural rhythms of the therapist
and the duration of his gestural pauses were particularly accu-
rate at discriminating between the two groups. The duration
of the verbal interventions of the therapist were predictive of
the age of the child in all tasks. Furthermore, more features
were predictive of the age of the child when the child had to
lead the task.

Xavier et
al., 2018

4 29 39 Avatar and RGB-D sensor
(Kinect™ 1)

25 Hz Lab 6-20 years old (ASD 21
males, 5 females ; 23 males
and 16 females in the control
group)

DSM-5, WISC-4, ADI-R generalized linear mixed
model

Interpersonal synchronisation and motor coordination in-
creased with age and was more impaired in children with
ASD. Motor control was more impaired in ASD group

Boucenna
et al., 2014

4 15 15 Nao robot and RGB 10 Hz Lab 3-13 years old (13 males and
5 females in the ASD group
and 9 males and 6 females in
the control group)

ADI-R, Vineland, PEP, the
Kaufman Assessment Battery
for Children or WISC

Neural network (NN) and
learning according to the
number of recruited neurons

Learning was more complex with children with ASD com-
pared to both adults and TD children

Guedjou et
al., 2018

4 15 15 Nao robot and RGB 10 Hz lab 3-13 years old (13 males and
5 females in the ASD group
and 9 males and 6 females in
the control group)

ADI-R, the WISC-IV, lobal
Assessment Functioning
(GAF)

NN and learning according to
the number of recruited
neurons

NN needs to learn more visual features when interacting with
a child with ASD (compared to a TD child) or with a TD child
(compared to an adult).

Bugnariu
et al., 2013

5 4 4 12 camera motion analysis
system at 120 Hz (Motion
Analysis corp, Santa Rosa,
CA)

120 Hz Lab 6-12 years old (all males) Not reported Dynamic Time Warping
algorithm

Children with ASD have poorer imitation behaviour (higher
discrepancy values of imitation based on weighted joint angle
contributions) during the dynamic task compared to control
group.

Anzalone
et al., 2014

4 16 16 Nao robot and RGB-D
(Kinect™ 1)

25 Hz Lab 5- 13 years (13 males, 5
females in the ASD group, 9
males, 6 females in the
control group)

ADI-R, Vineland, PEP, the
Kaufman Assessment Battery
for Children or WISC, GAF

K-means, Wilcoxon Mann
Whitney rank-sum test,
multivariate regression or a
Linear Mixed Model (LMM),
Fisher test

In ASD, JA skill depends on the interaction partner, and im-
plies a higher motor and cognitive cost.

Anzalone
et al., 2018

4 42 16 Nao robot and RGB-D
(Kinect™ 1)

25 Hz Lab 4-11 years old (37 males and
5 females in the ASD group ,
12 males, 2 females in the
control group)

ADI-R, WISC, the Kaufman-
ABC or PEP-3

Mann-Whitney-Wilcoxon
test

Body and head movements, gazing magnitude, gazing direc-
tions (left vs. front vs. right) and kinetic energies features
confirm the reveal the improvements of children behaviours
after several months of training with a serious game.

Martin et
al., 2018

4 21 21 computer-vision based head
tracking (Zface)

30 Hz lab 2.5-6.5 years old (17 males, 4
females in ASD group and
14 males, 7 females in the
control group)

ADOS, ADI-R, DSM-IV,
WPPSI-III or Mullen Scales
of Early Learning

ANOVA Children with ASD exhibited greater yaw displacement, indi-
cating greater head-turning, and greater velocity of yaw and
roll, indicating faster head-turning and inclination. Follow-
up analyses indicated that differences in head movement dy-
namics were specific to the social rather than the nonsocial
stimulus condition.
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Table 2.4: Automatic assessment of movement used in social interactions

Author
name

Evidence
(1: best;
5: worst)

ASD Control Technology used Frequency Setting Sociodemographics
of the participants

Clinical assessment Statistical/machine
learning methods used to
analyse the data

Main results of the study

Campbell
et al., 2019

4 82 22 Visualisation of video on a
tablet, computer vision
analysis front frontal camera
of the tablet

30 Hz Lab 1.5-2.6 years (17 males, 5
females in the ASD group
and 48 Males and 34 females
in the control group)

M-CHAT-R/F , ADOS-T,
MSEL

t-test, Chi-squared test,
Linear model, Cox
proportional hazards models,
Kaplan-Meier Curves

Only 8% of toddlers with ASD oriented to name calling on
>1 trial, compared to 63% of toddlers in the control group
(p=0.002). Mean latency to orient was significantly longer
for toddlers with ASD (2.02 vs 1.06 s, p=0.04). Sensitivity
for ASD of atypical orienting was 96% and specificity was
38%.

DSM: Diagnostic and Statistical Manual of Mental Disorders, ADI-R: Autism Diagnostic Interview-Revised, ADOS: Autism Diagnostic Observation Schedule, WISC: Wechsler Intelligence Scale for Children, WASI : Wechsler Abbreviated Scale of Intelligence, WPPSI: Wechsler Preschool
and Primary Scale of Intelligence, ICD-10 : International Classification of Disease, PEP : PsychoEducational Profile-Revised, MSEL: Mullen Scales of Early Learning, M-CHAT-R/F: M-CHAT-R/F Modified Checklist for Autism in Toddlers, Revised with Follow-Up (M-CHAT- R/F), CARS:
Childhood Autism Rating Scale, ICBS: Infant and Caregiver Behavior Scale, M-CHAT: Modified Checklist for Autism in Toddlers
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Table 2.5: Automatic Assessments of movement based on ecological settings assessment (accelerometers and home movies)

Author
name

Evidence
(1: best;
5: worst)

ASD Control Technology used Frequency Setting Sociodemographics
of the participants

Clinical assessment Statistical/ machine
learning methods

Main results of the study

Memari et
al., 2013

5 80 0 Actigraph GT3X 30 Hz Home 7-14 years old (55 males and
35 females in the ASD
group)

DSM-4-TR, ADI-R t-test, ANOVA, correlations,
linear multiple regression

Substantial reduction in activity across the adolescent
years in ASD, particulary less active in school compared
to after-school.

Pan and
Frey, 2006

5 30 0 Accelerometer 0.25 to
2.50 Hz

home 10–19 years (27 males and 3
girls)

Child/Adolescent Activity
Log (CAAL)

t-tests, ANOVA Elementary youth are more active than the other groups,
regardless type of day or time period. There are no con-
sistent patterns in physical activity of youth with ASD ac-
cording to day or time period.

Bandini et
al., 2013

4 53 58 Piezoelectric accelerometer
(Actical™)

0.03 Hz Home 3–11 years (45 males and 8
females in ASD group ; 44
males and 14 in the control
group)

ADI-R, Vineland,
Differential Abilities Scale

t-tests, chi-square or Fisher After adjustment for age and sex the amount of time spent
daily in moderate and vigorous activity (MVPA) was sim-
ilar in children with ASD (50.0 minutes/day, and typically
developing children 57.1 minutes/day)

Cohen et
al., 2013

3 15 15 Camera (home movies) 25-30 Hz Home 0-1.5 years (10 males, 5
females in the ASD group
and 9 males, 6 females in the
control group)

ADI-R, CARS, Griffiths
Mental Developmental Scale
or WISC

generalised linear mixed
model

Parents of infants who will later develop autism change
their interactive pattern of behaviour by increasing father’s
involvement in interacting with infants; both are signifi-
cantly associated with infant’s social responses

Saint
Georges et
al., 2011

3 15 15 Camera (home movies) 25-30 Hz Home 0-1.5 years (10 males, 5
females in the ASD group
and 9 males, 6 females in the
control group)

ADI-R, CARS, Griffiths
Mental Developmental Scale
or WISC, ICBS

Markov assumption,
Generalised Linear Mixed
Model, non negative matrix
factorization

Babies with ASD exhibit a growing deviant development
of interactive patterns. Parents of AD and ID do not differ
very much from parents of TD when responding to their
child. However, when initiating interaction, parents use
more touching and regulation up behaviors as early as the
first semester

Egger et
al. 2018

2* 555 HR 1199 Smartphone camera (iPhone) 30 Hz Home 1- 6 years old (447 males,
108 females in the high-risk
group and 764 males, 435
females in the control group)

M-CHAT Generalized linear mixed
models, Linear regression
models

An app-based tool to caregivers is acceptable due to their
willingness to upload videos of their children, the feasibil-
ity of caregiver-collected data in the home, and the appli-
cation of automatic behavioural encoding to quantify emo-
tions and attention variables

* : this study was done on a large sample with consecutive patients but the M-CHAT is a screening test and a criterion standard of diagnosis.
ADI-R: Autism Diagnostic Interview-Revised, CARS: Childhood Autism Rating Scale, WISC: Wechsler Intelligence Scale for Children, ICBS: Infant and Caregiver Behavior Scale, M-CHAT: Modified Checklist for Autism in Toddlers
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Chapter 3

An automatic handwriting diagnosis

“Il n’y a pas de fait normal ou pathologique en soi. L’anomalie ou la mutation ne sont pas
en elles-mêmes pathologiques. Elles expriment d’autres normes de vie possibles.”

Le normal et le pathologique, PUF, 1966 (NP) p. 91

“Je crois donc nécessaire de dénoncer les excès d’un idéologie scientiste, le plus
souvent mensongère, qui débouche sur la mise en cause de la spécificité de l’être hu-
main. L’utilisation du psychiatre comme régulateur d’une société normative et celle du
médicament psychotrope prescrit en dehors de ses indications médicales commme plani-
ficateur de la passivité sociale ne doivent constituer un idéal pour personne”

Zarifian, E. (1999). Les Jardiniers de la folie. Odile Jacob.

This chapter is published, under the title ”Automated human-level diagnosis of dys-
graphia using a consumer tablet” [21]. Asselborn, T., Gargot, T., Kidziński, Ł., Johal,
W., Cohen, D., Jolly, C., & Dillenbourg, P. (2018). Automated human-level diagnosis of
dysgraphia using a consumer tablet. NPJ digital medicine, 1(1), 1-9.

Some aspects of this chapter were discussed in a comment paper [112]. We answered
some of these points in [22]. The other are discussed in a following article presented in
chapter 4.
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Chapter 3. An automatic handwriting diagnosis

Abstract
Introduction

The academic and behavioral progress of children is associated with the timely devel-
opment of reading and writing skills. Dysgraphia, characterized as a handwriting learn-
ing disability, is usually associated with dyslexia, developmental coordination disorder
(dyspraxia), or attention deficit disorder, which are all neuro-developmental disorders.
Dysgraphia can seriously impair children in their everyday life and require therapeutic
care. Early detection of handwriting difficulties is, therefore, of great importance in pe-
diatrics. Since the beginning of the 20th century, numerous handwriting scales have been
developed to assess the quality of handwriting. However, these tests usually involve an
expert investigating visually sentences written by a subject on paper, and, therefore, they
are subjective, expensive, and scale poorly. Moreover, they ignore potentially important
characteristics of motor control such as writing dynamics, pen pressure, or pen tilt. How-
ever, with the increasing availability of digital tablets, features to measure these ignored
characteristics are now potentially available at scale and very low cost.

Method
In this work, we developed a diagnostic tool requiring only a commodity tablet. To this

end, we modeled data of 298 children, including 56 with dysgraphia. Children performed
the BHK test on a digital tablet covered with a sheet of paper.

Results
We extracted 53 handwriting features describing various aspects of handwriting, and

used the Random Forest classifier to diagnose dysgraphia. Our method achieved 96.6%
sensitivity and 99.2% specificity.

Conclusion
Given the intra-rater and inter-rater levels of agreement in the BHK test, our technique

has comparable accuracy for experts and can be deployed directly as a diagnostics tool.

3.1 Introduction
The rapid development of digital tablets in the last decade allowed us to extract new
features and thus have access to new features hidden so far. It made possible the evaluation
not only of the final product of handwriting (the static image), but also its dynamics. For
instance, Esposito et al, used handwriting and drawing features from a Wacom tablet
to see difference in motor performance according to Big Five Personality questionnaire
[130].

It is also possible to tackle partially some of the limitations of tests to diagnose dys-
graphia. Multiple studies have employed these new technologies to better under-stand
writing disabilities. Pagliarini et al [304] used tablets to collect data on handwriting abil-
ity before handwriting is performed automatically. Quantitative methods allowed them to
find patterns indicating potential future writing impairments at a very early age. Mekyska
et al. [273] used a Random Forest model to classify children with dysgraphia. The authors
included 54 third-grade Israeli children in the study and used a 10-item questionnaire for
Hebrew handwriting proficiency (HPSQ) [336] to identify poor writing. In the adult pop-
ulation, automatic handwriting assessment tools were proposed for Parkinson’s Disease
as a potential biomarker [119]. In this work, we build on previous work in order to design
a digital diagnostic tool. Compared to previously established results, we focus on clinical
relevance in pediatrics. To this end, we analyzed data for children who have been clini-
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3.2. Materials and methods

cally diagnosed with dysgraphia, and matched them with a cohort of children with typical
development (TD). We maximized the potential impact of the work by focusing on the
Latin alphabet—the most popular script worldwide, which is used by approximately 2.6
billion people. Moreover, we defined features related to those currently used in clinical
practice. Our quantitative model leverages four categories of writing characteristics: the
geometrical aspect of handwriting, and the use of pressure, tilt, and kinematics. We used
a Random Forest classifier to predict dysgraphia. In the test set, approximately 96% of
writers with dysgraphia were labeled correctly (true positive ratio), while less than 1%
of children without dysgraphia were incorrectly diagnosed (false negative ratio). We ob-
tained an F1-score of 97.98%.

After building the model, we explored and analyzed the most important features for
the diagnosis of dysgraphia. In this analysis, we combined statistical analysis and collab-
oration with clinicians, exchanging examples and comments. The conclusions were then
used to provide insights for the development of a new screening tool that would modernize
the current gold-standard test, BHK.

3.2 Materials and methods

3.2.1 Participants
The present study was conducted in accordance with the Helsinki Declaration. It was
approved by the Grenoble University Ethics Committee (Agreement No. 2016-01-05-
79). It was conducted with the understanding and written consent of each child’s parents,
the oral consent of each child,and in accordance with the ethics convention between the
academic organization (Laboratoire de Psychologie et NeuroCognition (LPNC)—Centre
National Recherche Scientifique) and educational organizations.

A total of 242 Typically Developing (TD) children were recruited in 14 primary
schools from various Grenoble suburbs to ensure differing socio-economic environments
(TD dataset). Children from the first to fifth grade were recruited from 43 classes. None
of the TD children included in the study presented known learning disabilities or neuro-
motor disorders.

The study also included 56 children with dysgraphia (D dataset) recruited at the
Learning Disorders Clinic of Grenoble Hospital (Centre Referent des Troubles du Lan-
gage et des Apprentissages, Centre-Hospitalier-Universitaire Grenoble). They were all
diagnosed with dysgraphia based on their BHK scores. The scores were assigned by a
single rater.

In order to validate the analysis on the combined dataset of D and TD, we needed
to compare age distributions in both groups. The Kolmogorov–Smirnov test showed no
statistical difference (p=0.32) in terms of ages between the two distributions (D and TD
datasets). Based on this result and the qualitative assessment of the Q–Q plot (see Figure
3.1), we concluded that there was no evidence of a difference between these two distribu-
tions and they could be treated jointly in the analysis.

For more information concerning the participants, we refer the reader to Table 3.1.

3.2.2 Data collection
The 298 children (TD dataset + D dataset) involved in this study performed the BHK test
by writing on a sheet of paper affixed to a Wacom graphic tablet (sampling frequency=200
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Chapter 3. An automatic handwriting diagnosis

Figure 3.1: Quantiles of the TD dataset (x-axis) against the quantiles of the D dataset
(y-axis). The points are closed from the diagonal dashed line and included in the confi-
dence bounds, showing the similarity of the two distributions.

Table 3.1: Summary statistics of the participants

Hz; spatial resolution=0.25 mm). A Wacom Intuos 4 tablet was used for the TD set, and
a Wacom Intuos 3 for the D set. Pressure data were carefully calibrated between the two
tablets. The BHK test consists of copying a text for 5 min. The first five sentences of
the text are composed of monosyllabic words typically learned during first grade. Then
the complexity of the words starts increasing. Scoring includes two dimensions: (1)
handwriting velocity, calculated by counting the number of characters written; and (2)
handwriting fluency, which takes into account only the first five sentences of the text and
is assessed semi-quantitatively according to 13 clinical features (see Table 3.2 for details
on the features used). The data was collected using Ductus software (LPNC laboratory)
[169]. Doing so allowed children’s handwriting parameters to be saved, including the
x and y coordinates, pressure, and tilt of the pen, for every time frame at a maximum
sampling rate of 200 Hz. In addition, the age, gender, and laterality of the writers were
saved. The BHK tests of the children with dysgraphia (D dataset) were rated by one expert
from the hospital in Grenoble. None of the BHK tests from the TD dataset were rated for
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3.2. Materials and methods

Table 3.2: Mapping between the extracted features and the BHK items. *represents
features which are not mapped directly to the BHK item but which are likely to explain a
similar concept. The category of the BHK features is written in the left column.

Table 3.3: A comparison between the two groups of writers (D dataset and TD
dataset) for every feature based on the static handwriting features. For each fea-
ture, we report the mean and standard deviation in each group as well as the t-statistic and
p-value from the comparison between the two groups.

dysgraphia, which means that some of these children might have dysgraphia, as well.

3.2.3 Features extraction
In this work, we tried to extract the spectrum of features that could describe handwriting
in terms of different aspects, such as static, dynamic, tilt, and tremors.

We organized all the features into four categories:

• Static features—purely geometric characteristics of a written text.

• Kinematic features—dynamics of handwriting path.

• Pressure features—characteristics of the pressure recorded between the pen tip
and the tablet surface.

• Tilt features—characteristics of the pen tilt. Every feature used in the analysis is
described below

Static features

The design of the BHK and its scoring limit analysis to just the static aspects of hand-
writing. Each of the 13 BHK features can be classified into one of two categories. The
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Chapter 3. An automatic handwriting diagnosis

first category regroups features which assess handwriting quality at a letter level. A direct
translation of these features requires knowledge of the letter’s shape. Since this would
require a large-scale analysis of shapes of letters, which would be language-dependent
due to variations in the Latin alphabet, we disregarded these features in the analysis. The
second category of features focuses on higher-level aspects of handwriting. In this case,
we were able to construct features related to BHK concepts. In this section, we outline the
features engineered for the study. More details on the mapping between the BHK items
and our static features can be found in Table 3.2.

Detailed analysis of all Static features can be found in Table 3.3.
Space between words:
The distance (in pixels) between words, averaged for the entire text and logged.
Handwriting density:
A grid with 300-pixel cells covering the entire range of the handwriting trace was

created. The number of points in each cell, if present, were stored in an array. The mean
value of this array represented our approximation of the handwriting density.

Moment of handwriting:
To compute this feature, we extracted bins of 300 points (from the same line of text)

and computed its barycenter. The distance in they direction between consecutive barycen-
ters is computed and averaged for all of the points. This reflects the average direction of
the written line, which could be a proxy for the “non-straight lines” item on the BHK.

Handwriting size:
To compute this feature, we extracted bins of 300 points (from the same line of text)

and computed the total surface occupied by the box bounding the trace.
Tremor frequencies:
This feature quantifies shaky handwriting. For each child, we first divided the signal

into bins of 600 points (as can be seen in Figure 3.2) and extracted from each of these bins
the deviance from the handwriting path. To do so, two types of vectors were extracted, as
we present at the top of Figure 3.2: for the first one, we computed a “global” vector by
averaging bins of 10 points (represented in green in Figure 3.2). This vector represents the
global direction of the handwriting movement in a restricted area of 10 points. The second
vector is local as it is not averaged on bins of points. It simply links points inside this
restricted area of 10 points (represented in blue in Figure 3.2). The cross product of these
two vectors tells us how orthogonal the local vector is compared to the“global”vector.
The greater the result of this operation is, the higher the deviance from the path is. We
conjecture that shaky handwriting will result in local vectors being rarely aligned with
their global counterparts and can then be detected with this method. For each of the 600
points, we log the norm of the cross product.
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3.2. Materials and methods

Figure 3.2: The whole process used to extract the frequency spectrum of our signal.
(1) We first divided the BHK text into bins of 600 points. (2) For each packet, the signal
was extracted. (3) We then computed the Fourier transform of the signal. (4) We took the
average of all signals and finally performed a normalization. At the top of the figure is
presented an example of a signal extracted from the data: the red dots are the point coor-
dinates recorded by the device during handwriting. The vectors in blue are “local” vectors
linking two consecutive points. The vector in green is the “global” vector (average of the
nine blue vectors) representing the global direction of the handwriting. The cross product
of these two vectors gives us an indication of the smoothness/shakiness of the handwrit-
ing. The image on the right comes from a writer with smoother/less shaky handwriting
than the one on the left. The cross product operation will detect this difference
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Table 3.4: A comparison between the two groups of writers (D dataset and TD
dataset) for every feature based on the handwriting kinematics. For each feature,
we report the mean and standard deviation of the two groups as well as the associated
t-statistic and p-value for the t-test.

We computed the Fourier transform on the vectors, regrouping the results of all of
these cross products. Then, the average of all of the Fourier transforms coming from
these different bins of 600 points (see Figure 3.2) was computed. In this manner, a nor-
malization was finally achieved for every child in our database.

With this analysis, we aimed to quantify the tremor/shaky aspect of handwriting,
which would then be translated by higher frequencies or a wider bandwidth in the spectral
domain.

For example, we extracted the range of frequencies covering 90% of the spectral den-
sity. Our hypothesis is that, the smaller this value is (meaning that the distribution is more
clustered), the more proficient the writer is. A writer having a huge bandwidth will not be
fluent as they are less consistent in their movements. This feature is called Bandwidth of
Tremor Frequencies.

Motivated by this concept, we also extract the median of the power spectral density.
A higher value of this feature indicates a higher presence of high frequencies. We refer to
this feature as Median of Power Spectral of Tremor Frequencies.

The last feature we define in this context is the distance between the spectral distribu-
tion of the writer to the averaged spectral distribution of all the writers in our database.
The higher this distance is, the more eclectic the handwriting of this particular writer.
This feature is called Distance to Mean of Tremor Frequencies.

Kinematic features

Detailed analysis of all kinematic features can be found in Table 3.4.
Handwriting speed:
We hypothesize that abnormal variability in speed is indicative of handwriting prob-

lems. We quantify the speed as the distance traveled by the pen divided by the time taken.
Although Wacom data is collected at 200 Hz, we noticed high frequency noise, and, to
remedy this issue, we applied a moving average filter with n=10 and then subsampled
every 10th point. We only kept the measurement if the pen stayed on the surface during
the 10 points (no in-air time). Finally, we computed the mean, maximum, and standard
deviation for each user. With this technique, we had access to the local handwriting speed
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every 10 points. We then performed a linear regression to compute the evolution of the
handwriting speed. Motivated by insights from clinicians, we also computed the number
of speed peaks per seconds. To that end, we applied a Gaussian filter to the signal of
velocity over time, and we computed the number of local maxima and minima extracted.
We expect that the number of peaks should grow with the total duration of the test, and,
therefore, we normalize this number by time.

Handwriting speed frequencies:
We can interpret handwriting as a two-dimensional time series. As such, we can

apply common time-series analysis techniques, and, in particular, we compute the Fourier
transform. We conducted the process described in Figure 3.2 and then we extracted the
Bandwidth of speed frequencies, the Median of power spectral of speed frequencies, and
the Distance to mean of speed frequencies.

Handwriting acceleration:
Acceleration is another measure of variability in speed. We computed the mean, max-

imum, and standard deviation of acceleration following the same procedure as that used
to extract the mean, maximum, and standard deviation of handwriting speed.

In-air time ratio:
The in-air time ratio represents the proportion of time spent by the writer without

touching the surface of the tablet. It was found to be a discriminative feature in a recent
study interested in the analysis of dysgraphia [338, 339].

Pressure features

Table 3.5: A comparison between the two groups of writers (D dataset and TD
dataset) for every feature based on the pressure between the pen and tablet sur-
face. For each feature, we compute the mean and standard deviation of the two groups as
well as the t-statistic and p-value for the t-test.

Detailed analysis of all pressure features can be found in Table 3.5.
Pressure: The first features concerning the pressure are simply the mean, maximum,

and standard deviation of the pressure.
Speed of pressure change:
To compute the speed of pressure change,we used the same method we used for the

speed of handwriting. We worked with averaged buckets of 10 points and divided the
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time spent by the difference between these two averaged bins of points. The mean, max-
imum, and standard deviation of these measures can then once again be extracted. The
number of peaks of speed of pressure change during handwriting was also extracted. A
Gaussian filter was applied to the signal and local minima and maxima of this filtered
signal were extracted and normalized by the total amount of handwriting time (excluding
the in-airtime).

Speed of pressure change frequencies:
The speed of pressure change can be seen as a time-series, and frequencies can be

extracted using a Fourier transform. The same process as that described in Figure 3.2 is
followed to extract the Bandwidth of speed of pressure change frequencies, the Median
of power spectral of speed of pressure change frequencies, and the Distance to mean of
speed of pressure change frequencies.

3.2.4 Tilt features
The Wacom system logged the data measuring the pen tilt with two different angles,
which we referred to in this paper as the Tilt-x and Tilt-y angles (see Figure 3.3 for more
details). Both angles are measured in the range between−60° and 60°. The tilt-x reflects
the inclination of the pen in the direction of the written line, and the tilt-y reflects the
inclination of the pen below the written line.

Figure 3.3: The two angles (tilt-x and tilt-y) recorded for the pen. The black arrow
represents the pen, and the red segments represent its projection on the XZ and YZ planes,
respectively.

Tilt:
Detailed analysis of all tilt features can be found in Table 3.6.
Simple features were extracted for both angles, namely the mean, maximum, and

standard deviation of the measurement.
Speed of tilt change:
We computed the speed of tilt-x/tilt-y change in the same way as before, and we

extracted the mean, maximum, standard deviation, and number of peaks. Finally, we also
computed the evolution of the speed of tilt-x/tilt-y change over time.

Frequency of speed of tilt change:
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3.3. Results

Table 3.6: A comparison between the two groups of writers (D dataset and TD
dataset) for every feature based on the tilt between the pen and tablet surface. For
each feature, we report the mean and standard deviation of the two groups as well as the
t-statistic and p-value.

Using the same method as before,we computed the Bandwidth of speed of tilt change
frequencies, the Median of power spectral of speed of tilt change frequencies, and the
Distance to mean of speed of tilt change frequencies.

3.3 Results
As described previously, our database is not balanced in terms of positive and negative
examples (242 TD children versus 56 D children), which can skew the model towards
a larger subpopulation. In order to validate the accuracy, we divided our data into two
disjoint sets.

• Training set —70% of TD dataset and 70% of D dataset.

• Testing set —30% of TD dataset and 30% of D dataset.

A k-fold cross-validation [179] (with k=25) on a Random Forest classifier [57] was
performed in order to test our model. Due to the differences between positive (children
with dysgraphia) and negative examples (children without dysgraphia) in the database,
reporting the overall accuracy might be misleading (a model that always predicts non-
dysgraphia will be ~75% accurate). Following machine learning literature, we report the
F1-Score. The F1-Score is the harmonic mean of Precision and Recall. Therefore, the
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score takes both false positives and false negatives into account, making it more compa-
rable across studies with different proportions of classes. The F1-score is defined as

F1− Score = 2 ·
Precision ·Recall

Precision+Recall

where

Recall =
TruePositive

TruePositive+ FalseNegative

and

Precision =
TruePositive

TruePositive+ FalsePositive
.

In our case, the True Positive ratio corresponds to the proportion of children with dys-
graphia correctly labeled correctly, while the False Negative ratio refers to the proportion
of children with dysgraphia incorrectly labeled improperly. Finally the False Positive ratio
defines the proportion of children without dysgraphia incorrectly labeled with dysgraphia.

For our model, after the 25-fold cross-validation, we obtained a F1-score of 97.98%
(Std. of 2.68%). We found this result very satisfactory given the small number of record-
ings of writing of children with dysgraphia used for training the model. We also con-
jectured that a larger sample would improve the generalizability and robustness of the
model.

3.3.1 Robustness of the test
To validate the robustness of the test, we measured how much data per user was needed in
order to accurately predict dysgraphia. To that end, we trained the model, using only the
first seconds of the test, while keeping the same workflow of training, including the k-fold
validation (k=25). In Figure 3.4, we present the F1-score as a function of the length of
the portion of the test used to train the model. For example, 15 s means that only the data
recorded during the first 15 s of the BHK test were used to train the model. We can see
that, after 15 s of testing, the results are already satisfactory (F1-Score of 77.21%), but the
high standard deviation (10.34%) may indicate that the model is not generalizable. After
50 s of testing, the F1-Score reaches 93.93%, while the standard deviation drops to 4.6%.
For any longer periods of time, the results improve only marginally.

We believe that this result indicates the robustness of our features. Indeed, even with
the noise coming with the restricted portion (for example, 15 s) of the test used (a smaller
number of examples means less statistical significance), our model still manages to extract
relevant information from the features measured. This is an indirect benefit compared to
the BHK test, which must be interpreted in its entirety.

3.3.2 Discriminative features
In order to analyze the most discriminative features, we first sort them by importance.
Following machine learning literature, we use one of the most popular choices, Gini im-
portance [57]. Table 3.7 presents the eight most important features (i.e., the most dis-
criminative) emerging from the Random Forest model (averaged over 25 folds). Features
related to frequencies seem to be very discriminative as six out of eight of the most im-
portant features are related to frequencies. Features from all four of our categories are
represented among the eight most discriminative features: three are kinematic features,
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Figure 3.4: Box plot representing the F1-score as a function of time period of the test
used for training. We used Random Forest for classification, and each model was trained
following the same k-fold, cross-validation procedure with k = 25

Rank Category Name Importance
(Std.)[%]

1 Kinematic Median of Power Spectral of Speed Frequencies 15.71 (9.06)
2 Kinematic Bandwidth of Speed Frequencies 12.08 (8.00)
3 Pressure Mean Speed of Pressure Change 9.81 (6.52)
4 Static Space Between Words 7.45 (6.73)
5 Tilt Distance to Mean of Speed of Tilt-X Change

Frequencies
6.07 (4.30)

6 Kinematic Distance to Mean of Speed Change Frequencies 5.18 (4.73)
7 Tilt Bandwidth of Speed of Tilt-X Change Frequencies 4.10 (4.64)
8 Tilt Median of Power Spectral of Tilt-Y Change

Frequencies
2.97 (3.33)

Table 3.7: The most important features found by the Random Forest model, using
Gini importance as a metric. We report the ranks, features categories and their impor-
tance averaged for the 25 folds and the standard deviation of importance over all folds.

three represent tilt, one is related to pen pressure, and one is a static feature. In the next
section, we will analyze these features further

We notice that only one of these features, the space between words, could be extracted
if we only had access to the final output of handwriting. This reassures us concerning the
value of the digital tablet in assessing handwriting as it provides us access to important
information previously inaccessible to clinicians analyzing standard tests, such as the
BHK.
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3.4 Discussion

3.4.1 Clinical Features Analysis
The most discriminative static feature we found was the Bandwidth of Tremor Frequen-
cies (see left graph of Figure 3.5). This feature represents the range of tremor frequencies
found in the handwriting of the writer under investigation. A high value for this feature
means that many tremors were extracted from the handwriting. In Figure 3.6, we present
an example of handwriting from a child without dysgraphia (on the left) and a child with
dysgraphia (on the right). The handwriting of the non-dysgraphic child appears to be
smooth. Conversely, the handwriting of the dysgraphic writer is not smooth; we can
see easily some high-frequency shaking (as in the apostrophe or at the end of the “a”).
We hypothesize that this characteristic results in an important value of the Bandwidth of
Tremors Frequencies feature. The dysgraphic child hesitates more when forming letters,
and it is harder for them to control the pen smoothly. This lack of smoothness is indica-
tive of poor motor control, resulting in more noise. Interestingly, this feature is related to
the BHK item hesitation and shaking. According to the therapists, a score of 0 (highest
score) was obtained by the non-dysgraphic child for this feature, while a score of 3/5 (a
low score) was obtained by the dysgraphic child.
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Figure 3.5: Distribution of the features of the children with dysgraphia (D dataset)
and the without dysgraphia (TD dataset). For static features: Bandwidth of Tremors
Frequencies and the Space Between Words features. For kinematic features: Median of
Power Spectral of Speed Frequencies and the In Air Time Ratio features. For tilt features:
Median of Power Spectral of Speed of Tilt-y change and the Bandwidth of Power Spectral
of Speed of Tilt-x change features
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Figure 3.6: A comparison of different metrics for a without dysgraphia child (left)
and a child with dysgraphia (right)
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Concerning the Space Between Words feature, we can see in the right graph of Figure
3.5 that the children without dysgraphia tends to put more space between the words they
write. This is related to the BHK item called narrow words. This BHK item indicates
pathology if it is not possible to insert the letter “o” between each pair of words, meaning
that not enough space is left. Moreover, in the case of dysgraphia, the writing is barely
automatized, leading to irregular spaces between words. This irregularity is attested to
by the difference in standard deviation that we can observe between the two groups (for
more details, see Std. TD and Std. D in Table 3.3).

The most discriminative kinematic feature we found was the Median of the Power
Spectral of Speed Frequencies. This feature indicates that the speed frequencies of chil-
dren with dysgraphia are shifted toward high frequencies (see left graph of Figure 3.5). In
Figure 3.6 b, we present an example of the handwriting of a child without dysgraphia on
the left and a child with dysgraphia on the right. The color corresponds to the handwriting
speed at the time the points were recorded. In the child’s with dysgraphia handwriting,
we observe very rapid changes in speed (rapid acceleration and deceleration), contrary to
what can be found in the handwriting of the writer without dysgraphia. It is interesting
to note that the features linked with acceleration were not found to be discriminative as
these sudden changes of speed are local (compensated for by long periods of constant
speed). These sudden changes of speed are translated into high frequencies during the
Fourier transformation. This feature relates the fact that we can find more saccades dur-
ing the handwriting of the child with dysgraphia due to the lack of automation and control
in his/her hand movements. In the case of the BHK test, the only feature related to the
kinematics of handwriting is the number of characters written after 5 min. The results of
this very basic feature show that the children with dysgraphia are slower than the ones
without dysgraphia.

Another interesting feature that was found to be discriminative was the in-air time
(the proportion of time spent with the pen not touching the surface of the tablet), as can
be seen in the right graph of Figure 3.5. This result appears to be in line with previous
findings [338].

As can be seen in Figure 3.5, the frequencies extracted from the speed of tilt change are
very discriminative of dysgraphia. Concerning the Tilt-y, in contrast to what was observed
for other categories of features, we can see that the non-dysgraphic children seem to
exhibit higher frequencies during their handwriting. This finding is highlighted in Figure
3.6c. For every point recorded, the color of the trace represents the speed of the tilt-y
change. We can see that the child with dysgraphia stays very constant, maintaining the tilt-
y of his/her pen (almost no variations in the speed of the tilt-y change, with small absolute
value). The child without dysgraphia, in contrast, presents very rapid variations in his/her
tilt-y change speed (rapid acceleration and deceleration). These very sudden variations are
translated into high frequencies in the Fourier domain, shifting the median of the power
spectral to high frequencies. Thus, we can infer that the child without dysgraphia is able
to change very frequently and quickly the tilt of his/her pen in the y-axis, whereas the
child with non-dysgraphia displays less tilt-y variation abilities, probably due to a more
constraining and rigid pen grip.

Concerning the tilt-x, although the distribution of children with dysgraphia is very
spread out (see the right graph of Figure 3.5), the children with dysgraphia seem to present
a larger range of frequencies in their handwriting concerning the speed of tilt-x change
than seen typically in developing children. This means that they are not constant in the
way they move their pen in the ZX plane (see Figure 3.3 for more details). This finding is
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highlighted in Figure 3.6. For every point recorded, the color of the trace represents the
speed of the tilt-x change. We can see more variations in the speed of tilt-x change for
the child with dysgraphia compared to that of the child without dysgraphia, who seems
to present more control in his/her movement. Contrary to the pen tilt in the direction
perpendicular to the handwriting global direction (perpendicular to the lines of the paper
sheet), proficient writers exhibit less variations (more control) in the speed of tilt change
(and also the tilt, itself) in the direction of the lines of the paper sheet.

3.4.2 Correlation between features

We analyzed correlations between pairs of 53 features extracted throughout this study. We
found a strong, positive correlation between the median of the power spectral of speed fre-
quencies and the bandwidth of speed frequencies (Pearson’s test: r = 0.96, p< 0.001), as
well as between the median and the distance to mean speed change frequencies (Pearson’s
test: r = 0.65, p< 0.001). In other words, these three features describe the same “abnor-
mal” high-speed frequencies in the handwriting: the more a child’s frequencies differ
from the average, the more these frequencies will be shifted towards high frequencies.

This finding encouraged us to test a simpler model, using only the median of the
power spectral of speed frequencies. Despite the high correlation between the median
and the bandwidth, adding the additional feature still has additional predictive power,
as indicated by our cross-validation process. In particular, the model with both features
presents a F1 score of 0.98 (Std. = 0.03), while the simplified model has an F1 score
of 0.95 (Std. = 0.05). We conjecture that two correlated features, despite being linearly
correlated, are still discriminative in a non-linear manner. Thanks to the robustness of
the Random Forest in terms of correlations and non-linear structures, we obtained better
results. We decided to report on the more accurate model, leaving the decision to decrease
model complexity to the user.

3.4.3 Main findings

We designed a method allowing clinical assessment of dysgraphia using a consumer
tablet. Compared to existing tools, our method is cheaper, faster, free of human bias,
validated on clinical data, and is applicable to Latin alphabet. The method leverages
information contained not only in static writing but also in its dynamics. These charac-
teristics make it useful not only as a clinical diagnostic tool, but also as a tool for parents
or guardians to obtain high-quality assessment more frequently throughout development
of the child. Granularity of the features allows to obtain more specific diagnosis and can
lead to design of new exercises tailored to specific motor-impairments. In this section, we
discuss accuracy, clinical relevance, applicability, and potential impact of our work.

On average, 96.6% (standard deviation of 5.02%) of the writers with dysgraphia were
diagnosed correctly, while we achieved a 0.78% (standard deviation of 1.82%) false pos-
itive rate. The final model reached an F1-Score of 97.98% (standard deviation of 2.68%)
Note that the inter-rater correlation in BHK is 0.89 [82]. Since our algorithm outperforms
this value, we conclude that the algorithm learned to mimic the rater. These findings sug-
gest that adding data from other raters should not only reduce bias, but also allow us to
surpass the accuracy of each individual rater.

Our diagnostic system has the advantage of being almost costless (not including the
cost of the tablet) and very fast (only a few milliseconds to deliver the diagnosis compared
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to 10 min for the BHK test). It also reduces subjectivity as the model is permeable to all
the external parameters that can bias a human. Moreover, it is interesting to see that,
among the 53 features used by our model, most of them are very technical and “low
level”, i.e., measuring the mechanics of writing. In that way, our test is more robust to
differences in handwriting style, language, and understanding of the text by the subject.
Indeed, these features (for example, the three most discriminative features: the Median
of Power Spectral of speed frequencies, the Bandwidth of Speed Frequencies and the
Mean Speed of Pressure Change) can be interpreted the same way independently of the
language or handwriting direction. For example, languages written from right to left,
such as Hebrew, or from left to write, such as French, still share the same low-level
characteristics. In future work, we envision testing the method for its robustness with
other tests and, especially, other languages. Whenever the retraining of the model is
needed, we are interested in validating it if an overlap between the most predictive features
is large.

As the model includes 53 criteria of a child’s handwriting, the system helps us to
build a more precise profile of the child compared to standard tests, in which only a few
different criteria are available. Moreover, our model has the consequent advantage of
not being restricted to the use of static features, such as in the current standard tests, but
also uses kinematics, pressure, and tilt features. In the BHK test, the 13 items reflect
what is wrong in the final product of the child’s handwriting, but do not give indications
on why it is wrong. We believe that our system explores the handwriting pathology at
a deeper level, and it permits analyzing the handwriting characteristics that lead to the
imperfections seen in the final product. This brings with it potential therapeutic value,
especially for remediation. Given new features, it is now possible to reach a more specific
diagnosis rather than the general binary indication of dysgraphia. This will help clinicians
focus on specific remediation exercises (e.g., exercises to increase the stability of the pen
tilt or the change in pressure necessary for handwriting automation).

3.5 Conclusion
We demonstrated, using handwriting’s static, dynamic, pressure, and tilt features ex-
tracted from a digital tablet, that we could diagnose dysgraphia very accurately. We
believe that the knowledge gained from the analysis of the features extracted during this
study can be applied to design a new test to diagnose dysgraphia. This modernized test
has the advantage to also assess the dynamic of handwriting, and the pressure of the pen
as well as its tilt. In the future, we hope to design a new test with words maximizing the
feature differences between children with and without dysgraphia.

Electronic tablets that are not expensive and easily interpretable algorithms such as
random forest algorithms (See Figure 2.6), can allow us to extract relevant handwriting
features. These allow to classify properly and eventually with a better reproductibility
writing disorders. However, the same input needs to be interpreted differently depending
on the age. The same writing sample can be normal for a child of 6, and pathological for a
child of 10 since it is expected that, with age and training, the motor performances become
better. In the next section, we will describe the normal development and to show which
kind of digital features are the most important, depending on the age, to discriminate the
children who need a diagnosis and ultimately a treatment and those who don’t. Finally,
reducing the clinical heterogeneity, thanks to the creation of subroups (i.e., clusters), allow
to study the specific evolution, impairment and effect of treatment in more homogeneous
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subgroups.
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Chapter 4

Writing development and a new
classification of dysgraphia

“Mental disorders are chronic diseases of the young.”
Insel, T. R., & Fenton, W. S. (2005). Psychiatric epidemiology: it’s not just about

counting anymore. Archives of general psychiatry, 62(6), 590-592.

“Si l’on veut dépasser les contradictions entre ce qui est d’ordre biologique et ce
qui relève du psychologique, ou encore entre le psychologique et le sociologique, il faut
étudier l’homme dès le commencement, non seulement sur le plan de la phylogenèse,
mais sur le plan de sa propre ontogenèse et prendre connaissance de ce que lui offre la
nature, mais également de ce que l’homme construit dans le cadre de son environnement.
Les ténèbres de l’enfance ne sont ni simple obscurité silencieuse, comme le veulent cer-
tains, ni clarté illuminante, comme le prétendent d’autres. Elles sont la confrontation de
l’être avec le monde, la naissance d’une opacité constructive, l’ouverture de l’organisme
envers sa propre structure et envers le réel, réel qu’il transforme et fait, de son expérience
individuelle, un général transmissible et communicable.”

Julian de Ajuriaguerra, Bulletin de Psychologie, 1981, 391 (42) 658 et (43) 690, cité
par Alain Berthoz, 1993

This chapter was published in Plos One journal, under the title “Acquisition of hand-
writing in children with and without dysgraphia: A computational approach”, Gargot,
T., Asselborn, T., Pellerin, H., Zammouri, I., M. Anzalone, S., Casteran, L., Johal, W,
Dillenbourg, P., Cohen, D. & Jolly, C. (2020). PloS one, 15(9), e0237575.
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Abstract

Introduction
Handwriting is a complex skill to acquire and it requires years of training to be mas-

tered. Children presenting dysgraphia exhibit difficulties automatizing their handwriting.
This can bring anxiety and can negatively impact education.

Materials and methods
280 children were recruited in schools and specialized clinics to perform the Concise

Evaluation Scale for Children’s Handwriting (BHK) on digital tablets. Within this dataset,
we identified children with dysgraphia. Twelve digital features describing handwriting
through different aspects (static, kinematic, pressure and tilt) were extracted and used
to create linear models to investigate handwriting acquisition throughout education. K-
means clustering was performed to define a new classification of dysgraphia.

Results
Linear models show that three features only (two kinematic and one static) showed a

significant association to predict change of handwriting quality in control children. Most
kinematic and statics features interacted with age. Results suggest that children with dys-
graphia do not simply differ from ones without dysgraphia by quantitative differences on
the BHK scale but present a different development in terms of static, kinematic, pressure
and tilt features. The K-means clustering yielded 3 clusters (Ci). Children in C1 presented
mild dysgraphia usually not detected in schools whereas children in C2 and C3 exhibited
severe dysgraphia. Notably, C2 contained individuals displaying abnormalities in term of
kinematics and pressure whilst C3 regrouped children showing mainly tilt problems.

Discussion
The current results open new opportunities for automatic detection of children with

dysgraphia in classroom. We also believe that the training of pressure and tilt may open
new therapeutic opportunities through serious games.

4.1 Introduction
Despite the inherent progressive learning of writing, so far no study using digital features
took into account age and had a developmental approach. We still do not know how the
selected features classifying children with dysgraphia evolved in children with typical
development (TD). In addition, we don’t know whether their ability to detect children
with dysgraphia changed with age.

In the current study, we aimed to extend our work, from the previous chapter [21]
addressing the effect of age, and the heterogeneity of dysgraphia. Our objectives were the
following:

1. First, we aimed to present the learning and acquisition of handwriting from a de-
velopmental approach (according to child age). We explored TD children in order
to better understand typical development (TD dataset only) and children with dys-
graphia (D dataset)

2. Second, we aimed to identify the best features, to diagnose children with dysgraphia
(according to age) both using the clinical gold standard method as well as relevant
digital features [21].
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Table 4.1: Diagnosis of children in the specialized clinic

Isolated disorder: n=26 (55,3%) n=
DCD 5
DL 9
ADHD 7
dyscalc 3
dysph 2
2 comorbiditiess: n=15 (31,9%)
DCD/DL 1
DCD/ADHD 2
DCD/dysph 2
DL/ADHD 4
DL/dyscalc 1
DL/dysph 2
ADHD/dysph 2
dyscalc/dysph 1
3 comorbidities: n=5 (10,7%)
DCD/DL/ADHD 2
DCD/ADHD/dyscalc 1
DL/ADHD/dysph 1
DCD/DL/executive disorder 1
4 comorbidities: n=1 (2,1%)
DCD/DL/ADHD/dysph 1

DCD: developmental coordination disorder, DL: dyslexia, ADHD: Attention Deficit Hyperactivity
Disorder, dyscalc: dyscalculia, dysph: dysphasia

3. Third, we performed unsupervised clustering of children with dysgraphia by ap-
plying a K-means clustering of discriminative digital features, to assess how many
clusters of patients had a similar profile and to identify their main characteristics.

4.2 Materials and methods

4.2.1 Participants

The present study was conducted in accordance with the Declaration of Helsinki and
was approved by the Grenoble University Ethics Committee (agreement no. 2016-01-
05-79). It was conducted with the understanding and informed written consent of each
child’s parents and the oral consent of each child. In total, we recruited 280 children.
Two hundred thirty-one children were recruited at different schools from Grenoble area.
The exclusion criteria were: having a known specific disability or characterized disorder
like any neurodevelopmental disorder and being a non-French native. In this study no
specific neurological and cognitive assessments were conducted. The absence of disorders
was assumed using the teachers’ judgments of children’s academic achievement. Forty-
nine children were recruited on the basis of a clinical diagnosis of dysgraphia from the
Reference Center for Language and Learning Disorders at Grenoble University Hospital,
a specialized clinic for learning impairments. Since the diagnosis of dysgraphia is not
recommended during the 1st grade the children with dysgraphia from this specialized
center were excluded. The diagnosis of children from the specialized clinics are reported
in Table 4.1.
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Table 4.2: Clinical-Gold Standard (BHK scores) and digital features on handwriting.

BHK scores

BHK quality score based on the sum
of 13 quality item scores
(raw and normalized with age)

Writing is too large

Widening of left-hand margin

Bad letter or word alignment

Insufficient word spacing

Chaotic writing

Absence of joins

Collision of letters

Inconsistent letter size (of x-height letters)

Incorrect relative height of the various kinds of letters

Letter distortion

Ambiguous letter forms

Correction of letter forms

Unsteady writing trace

BHK speed (raw and normalized with age) The numbers of characters written in 5 min

Digital features

Static features
Space between Words

Standard deviation of handwriting density

Median of Power Spectral of Tremor Frequencies

Kinematics features
Median of Power Spectral of Speed Frequencies

Distance to Mean of Speed Frequencies

In-Air-Time ratio

Pressure features
Mean Pressure

Mean speed of pressure change

Standard deviation of speed of pressure change

Tilt features
Distance to Mean of Tilt-x Frequencies

bandwidth tiltx

Median of Power Spectral of Tilt-y Frequencies

BHK quality scores have each a score between 0 and 5 according to (1) their age for size of writing and widening of left-hand margin
and (2) a score of 0 or 1 for each line of the 1st paragraph for other quality items.

4.2.2 Procedure

The BHK test consists of copying a text beginning with simple monosyllabic words and
evolving towards more complex words for five minutes onto a blank paper. Different
features reflecting handwriting quality (e.g., letter form, size, alignment, spacing...) are
scored to generate a final handwriting quality score. The final quality score is a degrada-
tion score. Higher scores correspond to more errors and a worse quality. A speed score
is also provided (i.e., the number of characters written in five minutes) (see BHK scores
Table 4.2).

The 298 children involved in this study performed the BHK test by writing on a sheet
of paper affixed to a Wacom graphic tablet (sampling frequency = 200Hz; spatial resolu-
tion = 0.25mm). A Wacom Intuos 4 tablet was used for the children recruited in schools,
while a Wacom Intuos 3 tablet was used for the children recruited in the specialized clinic.
Pressure data were carefully calibrated between the two tablets. The weights X were care-
fully chosen (from 0g (pen only) to 400g) in order to explore all range of tablet outputs
until saturation. The relation between the weight in input (X) and the value returned by the
tablet (Y) could be extracted and was found to be very similar for the two tablets (Spear-
man correlation > 0.99, p < 0.001, mean square error = 0.6). A 4th degree polynomial fit
was created to model the function describing the X/Y relation of the first tablet and used
on the second to correct the output. After this correction, the spearman correlation was
found to be 0.99998 (p << 0.001) and the mean squared error was 5.1 x 10−3.
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Two junior psychomotor therapists were trained by the same senior psychomotor ther-
apist to score BHK. Then, the 2 juniors therapists annotated independently all BHK both
for quality and speed scores. For the 30 least consistent scores (BHK score > 5), the
senior therapist scored the BHK.

These professionals were blinded to the demographics and clinical characteristics of
the children. Scoring included two dimensions: (1) handwriting velocity assessed through
the number of characters written in five minutes and (2) handwriting quality on the five
first sentences of the text according to 13 items using a semiquantitative method (BHK
quality scores: Table 4.2). We calculated the final inter rater-reliability using intra-class
correlation, ICC = 0.97 (95% CI: 0.96-0.98). Finally, according to the normal scores by
age measured during the previous validation of the scale [82], we computed a qualitative
score (quality of the writing) and a quantitative score (speed of the writing).

In a previous work [21], 53 digital handwriting features were defined and used to train
a random forest classifier to diagnose dysgraphia. In this work, we only used the features
that were found to be the most important in the aforementioned random forest model
according to the Gini importance metric [21]. This means that all the features were sig-
nificantly different between TD and D based on a binary diagnostic classification (BHK
threshold). As expected, all digital features were significantly associated with continu-
ous BHK quality score when the models were applied on TD children and children with
dysgraphia (Table 4.4). To maintain a good balance and to compare the different groups
of features, we selected the three most important features for each of the following four
groups that we distinguished: static, pressure, kinematic, and tilt. In the following para-
graphs, we briefly provide their respective definitions (Table 4.2).

Static features

They are purely geometric characteristics of the written text. Among static features, we
selected: (1) Space Between Words, which refers to the distance between words averaged
for the entire text; (2) SD of handwriting density, where a grid with 300-pixel cells cov-
ering the entire range of the handwriting trace is created. The number of points recorded
by the Wacom tablet in each cell, if present, was stored in an array. The SD of this array
is represented by this feature. Also, (3) Median of Power Spectral of Tremor Frequencies
was included. Here, the tremors present in the handwriting of children can be calculated
for a given packet of points and can thus be described as a series. By doing so, we can
apply the usual time series analysis and, in particular, the Fourier transform and take the
median of the spectral distribution resulting from it. What we can observe from this is
that children having handwriting difficulties show abnormal movements that translate in
high frequencies in the Fourier transform, resulting in a shift of the median towards higher
frequencies.

Kinematic features

They regroup features describing the dynamic of the handwriting process. Among these
features, we selected: (1) Median of Power Spectral of Speed Frequencies. We can inter-
pret handwriting as a two-dimensional time series. In the same way as for the Median of
Power Spectral of Tremors Frequencies, a Fourier transform can be calculated as well as
the median of the spectral distribution resulting from it. We can observe very fast changes
of speed in the handwriting of children with dysgraphia. These abnormal changes of
speed are translated in high frequencies in the Fourier transform resulting in a shift of the
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median towards higher frequencies. (2) Distance to Mean of Speed Frequencies: This
feature refers to the distance between the spectral distribution of the writing of the child
under investigation and the writing of the typical child of the same age. The higher this
distance is, the more eclectic the handwriting of this particular writer is. (3) In-Air-Time
ratio: represents the proportion of time spent by the writer without touching the surface
of the tablet.

Pressure features

They regroup features using the notion of pressure measured between the pen tip and
the tablet surface. Among these features, we selected: (1) Mean Pressure, which is sim-
ply the average of all record points of pressure during the test’s duration and (2) Mean
Speed of Pressure Change, which was extracted by working with averaged buckets of 10
record points of pressure and dividing the time spent by the difference between these two
averaged bins of points. This feature is then computed by taking the mean of all measure-
ments. Also, (3) SD of Speed of Pressure Change was selected. This feature is computed
in the same way as the feature above: although, instead of applying the mean function,
we applied the SD to compute it.

Tilt features

They regroup features using the notion of tilt between the pen and the surface of the tablet.
Among these tilt features, we selected: (1) Distance to Mean of Tilt-x Frequencies: This
feature refers to the distance between the spectral distribution of the writing of the child
under investigation and the one from a typical child of the same age. The higher this dis-
tance is, the more eclectic the handwriting of this particular writer. Also, we selected (2)
The Bandwidth of Speed of Tilt-x Frequencies: In the same way as described above, the
Fourier transform of the two-dimensional time series can be calculated with the tilt-x logs
as well as the bandwidth of the spectral distribution resulting from it. For the tilt-x, we
can observe that children having handwriting difficulties present spreader tilt-x frequen-
cies and thus a larger bandwidth. Lastly, we included (3) Median of Power Spectral of
Tilt-y Frequencies. Here, the Fourier transform of the two-dimensional time series can be
calculated with the tilt-y logs as well as the median of the spectral distribution resulting
from it. For the tilt-y, we can observe that children having handwriting difficulties present
lower tilt-y frequencies and thus a lower median.

Statistical models

Since we selected the 12 digital features through machine learning classifying BHK scores
as threshold (binary classification), we considered inappropriate to use direct group com-
parisons (TD vs. D). To take into account the effect of age, and possible interactions
between a given digital feature and age, we applied linear regressions considering each
feature as a continuous variable to explain the BHK as a continuous variable without
consideration of the diagnosis threshold. To do so, each of the 12 digital features was
normalized in order to assess their effect in linear regression models.

To understand how a given digital feature is explaining or not BHK quality taking into
account grade and gender, a linear regression model per feature was created to predict
the continuous BHK quality score. This model was adjusted for grade and gender. In the
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same way, a model was created to predict the BHK speed score. The formulas can be
described as follows:

BHKScore∼Normalized(feature) + grade+ gender + ε

To understand how a given digital feature explaining continuous BHK changes ac-
cording to a child’s grade, a similar model with interaction [grade*Normalized(feature)]
was also created. In other words, the model can show the relative importance of a given
digital feature to diagnose dysgraphia according to age. As recommended in the BHK
manual, we selected the grade rather than the age to assess the effect on education, since
the writing process is learned at school and not spontaneously. The formulas can be de-
scribed as follows:

BHKScore∼Normalized(feature) + grade+ gender+

+grade ∗Normalized(feature) + ε
(4.1)

Since the distribution of the residuals was not normally distributed, a bootstrap anal-
ysis (with 10,000 replications) was performed to assess the 95% confidence intervals
(95%CI) and p values. These were respectively obtained by BCA (bias-corrected and
accelerated) bootstrap and percentile bootstrap with the R boot package. As said previ-
ously, we performed these analyses on the TD dataset only to explore how digital features
predict writing (BHK) quality and speed in TD children, then on the TD + D dataset to ex-
plore how digital features predict writing (BHK) quality and speed in a mixed population
that resembles a more realistic situation in the context of school detection of D children .

Clustering

Finally, we tested the theoretical classification of Deuel [113] by a K-means clustering of
our digital features, to assess how many clusters of patients had a similar profile and to
identify their main characteristics. We used the elbow method to explore the best numbers
of clusters.

4.3 Results

4.3.1 Participant’s demographics
Our first aim was to better characterize the children recruited from schools and to assess
whether or not few had dysgraphia. After clinical assessment of BHK tests of the 280
children from our dataset, we confirmed dysgraphia in all children recruited in the special
clinics and detected 13 (5.63%) children with dysgraphia among those recruited from
regular schools. Speed dysgraphia (slow writing) was observed in 12 children, with all of
them showing also qualitative dysgraphia (poor quality, legibility). Thus, we defined the
diagnostic category of dysgraphia based on the BHK quality score only. Therefore, after
re-annotation of all BHKs, our dataset was composed of 218 children in the control group,
without dysgraphia called the TD group, and 62 children in the experimental group, with
dysgraphia called the D group (see Figure 4.1).

Table 4.3 summarizes the main characteristics of the two groups. The TD and D
children had similar ages of around nine years on average despite a tendency of older age
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Figure 4.1: Annotation of the database with the BHK test defining children with dys-
graphia (writing quality too bad, BHK quality score too high) and children without
dysgraphia

in the group with dysgraphia. Most children were right-handed. There was a gender bias
(girls were underrepresented in the D group).

4.3.2 Handwriting acquisition
Handwriting explained from the BHK features

Figure 4.2 summarizes the handwriting quality and speed BHK scores for both the TD
and D datasets. As expected, we could see an improvement of the handwriting quality
(decrease of the BHK quality score) together with an increase of the writing speed with
the age of children. By definition, children with dysgraphia had a lower quality versus
TD children. Normalized score allow comparisons between grades. The cut-off for a
diagnostic of qualitative and quantitative (legibility and speed) dysgraphia is -2.

Handwriting explained from the digital features

Twelve digital features expressing handwriting on different aspects (static, kinematics,
pressure, and tilt) were selected from the work of Asselborn et al. [21]. In Figure 4.3, the
link between the digital features and the BHK raw quality score in terms of function of
the grade is presented (children without dysgraphia, TD dataset).

Since we selected these features on the basis of their importance on the simple binary
classification between children with or without dysgraphia, we wanted to assess whether
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Table 4.3: Descriptive statistics of the participants (TD and D)

TD group (No dysgraphia) D group (Dysgraphia) p-value
(n=218) (n=62)

Age: mean (SD) 8.7 (1.53) 9.13 (1.2) 0.056
Males/Females 108/110 44/18 0.003
Right-handed / Left-handed 190/28 57/5 0.30
BHK quality score: mean (SD) 14.41 (5.16) 27.09 (6.83) 0.001
Grade 1: mean (SD) n=48; 20.07 (5.39) n=1; 35.5 0.10
Grade 2: mean (SD) n=42; 13.17 (4.56) n=16;33.35 (6.22) <0.001
Grade 3: mean (SD) n=36; 13.6 (3.66) n=15; 26.99 (5.76) <0.001
Grade 4: mean (SD) n=44; 12.68 (3.4) n=20; 24.1 (4.75) <0.001
Grade 5: mean (SD) n=48; 12.02 (3.45) n=10; 22.37 (5.51) <0.001
BHK speed scores: mean (SD) 195.9 (94.6) 139.5 (86.6) <0.001
Grade 1: mean (SD) n= 48; 74.83 (18.32) n=1; 61,5 0.52
Grade 2: mean (SD) n=42; 152.29 (43.27) n=16; 70.4 (23.53) <0.001
Grade 3: mean (SD) n=36; 184.97 (42.43) n=15; 123.67 (47.36) <0.001
Grade 4: mean (SD) n=44; 262.27 (56.99) n=20; 160.78 (81.62) <0.001
Grade 5: mean (SD) n=48; 302.54 (50.42) n=10; 239.28 (103.53) 0.03

Non parametric (Wicoxon rank sum) tests were performed to compare BHK quality score for the 2 whole datasets and for each grade,
(SD for standard deviation, TD for Typically Developing, D for dysgraphia)

they were also able to explain the continuous BHK quality score (inverse of the handwrit-
ing writing quality) of both the D dataset and TD datasets. For this purpose, multivariate
linear regression models were used to compute the correlation between the 12 digital
features and the BHK scores (quality or speed).
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Figure 4.2: BHK quality and speed scores according to grade in children with typical
development and in children with dysgraphia
Raw score (left) and normalized score (right). Notice that the BHK quality score is a
degradation score. The higher the score is, the more the handwriting is impaired. The
speed raw score is the number of letters written during 5 minutes.
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Figure 4.3: The impact of the 12 digital features on the BHK raw quality score (op-
posite of handwriting quality) for children without dysgraphia (TD dataset) and for
all grades.
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Table 4.4: Multivariate models to predict the BHK quality raw score

Category Feature Dataset Feature esti-
mate

Cl95%
low

Cl95%
up p value

Static

Space Between Words TD 0.45 -0.11 1.05 0.116
TD + D -1.16 -2.15 0.008 0.033

SD of Handwriting Density TD 0.98 0.34 1.67 0.004
TD + D 2.09 1.03 3.04 <0.001

Median of Power Spectral of Tremor Freq. TD -0.25 -0.8 0.31 0.374
TD + D 1.39 0.68 2.19 0.001

Kinematic

Median of Power Spectral of Speed Freq. TD -0.48 -1.13 -0.03 0.038
TD + D 3.65 2.68 4.49 <0.001

Distance to mean of Speed Freq. TD 0.17 -0.29 0.9 0.479
TD + D 2.42 1.43 3.45 <0.001

In Air Time Ratio TD 0.85 0.23 1.52 0.006
TD + D 2.44 1.36 3.41 <0.001

Pressure

Mean Pressure TD -0.03 -0.65 0.57 0.935
TD + D -1.25 -2.07 -0.3 0.008

Mean Speed of Pressure Change TD 0.09 -0.58 0.84 0.793
TD + D -2.56 -3.51 -1.61 <0.001

SD of speed of Pressure Change TD -0.12 -0.9 0.61 0.769
TD + D -2.32 -3.3 -1.4 <0.001

Tilt

Distance to Mean of Tilt-x Freq. TD 0.42 -0.21 1.03 0.178
TD + D 3.35 2.54 4.1 <0.001

Bandwidth of Power Spectral of Tilt-x Freq. TD -0.22 -0.78 0.31 0.435
TD + D 2.2 1.17 3.06 <0.001

Median of Power Spectral of Tilt-y Freq. TD 0.16 -0.45 0.76 0.597
TD + D -2.46 -3.27 -1.65 <0.001

The higher the score, the lower the handwriting quality, for typically developing children only (TD dataset), and all children together
(TD + D dataset).

Quality association Table 4.4 shows the association between the digital features and
the raw BHK quality score (opposite of handwriting quality) for the children without dys-
graphia only (TD dataset) as well as for all children taken altogether (D and TD datasets).
As expected, since all these features already classified in a proper manner dysgraphia on
a simple binary classification in Asselborn et al. [21], all digital features were also signif-
icantly associated with continuous BHK quality score when the models were applied on
TD children and children with dysgraphia. However, only three digital features (out of
12) were significantly associated with the BHK quality score of TD children.

This finding is interesting, as it shows that the digital features seem to belong to two
groups: all of them are useful to explain the difference of handwriting quality between TD
children and children with dysgraphia, but only a few features are useful for predicting
the handwriting quality of TD children without dysgraphia. In other words, it means that
some features become interesting to predict the quality score only when the score is above
a certain threshold (i.e., the score only reached by children with dysgraphia as can be seen
in Figure 4.2). These features are the ones able to explain the quality difference between
children with dysgraphia and TD children.

As there are several potential causes of dysgraphia with different severities, the vari-
ability of handwriting is larger in the D dataset versus the TD dataset. In view of the
limited size of our D dataset, the interpretation of the digital feature acquisition of the
children with dysgraphia may be difficult. For this reason, we decided to focus our fea-
ture interpretation on the children without dysgraphia.

Among the three features able to explain the BHK quality score of children without
dysgraphia only, we found two kinematic features (Median Power Spectral Speed Fre-
quencies and In Air Time, respectively) and one static feature (Standard Deviation (SD)
of Handwriting Density). As can be seen in Table 4.4 and in Figure 4.3, the In Air Time
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Table 4.5: Multivariate models to predict the BHK speed raw score for typically
developing children (TD dataset), and all children together (TD + D dataset).

Category Feature Dataset Feature esti-
mate

Cl95%
low

Cl95%
up p value

Static

Space Between Words TD 5.55 0.01 11.46 0.057
TD + D 16.6 5.64 25.1 <0.001

SD of Handwriting Density TD -16.89 -23.5 -9.53 <0.001
TD + D -21.18 -29.19 -12.56 <0.001

Median of Power Spectral of Tremor Freq. TD 0.62 -4.76 6.05 0.831
TD + D -12.14 -18.47 -6.28 <0.001

Kinematic

Median of Power Spectral of Speed Freq. TD -6.24 -12.94 -1.32 0.013
TD + D -31.37 -38.65 -24.26 <0.001

Distance to mean of Speed Freq. TD 4.15 -1.39 12.1 0.09
TD + D -19.82 -27.34 -13.34 <0.001

In Air Time Ratio TD -21.37 -27.6 -14.85 <0.001
TD + D -27.71 -35.66 -19.62 <0.001

Pressure

Mean Pressure TD 4.91 -0.66 10.54 0.093
TD + D 9.13 1.67 16.33 0.012

Mean Speed of Pressure Change TD 5.43 -1.03 11.92 0.09
TD + D 23.45 15.66 31.55 <0.001

SD of speed of Pressure Change TD 17.81 11.35 24.28 <0.001
TD + D 29.96 22.09 37.89 <0.001

Tilt

Distance to Mean of Tilt-x Freq. TD -1.84 -6.21 2.87 0.424
TD + D -18.76 -24.55 -13.49 <0.001

Bandwidth of Power Spectral of Tilt-x Freq. TD 0.31 -5.89 6.87 0.929
TD + D -12.96 -19.65 -6.26 <0.001

Median of Power Spectral of Tilt-y Freq. TD 4.41 -1.23 10.52 0.118
TD + D 19.59 13.96 25.94 <0.001

Ratio as well as the SD of Handwriting Density are positively correlated with the BHK
quality score. This means that a reduction of the In Air Time Ratio or the SD of Hand-
writing density is with an increase in the quality of handwriting (i.e., the lower the score
is, the better the quality is). Separately, the Median Power Spectral of Speed Frequency
was negatively correlated with the BHK quality score-in other words, the higher the value
of this feature is, the better the handwriting quality is.

Speed association Concerning the BHK speed score, the same three features were sig-
nificantly correlated with the BHK speed score of TD children.

A fourth one namely, the SD of Speed of Pressure Change, was also found to be sig-
nificantly associated (see Table 4.5). The Median of Power Spectral of Speed Frequencies
was found to be negatively correlated with the BHK speed score, meaning that, the lower
this feature is (indicating a less brutal change in handwriting speed), the higher the speed
of handwriting will be.

In the same way, the In Air Time Ratio was found to be negatively correlated with the
handwriting speed (a reduction in the time the child has the pen not touching the paper
will result in more time spent writing and thus a higher handwriting speed) as well as the
SD of Handwriting density (which can be interpreted as the fluctuation in the handwriting
size). Finally, the SD of Speed of Pressure Change was found to be positively correlated
with the handwriting speed. Clinically, this feature can be linked with the automation of
the pen movement (i.e., the child has a better control of the pen if he/she is able to change
the pressure of the pen in different ways).

Interaction of the digital features with grade Considering a developmental analysis
of handwriting, we used multivariate models to predict children’s BHK scores (quality
and speed), taking into account the digital feature, the grade, the gender, but also the in-
teraction between the feature and the grade. Results of the interaction are reported in Table
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Table 4.6: Multivariate models with interaction to predict the BHK quality raw score

Category Feature Dataset Feature * grade esti-
mate

Cl95%
low

Cl95%
up p value

Static

Space Between Words TD -0.72 -1.18 -0.31 0.001
TD + D -1 -1.62 -0.38 0.001

SD of Handwriting Density TD -0.77 -1.2 -0.35 0.001
TD + D -0.44 -1.06 0.26 0.197

Median of Power Spectral of Tremor Freq. TD 0.22 -0.17 0.6 0.237
TD + D 0.16 -0.35 0.63 0.527

Kinematic

Median of Power Spectral of Speed Freq. TD 0.52 0.08 0.92 0.003
TD + D -0.42 -1.27 0.34 0.357

Distance to mean of Speed Freq. TD -0.5 -0.89 -0.07 0.04
TD + D -0.8 -1.48 0.09 0.073

In Air Time Ratio TD -0.48 -0.92 -0.03 0.04
TD + D -0.15 -0.78 0.53 0.637

Pressure

Mean Pressure TD -0.18 -0.57 0.2 0.333
TD + D 0.26 -0.23 0.75 0.313

Mean Speed of Pressure Change TD 0.54 0.04 0.94 0.023
TD + D 0.45 -0.29 1.14 0.216

SD of speed of Pressure Change TD 0.82 0.38 1.24 0.001
TD + D 0.46 -0.15 1.05 0.12

Tilt

Distance to Mean of Tilt-x Freq. TD 0.02 -0.36 0.42 0.891
TD + D -0.52 -1.2 0.3 0.218

Bandwidth of Power Spectral of Tilt-x Freq. TD 0.43 0.03 0.84 0.028
TD + D -0.11 -0.81 0.59 0.774

Median of Power Spectral of Tilt-y Freq. TD -0.05 -0.53 0.44 0.852
TD + D -0.09 -0.76 0.58 0.755

The higher the score, the lower the handwriting quality) for typically developing children (TD dataset) and all children together (TD
+ D dataset).

4.6 for the BHK quality score and in Table 4.7 for the BHK speed score, respectively.
Quality interaction:
Once again, we can see that the interaction between handwriting digital features and

grade seems to be different between children with dysgraphia and TD children. If we
consider the features of the TD children alone, eight of the 12 features present a statis-
tically significant interaction with grade to predict BHK quality, while only one (Space
Between Words) is significant if we add the children with dysgraphia to the dataset on
which the model is applied (Table 4.6). We believe that this can be explained by the fact
that children with dysgraphia show a very different handwriting manner (and thus very
different digital features) and present a significantly higher heterogeneity in their writing
(and thus more spread-out) as compared with TD children, which brings additional noise
to the model and avoids us from finding significant interactions.

For the same reasons as before, we decided to focus our interpretation on TD children
only. As can be seen in Figure 4.3 and Table 4.6 an interaction between most of the
digital features with the grade was found to predict the BHK raw quality score. Only
two tilt features (Distance to Mean of Tilt-x Frequencies, Median of Power Spectral of
Tilt-y Frequencies), one static feature (Median of Power Spectral of Tremor Frequencies)
as well as one pressure feature (Mean Pressure) did not present a statistically significant
interaction with the grade. This result shows that the predictive value of most features
changes with the grade. In other words, most of them are either useful for detecting
the quality of the writing for the younger or for the older children. A typical example of
this can be found with the Space Between Words: this feature is positively associated with
BHK score in first grade and becomes negatively associated by fifth grade (see Figure 4.3).
In other words, as the child is progressing in his/her school curriculum, the Space Between
Words feature becomes more and more so a negative predictor of the BHK quality score
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Table 4.7: Multivariate models with interaction to predict the BHK speed raw score
for typically developing children (TD dataset) and all children together (TD + D
dataset).

Category Feature Dataset
Feature
* grade
estimate

Cl95%
low

Cl95%
up p value

Static

Space Between Words TD 1.24 -2.81 5.33 0.52
TD + D 8.64 3.25 13.96 0.003

SD of Handwriting Density TD -0.1 -4.37 4.69 0.948
TD + D -3.14 -8.97 3.58 0.318

Median of Power Spectral of Tremor Freq. TD 1.22 -2.21 4.87 0.514
TD + D -2.47 -6.66 1.65 0.203

Kinematic

Median of Power Spectral of Speed Freq. TD 3.27 -0.02 7.39 0.039
TD + D -4.4 -10.83 3.09 0.223

Distance to mean of Speed Freq. TD -4.32 -7.62 -0.5 0.038
TD + D -7.85 -15.72 -0.53 0.005

In Air Time Ratio TD -2.29 -6.46 2.12 0.279
TD + D -9.29 -14.64 -3.69 0.001

Pressure

Mean Pressure TD 3.89 0.55 7.61 0.028
TD + D 2 -2.19 6.26 0.337

Mean Speed of Pressure Change TD -2.11 -6.14 1.96 0.306
TD + D 2.84 -2.28 8.47 0.299

SD of speed of Pressure Change TD 1.56 -2.03 5.32 0.391
TD + D 5.7 1.28 10.28 0.009

Tilt

Distance to Mean of Tilt-x Freq. TD -2.52 -6.27 1.83 0.206
TD + D -3.64 -10.46 1.68 0.209

Bandwidth of Power Spectral of Tilt-x Freq. TD -1.93 -6.54 2.78 0.407
TD + D -0.64 -6.59 4.93 0.832

Median of Power Spectral of Tilt-y Freq. TD -1.94 -6.09 2.19 0.346
TD + D 4.43 -1.15 9.8 0.111

(and thus a positive predictor of handwriting quality).
Speed interaction:
Models with interaction between features and grade to predict BHK speed are pre-

sented in Table 4.7. In the TD dataset, two kinematic features (Median of Power Spectral
of Speed Frequencies and Distance to Mean of Speed Frequencies) and one pressure
feature (mean pressure) showed a significant interaction. When models were applied in
TD+D dataset, two kinematic features (Distance to Mean of Speed Frequencies and In Air
Ratio), one static feature (Space Between Words) and one Pressure feature (SD of Speed
of Pressure Change) showed a significant interaction with grade to predict speed.

Interestingly, Space Between Words is the only feature that interacts with grade to
predict both BHK quality and speed in the TD+D dataset. It becomes increasingly posi-
tively correlated with the BHK speed score with the increase in the child’s grade, which
means that, at the beginning of the school curriculum, the space that children put between
words is not a significant predictor of handwriting speed, but becomes a stronger one as
the child continues in his/her school education.

4.3.3 A new clustering of dysgraphia

Most of the classifications of dysgraphia are based on comorbidities (e.g., dyslexia, at-
tention problems, motor acquisition problems). A more precise description of dysgraphia
should take into account the peculiar objective characteristics of handwriting. To do this,
we used a K-means clustering algorithm with our 12 digital features as input. Using the
elbow method to explore the best number of clusters, we found that three clusters was an
optimal number according to the majority rule (see Figure 4.4).

Regarding the final model, the Hopkins statistic was 0.35 and the clusters’ stability
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Figure 4.4: Elbow method to characterize the optimal number of clusters

were satisfactory (cluster 1: 0.87, cluster 2: 0.89 and cluster 3: 0.84). As can be seen in
Table 4.8, individuals from each cluster had the following attributes:

Children from cluster 1 (n = 13) presented the less severe type of dysgraphia, with
girls and older children being over-represented. Their BHK speed score was significantly
higher. Also, they tended to have better BHK quality normalized Score (meaning better
handwriting quality) (Table 4.8). Concerning the digital features, it was interesting to
see a significantly lower value (as compared with the other two clusters) of the Median of
Power Spectral of Speed Frequencies, meaning that the variation of the handwriting speed
is slower for these children (i.e., the transition between low and high speeds is smoother).
In addition, the SD of Speed of Pressure Change was found to be significantly higher, also
suggesting a better automation of the pen movement. An example of this feature can be
found in Figure 4.5, where we can see that the Speed of pressure Change of a child with
dysgraphia (from cluster 2) stays relatively constant as opposite to that in the handwriting
example of the TD child.

Children from clusters 2 and 3 were all recruited from a specialized clinic, meaning
that they presented more severe cases of dysgraphia. As can be seen in Table 4.8, a statis-
tically significant majority of these children were boys, which appears to be in line with
the findings of previous studies [2, 82]. Concerning the digital features, children from
cluster 2 (n = 25) were characterized as having a lower Space Between Words versus the
two other clusters and particular abnormalities in the speed frequencies as well as the
pressure features (see Table 4.8). The Distance to Mean of Speed Frequencies was found
to be statistically higher here than in the two other clusters, meaning that these children
were the most eclectic, regarding the way their handwriting speed was changing. The
accelerations (and decelerations) of the handwriting speed were more abrupt, suggesting
a lack of automation in the control of the speed (i.e., more jerk recorded). The other fea-
tures for which children from cluster 2 were noted to be particularly different were the
pressure features. As can be seen in the example of Figure 4.5, children from cluster 2
were using a much smaller gaps of pressure while writing (i.e., the pressure stays rela-
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Table 4.8: Mean digital features value of each features according to their clustering.
Demographic characteristics and BHK scores of children with dysgraphia corre-
sponding to the 3 clusters

Category Feature Cluster 1 (n = 13) Cluster 2 (n = 25) Cluster 3 (n = 24) p-value

Statics
Space Between Words 1.3·103(3·102) 7.2·102(2.9·102) 1.4·103(6·102) <0.001
Median of Power Spectral
of Tremor Freq. 3.2·10−3(1.5·10−4) 3.3·10−3(9.7·10−5) 3.3·10−3(1.2·10−4) 0.055

SD of Handwriting Den-
sity 1.7·102(73) 2.3·102(1.3·102) 2.5·102(1.2·102) 0.161

Kinematics

Median of Power Spectral
of Speed Freq. 1.4·10−3(1.6·10−4) 2.2·10−3(2.8·10−4) 1.9·10−3(2.8·10−4) <0.001

Distance to mean of Speed
Freq 2.1·10−4(9.6·10−5) 7.7·10−4(3.5·10−4) 4.1·10−4(2.7·10−4) <0.001

In Air Time Ratio 5.3·10−1(7.8·10−2) 5.9·10−1(1.1·10−1) 6·10−1(1.4·10−1) 0.104

Pressure
Mean Pressure 4.6·102(1.4·102) 3.2·102(1.1·102) 4.6·102(1.4·102) 0.001
Mean Speed of Pressure
Change 3.1·10−1(1.3·10−1) 3.8·10−2(3.5·10−2) 6.5·10−2(5.6·10−2) <0.001

SD of speed of Pressure
Change 28(7.5·10−1) 13(4·10−1) 20(5.1·10−1) <0.001

Tilt

Median of Power Spectral
of Tilt-y Freq 3.3·10−3(1.5·10−5) 3.3·10−3(3.1·10−5) 3.3·10−3(5.5·10−5) 0.001

Distance to Mean of Tilt-x
Freq 2.3·10−4(3.3·10−5) 2.8·10−4(9.6·10−5) 6.3·10−4(1.9·10−4) <0.001

Bandwidth tilt x Freq. 3.4·10−3(2.8·10−4) 3.5·10−3(3.8·10−4) 4.4·10−3(2.9·10−4) <0.001

Clinical
description

Grade 4.08 (0.86) 3.32 (1.18) 3.00 (0.93) 0.016
Gender (F/M) 8/5 4/21 6/18 0.016
Laterality (L/R) 0/13 1/24 4/20 0.212
Recruited in Specialized
Clinic 0 25 24 <0.001

BHK quality Score -2.73 (0.65) -3.49 (1.25) -3.44 (1.41) 0.109
BHK speed Score 0.46 (1.16) -1.24 (1.00) -1.10 (0.91) <0.001

The clustering was done on the digital features only
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tively more constant during the handwriting) in comparison with TD children.
Children from cluster 3 (n = 24) were characterized by abnormalities in terms of tilt fea-
tures. As can be seen in Figure 4.5, children from this cluster had troubles with smoothly
changing the inclination of their pen (i.e., the transition between low and high speeds of
tilt change was found to be less constant versus in TD children).

Figure 4.5: Comparisons of the SD of speed of pressure change and Bandwidth of
Speed of Tilt-x Change Frequencies for the children without dysgraphia from the
3 different clusters. Examples of writing from a child with the most severe difficulties
from cluster 2 and cluster 3 are shown.

4.4 Discussion

The clinical annotation of our dataset found 13 (5.63 %) children with dysgraphia in
schools. This appears consistent with the 5%-10% prevalence rates reported in the liter-
ature as well in the most recent French study [82]. Among these 13 cases of dysgraphia,
one child was currently in the first grade. This aligns with the fact that children who are
referred to specialized clinics for dysgraphia are usually older. This could be explained
by the delay existing between the handwriting training and the early signs of alerts that
lead to referrals (in France, the diagnostic of dysgraphia is not recommended prior to the
second grade).

On the basis of the clinical annotation of the database defining two datasets (TD
children vs. children with dysgraphia), a study was performed to investigate children’s
handwriting acquisition based on BHK clinical assessment [82] and a set of digital fea-
tures [21].
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4.4. Discussion

From the 12 digital features we selected in this work, it was interesting to notice
that only three of them were significantly correlated with the BHK quality score of TD
children (without dysgraphia), while all of them were significantly correlated when con-
sidering the whole sample (TD and D dataset). In other words, it seems that some of the
digital features are not useful in explaining the handwriting quality of TD children. From
the three features associated with the handwriting quality of TD children, two of them de-
scribe handwriting on a kinematic aspect and one describes such on a static aspect. None
of them were features associated with the pressure or tilt aspect of handwriting, while
these are strongly associated in children with dysgraphia [21, 273]. These results suggest
that the pressure and tilt aspects of handwriting may be particularly central aspects of
dysgraphia [21, 337, 394].

In terms of clinical relevance, our findings show the limitation of the current clini-
cal tests used to assess handwriting quality, as the digital features are for the moment
neglected due to the technology used (pen and paper tests). They also prove the benefit
digital tablets can bring in the assessment of handwriting. In terms of remediation, it may
also be particularly interesting to place more emphasis on these aspects of handwriting,
for example by using gaming activities designed on digital tablets in which pressure or
tilt can be integrated and manipulated. Indeed, in other fields of learning (e.g., emotion
recognition; attention), serious games have shown great attraction and clinical interests
for children with neurodevelopmental disorders [61, 164]

In contrast with traditional classifications of dysgraphia that are based on children’s
comorbid problems such as dyslexia, attention deficit or motor-coordination impairment
like in the Deuel classification, [113], we established a new clustering of children with
dysgraphia based on low-level motor aspects of handwriting including static, kinematic,
pressure and tilt features. The K-means clustering based on our 12 digital features yielded
three different subgroups. Cluster 1 gathered children with the less severe cases of dys-
graphia, including more girls and those with normal speeds. Clusters 2 and 3 included
children with the most severe cases of dysgraphia with a preponderance of boys. Chil-
dren in cluster 2 presented abnormalities in terms of kinematics and pressure, while chil-
dren in cluster 3 displayed abnormalities in terms of tilt. We do not know whether the
clustering introduced in this paper overlaps with existing classifications and in partic-
ular the one proposed by Deuel [113], since the sample size each cluster too small to
compare the disorders of the children. We hope to perform such a study in the near fu-
ture. As expected [2,82], we found that a majority of children with dysgraphia were boys
(71%) [82,113,367]. The most severe clusters were also the clusters including more boys.
Although being left-handed is believed to be associated with handwriting difficulties in
folk psychology [163], we did not find that handedness mediated either BHK scores or
clustering of the children with dysgraphia.

The current study needs to be interpreted with consideration of both its strengths and
limitations. Digital tablets can measure several features that are relevant to better under-
stand and classify children with dysgraphia. On the basis of the results of this study, we
plan to move forward with the development of new handwriting tests capable of running
on digital tablets (e.g. an Ipad®) for the purpose of helping the diagnosis of handwriting-
acquisition deficit. However, the handwriting data used in this study were acquired in an
ecological setting since the children wrote on a paper attached on the tablet. Several stud-
ies show that the friction between a pen and a sheet of paper might be very different from
the one of a stylus and the surface of some digital tablets [167]. As this friction difference
may have an impact on the handwriting, a new database of handwriting traces should be
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acquired on a digital tablet to investigate such potential differences.
Secondly, the digital tablets used for the handwriting acquisitions in school and in the

specialized clinic were different (Wacom Intuos 3 in specialized clinic vs. Wacom Intuos
4 in school). Despite a careful calibration, the difference in material may have affected
some technical aspects of the feature recording. However, to assess whether pressure
registration differed between the two tablets, we performed the following experiment:
with the pen vertically positioned on the surface of the tablets, 15 different weights were
used as an input while the values returned by each tablets were logged. We modelled
inputs and outputs in each tablet and between tablets. The correlation found were above
0.99 (p < 0.001), meaning that the impact was likely limited [22].

Finally, it is possible that the transversal design of this study cannot allow for the
longitudinal assessment of the development of a typical child or a child with dysgraphia
from one grade to another. We believe it will be important to assess the evolution of these
digital features longitudinally within the same child during learning or rehabilitation.

Future studies would take into account the RDoC approach of comorbidities presented
in section 1.4, instead of clinical categorical diagnosis (presented in Table 4.1), to better
understand the interconnection between these dimensional difficulties and the underlying
neurobiological difficulties.

4.5 Conclusion
In the previous chapters, we showed how we could tackle the limitations of BHK by using
tablets to measure and study handwriting features acquired electronically from dynamic
measures (Figure 4.6). The current results open new opportunities for the automatic de-
tection of children with dysgraphia more widely available, for instance in classroom. We
also believe that the training of pressure and tilt dynamically may open new therapeutic
opportunities through serious games able to manipulate these features.

Data and code availability
The data set that served for statistical analyses performed in the manuscript are available
at the following repository (http://osf.io/d845e). The raw data set cannot be shared pub-
licly because of ethical restrictions. Even if the data are de-identified, part of them have
been acquired in a medical context and contain sensitive patient information. In addi-
tion, the parents of all participants did not give an explicit consent to disclose publicly
the basic demographic information and writing tests of their child. The ethics agree-
ment obtained from the University Ethics Committee for this study did not authorize
public disclosure of participants’ data. We share here an example of writing of a child
whose parents gave informed consent for sharing. The complete dataset can be ob-
tained upon request from LPNC: caroline.jolly@univ-grenoblealpes.fr or Psychiatrie de
l’Enfant et de l’Adolescent, Pitié Salpêtriére - Charles Foix: hugues.pellerin@aphp.fr and
isabelle.babilaere@aphp.fr
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Figure 4.6: Review of the automatic handwriting features analysis pipeline
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The following chapter, shows how we can use a robotic platform to better understand
the process of handwriting longitudinally. We took also into account the measure of the
posture beyond the fine motor skill themselves. During a rehabilitation of a clinical case
tackling these writing difficulties, we modelized how affective processes in a child-robot
interaction could foster the motivation of children. Based on the identification of the
different aforementioned domains of handwriting, we proposed specific exercises.
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Chapter 5

Tablets to guide the rehabilitation of
dysgraphia

“Car cette propriété de créer, de créer de l’information à partir de l’expérience mémorisée
et grâce à l’imaginaire, tout homme non handicapé mental la possède à la naissance. S’il
la perd c’est son environnement qui en est responsable. [...]

Aussi faut-il ressentir beaucoup de pitié et de sympathie pour tous ces châtrés
de l’imaginaire qui déversent leur hargne, leur rogne, comme disait l’autre, contre le
marginal qui déambule en promenant son rêve dans les jardins fleuris où nulle rosette ne
pousse.”

Henri, L. (1974). La nouvelle grille. Laffont, 1974, Paris.

The first study of this chapter is published under the title “The CoWriter robot:
improving attention in a learning-by-teaching setup” by Le Denmat, P., Gargot, T.,
Chetouani, M., Archambault, D., Cohen, D., & Anzalone, S. (2018, November). In 5th
Italian Workshop on Artificial Intelligence and Robotics A workshop of the XVII Inter-
national Conference of the Italian Association for Artificial Intelligence (AI* IA 2018).

The second study of this chapter is published under the title “It is not the robot who
learns, it is me” Treating severe dysgraphia using Child-Robot Interaction by Gargot,
T., Asselborn, T., Zammouri, I., Brunelle, J., Johal, W., Dillenbourg, P., Archambault
D., Chetouani M., Cohen D., & Anzalone, S. M. (2021), Frontiers in Psychiatry, 12, 5.
Child and Adolescent Psychiatry, Research Topic: Serious Games in Neurodevelopmental
Disorders.
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Abstract
Introduction

Writing disorders are frequent and impairing. Rehabilitation requires intensive and
long handwriting training in a motivating environment, without fostering anxiety of the
children. Social robots may help improving children’s motivation and proposing enjoy-
able and tailored activities.

Materials and methods
Here, we used the CoWriter scenario in which a child is asked to teach a robot how to

write via demonstration on a tablet.
Results
In a first study, we show that the embodiement of the robot improve the quality of the

interaction of adults during a short-term robot interaction. In a second study (combined
with a series of serious games we developed to train specifically pressure, tilt, speed and
letter liaison controls), we used this set-up in a pilot clinical context to assess feasibil-
ity. This set-up was proposed to a 10-year-old boy with a complex neurodevelopmen-
tal disorder combining Phonological Disorder, Attention Deficit/Hyperactivity Disorder,
Dyslexia, and Developmental Coordination Disorder with severe dysgraphia. Writing im-
pairments were severe and limited his participation to classroom activities despite 2 years
of specific support in school and professional speech and motor remediation. We imple-
mented the set-up during his occupational therapy for 20 consecutive weekly sessions.
We found that his motivation was restored; avoidance behaviors disappeared both during
sessions and at school; handwriting quality and posture improved dramatically.

Discussion
In conclusion, treating dysgraphia using child-robot interaction is engaging, feasible

and improves writing. Larger clinical studies are required to confirm that children with
dysgraphia could benefit from this set up.

5.1 Introduction
Together with the difficulties of a correct assessment of DCD and, in general, NDD in-
cluding the specific dimension of writing [415], recent studies have shown that several
factors can limit the effectiveness of such interventions [103, 290]. Specifically, most
of those programs do not target school-aged children and are not proposed to occur in
a school setting, a favorable location for intervention on NDD. On the contrary, many
treatments are conducted at the hospital in very “artificial contexts”, during episodic ob-
servations, bringing a “lack of intensiveness” and a “poor individualization” of the inter-
vention. To tackle these issues, the use of technologies has been proposed to achieve a
continuous [13, 14, 152, 211], long-term observation of the children, allowing a tailoring
of the therapies to the specific needs of the child. In particular, the implementation of new
protocols involving Information and Communication Technologies (ICT) can facilitate a
gradual shift from hospital settings to more natural environment, ideally the home of chil-
dren [53]. This shift will push towards a major involvement of the families and possibly
an earlier intervention that is highly recommended. At the same time, ICT can simplify
the implementation of complex protocol as well as the use of complex devices, such as
Electroencephalographs (EEGs), that can be delivered to the families. Technology would
also permit a richer understanding of individuals: in classical approaches, the behavior of
the child is assessed at the laboratory, during episodic observations; in contrast, ICTs will
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consent a fine, continuous, long-term observation of the children, allowing a finer tailor-
ing of the therapies, treating each “unique” child for his “unique” problem. Recently, an
increasing number of research teams have focused on the use of social robots in behav-
ioral treatment [115, 313, 355]. Although most research in this field may be regarded as
preliminary by clinicians, those kinds of robots emerged as an important tool for children
because of the various advantages their use could bring to the therapy, regarding:

• Complexity: social robots in NDD therapy could simplify the inner complexity of
the social interactions. While interacting, people exchange an enormous amount of
information in both verbal and non-verbal forms (speech, words, prosody, facial ex-
pressions, emotions, proxemics, and so on). As social robots are entirely controlled
by robot programmers, the behaviors they can express and the interaction proposed
could be very simple and predictable. Clinicians and robotics engineers can take
advantage of this, developing new experimental protocols using social robots, fo-
cusing just on one or few aspects of the interaction, simplifying the cognitive load
required to “decode” such interactions.

• Embodiment: social robots can communicate and interact in a multimodal way
with children, but, unlikely to serious games, avatars, or other software agents, they
have their own “physical presence” in the real world [25, 211, 223, 315]. The em-
bodiment of social robots will permit physical explorations and interactions with
the environment [231] as well as a communication with people based also on ges-
tures and touch, widening the possibility of their employment in therapeutic proto-
cols [52].

• Shape: android, human-like, animal-shaped, non-anthropomorphic colored toy: the
shapes of social robots used in NDD therapies are different, according to their role
in the interaction and to the goal of the interaction itself. In any case, the shape of
the robot should contribute to the reduction of the stress of the children during the
experiment, making them comfortable and at ease [355, 362].

Studies involving social robots in NDD focus on several targets. Scassellati suggested
their use as tools for clinicians to diagnose, treat, and understand NDD [354,355], propos-
ing in particular quantitative metrics of social response for autism diagnosis. According
to this idea, several works [?, 52] focused on the use of robots as a convenient instrument
of clinical research to induce behaviors on children and widen the description of NDD.
Cabibihan proposed also some design requirements that should be considered while de-
veloping social robot in the specific case of ASD [65]. Dautenhahn employed social
robots as therapeutic tool for children with autism [100], focusing in particular on social
interactions [331] and joint attention [332]. Others focused on improving eye contact
and self-initiated interactions, turn-taking activities, imitation, emotion recognition, joint
attention and triadic interactions. See [313] for a systematic review. The state of the art
shows us that social robot have potential to engage children in well-structured and adapted
therapy. Together combined with the other metrics from pen and postural data, we believe
that we can build a complete system to evaluate and train TD and NDD children to gain
better handwriting and fine motor skills.

The CoWriter research project aims to help children with handwriting difficulties us-
ing learning by teaching: the child plays the role of the teacher and the robot acts as a
peer (a learner) asking for help to improve its handwriting (Figure 5.1). This approach
and has several advantages. Firstly, it increases the child’s self-esteem as he/she becomes
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the one who “knows and teaches”, instead of being the worst student in the classroom.
Secondly, it has a positive effect on the child’s motivation, as he/she feels responsible
for the robot [204] and puts more effort to the task. This particular interaction where the
child feels responsible of the robot is called the Protégé effect [206,242]. We hypothetize
that this set-up could also be beneficial for patients in their remediation by engaging them
longer in the handwriting tasks.

Figure 5.1: The CoWriter set-up: the user teaches the robot how to write.

The CoWriter scenario has been used so far during short child-robot interactions in
order to evaluate the importance of child-robot setting arrangement [208], child attention
[241], speed of learning of the robot [81, 204], as well as effect of collaborative learning
[126].

5.1.1 Importance of the embodiment of the robot

In this experiment [236], we explored the role in this scenario of the robot, comparing
users performances in three different conditions: handwriting sessions with the CoWriter
robot; handwriting sessions with a virtual agent; handwriting session with the tablet only,
guided by a voice (Figure 5.2). The hypothesis is that the social robot would be able to
elicit an higher attention than the virtual agent or the vocal guide.

We conducted a pilot study to assess (1) the usability of the setup in a laboratory
setting and (2) to assess the relevance of the embodiment of the character in a robot
compared with a simple voice or avatar. This study was conducted with 12 adults (7 males,
between 12 and 31 y.o.) during one short session. We asked each participant to write 5
different words to improve the writing of the robot. The assessment of the interaction
was self-rated by the participants on a standardised scale, the Networked Minds Social
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Figure 5.2: The 3 variations of the learning-by-teaching scenario implemented with
3 different levels of embodiment.

Presence Inventory that measure the perceived social presence during an interaction. It is
composed of 6 questions, using a 1-7 Likert scale. It allows to compute 4 dimensions:

• the Co-Presence: the user’s awareness of the presence of the interaction partner;

• Attentional allocation: the perceived attention received by the partner as well as the
attention allocated towards the partner;

• Perceived message understanding: the bidirectional communication understanding
between the partners;

• Perceived behavioral interdependence: the mesure of the degrea of the mutual be-
havioral connection between the partners.

An ANOVA test, found a significant difference in the co-presence that was better in
the robot setting than in either the voice or in the avatar setting. The attention allocation
was better in the robot setting than with the voice only, but without differences with the
virtual agent setting. However, the ANOVA test was not able to reveal any effect in the
Perceived message understanding dimension (F2,22 = 1.16; p = 0.33) as well as in the
Perceived behavioral interdependence dimension (F2,22 = 1.56; p = 0.23).

This study highlights that participants feel more the physical presence of the robot
than its virtual agent. It is surprising, however, to note the absence of difference between
the virtual agent and the voice. Results on the Attention allocation highlight how the robot
is able to elicit more compliance than the vocal guidance. It should be noted in this case
the absence of difference between the virtual agent and the robot. Such results can also
highlight the possibility of the agent of capturing too much the attention of the user, acting
as distraction of the task. The absence of difference in the two other dimensions, Perceived
message understanding and Perceived behavioral interdependence, is not strange due to
the particular task chose. In particular, the presence of a physical robot or a virtual agent
seems does not impact on the comprehension of the exchange. At the same time, it is
possible to hypothesize that the interpersonal exchange is too simple to be impacted by
the presence of the artificial agents.
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5.1.2 ”It is not the robot who learns, it is me”

Is it possible to use this set-up during long-term interaction? Can we use electronics
sensors and algorithms to better describe and guide the progress of a child? In this study,
we updated the CoWriter software with serious games activities in order to do a step-by-
step training and make the activities more diverse and engaging. Thus, we could perform
a long-term child-robot interaction in a clinical context.

Patient’s characteristics prior training
R. was an 8-year-old boy when he was assessed for severe dysgraphia and refusal to

write at school. In the past, he tried to break his pen during writing due to frustration
and anger, and he needed to repeat his first grade because of lack of writing acquisition (a
practice tolerated in France). His parents divorced when R was 3 years old. Family his-
tory showed that R’s father and mother both had dyslexia, and R’s mother had postnatal
depression. Personal history included a week of postnanal hospitalization following deliv-
ery with forceps and ventilation mask. Apgar scores were 3, 8, 9 and 10. Weight at birth
was 2975 g with normal cranial perimeter and size. R’s early development was marked by
psychomotor agitation. He received physiotherapy at age 1 year. He started to walk at 13
months, but walking was very unstable with a lot of falls. Oral language was subnormal
but R had early phonological impairments and he was not understandable when speaking
in kindergarden. At age 5 years, he entered a classroom with special education. At age 6
years, he received a diagnosis of Attention Deficit with Hyperactivity disorder (ADHD),
and a treatment with methylphenidate (30mg/day) began. When R. was admitted to our
department, we conducted an in depth assessment summarized in Table 5.1. He was di-
agnosed with ADHD, severe dyslexia, and Developmental Coordination Disorder (DCD)
with severe dysgraphia that were impairing for schooling. At age 8, he was refusing to
use any kind of pens.

In addition to methylphenidate, R received remediation sessions with a reading spe-
cialist and was admitted to our special school for multidimensionally impaired chil-
dren [416]. Given the severity of DCD and dysgraphia, R. also started specific reme-
diation for writing every week (40-minute session) with an occupational therapist. The
therapist was limited in R’s remediation since he was complaining about writing. The
sessions were anxiogenic; he tried to break his pencil when frustrated. The training was
progressive to help the child to improve self-confidence and avoid learned helplessness.
However, after one year the validated testing (BHK see method) was still impossible to
score and R refused to use a pencil in classroom. We therefore discussed with R. and his
parents to train handwriting with the CoWriter set up.

5.2 Materials and methods

5.2.1 CoWriter set up

The CoWriter set up was built in order to combine functional training and cogni-
tive/affective processes during remediation (Figure 5.3). The goal was to stimulate in
parallel relativizing and responsibility, on the one hand, and handwriting training, on the
other hand. The global architecture of the set-up is detailed in a video demo summarizing
the 20 sessions https://ieeetv.ieee.org/a-cowriter-robot-david-cohen. The first component
of the set-up is a software that allows the extraction of handwriting automatic features
(static, kinematic, tilt and pressure) from a computer tablet during writing. The Wacom
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Table 5.1: Patient’s characteristics

Assessment: age Results Comments

Wechsler Intelligence Scale for
Children (WISC IV): 7 years

Verbal Comprehension Index: 120

Perceptual Reasoning Index: 107

Working Memory Index: 73

Processing Speed Index: 109

Agitation was important during testing. The cognitive eval-
uation shows heterogeneous abilities. Verbal abilities were
excellent. Attention was poor especially for memory task.

Autism diagnostic Interview-
Revised: 5 years

Social interactions: 9 (threshold=10)

Verbal communication: 6 (threshold=8)

Stereotyped behaviors: 7 (threshold=3)

Development score: 4 (threshold=1)

R had subliminal social difficulties and significant repetitive
behaviors. Diagnosis of autism was not retained at age 8
from direct assessment.

Language assessment (Age 7 and 8
months)

Oral language

Phonology: all scores are pathological
(-1.9 to -6.8 SD) from mean

Lexicon reception: all scores in the
average range.

Lexicon expression: normal score for
concrete vocabulary,
-2 SD for abstract lexicon

Syntax reception: all scores in the average
range.

Syntax expression: all scores in the
average range (-1 SD)

Written language

Reading acquisition has not started yet and
assessment is impossible

Severe phonological disorder but good
other oral language abilities

Severe dyslexia that could only be
assessed using tasks for the first trimester
of the first grade (6 years in France) in
which all scores ranged between 6 and 30
percentiles.

Language assessment (Age 10)

Written language using reading tests
based on second grade (6 years in France)

Word identification score of non-words is
-3.5 SD, of regular words is -2.8 SD, of
irregular words is -3 SD.

Reading text is painful with time at
-0.4 SD, number of errors at -3.5 SD but a comprehension
score at +0.9 SD

Severe dyslexia remains. R has entered in
the mechanism of reading but with a large
delay compared to his age group.

Despite this delay some comprehension of
written text was possible as +0.9 SD of
second grade was the average of 3d grade.

Motor Battery Assessment: 8 years
Degradation score=24

<1st percentile

-4.23 standard deviation from mean

Hypotony was obvious and R. had difficulties in motor con-
trol. Manual dexterity was difficult. R. needed to stop his
breathing to focus correctly. The grasping of the pen was
hypotonic and the pen fell many times. R was right handed.

Writing BHK: 8 years
The BHK could not be scored because of too poor quality.
(max score = 65)

R. could not write in cursive letters. He wrote some capital
letters. The movement was chaotic like he was throwing the
pen. Some letters were impossible to read.

Writing BHK: 9 years
The BHK could not be scored because of too poor quality.
(max score = 65)

The second testing remained very challenging. Only the 5
first lines were realized and R. wrote only in capitals instead
of cursive. The size of the letters was very large.
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tablet (Wacom Cintiq pro) allows the extraction of the pen’s position (x, y), the pen tilt in
two axes as well as the pressure between the pen and the surface of the tablet. The sam-
pling frequency of the tablet can go up to 200 times per second (Hz). Features have been
detailed in [21]. The second component is a robotic platform Nao that remains beside
the child. We previously showed that participants’ engagement was better with a physical
robot than an avatar [236]. During sessions, the child writes with a stylus on a Wacom
Cintiq Pro connected to a laptop. Ubuntu was installed on the laptop with the CoWriter
software [185]. We asked the child to teach Nao how to write. One after another, Nao
pretends to write on the Wacom tablet by moving its arm, and the child writes on the tablet
to correct the writing of the robot. The CoWriter research project aims to help children
with difficulties using an original approach: the child plays the role of the teacher and the
robot acts as a student requiring help to improve its handwriting. This approach is called
learning by teaching and has several advantages. First, it brings a positive reinforcement
of the child’s self-esteem as he/she becomes the one who “knows and teaches” and no
longer the worst student in the classroom [335]. Second, we can observe a huge gain of
motivation as the child, feeling responsible for the robot, is committed to the task with
an intensiveness way higher compared to when practicing in a normal environment. This
particular interaction where children feel responsible for the robot is called the protégé ef-
fect [84]. Various researches have shown that learning with a physical robot can be more
efficient than learning from a more classical approach [174, 192]. We hypothesized that
this set-up could be more engaging for the patient than a classical pen-and-paper reme-
diation. Furthermore, one of the best drivers of training is evaluation [76]. The teaching
procedure is one of the more obvious situations during which one needs to evaluate its
own abilities.

The third component of the set-up is the possibility to access a list of serious games
computed in the tablet (Figure 5.4). The games evolved progressively based on the feed-
back from the child and the therapist. As we said previously, during the CoWriter activity,
a robot writes a word in cursive with a bad handwriting. The goal is to have the child cor-
rect the robot by showing a ”good handwriting”. The robot then learns from the child’s
handwriting and adapts its handwriting accordingly. The difficulty of the activity can be
adapted by changing word length, frequency and writing difficulty and the speed at which
the robot ”learns” (Figure 5.4 A). The other games – Dynamico – were computed based
on the fact that children with dysgraphia may be distinguished from typically developing
children by characteristics related to speed, tilt and pressure when writing [21, 143]. We
computed new activities to specifically train these skills. During Tracking (Figure 5.4
B), the robot and the child are doing a track by following a layout in which we can find
hidden letters. It is possible to change the level of difficulty of the activity by changing
the hidden letter, the speed of the robot pursuing the player, and the width of the path.
During Pressure activity (Figure 5.4 C) inspired by Flappy bird game1, the child controls
a robot’s head by moving the pen from left to right (between the sign start and the fin-
ish line) to control the x position of the robot while the y position is controlled by the
amount of pressure the child applies between the pencil and the tablet. In order to avoid
the obstacles within the game, the child needs to learn to control the amount of pressure
he applies on the tablet. The difficulty of the activity can be adapted by changing the
width of the aperture (the gap between bottom and upper wall) and the number of peaks.
During the Tilt activity (Figure 5.4 D), the child is using the pen like a joystick to control
the robot head along the x and y axis. The goal of the activity is to capture the battery in

1https://flappybird.io/
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Figure 5.3: Cognitive and affective processes and functional training involved in the
CoWriter set up.

order to recharge the robot while avoiding the bombs. It is possible to increase the level of
difficulty by adding more bombs and diminishing their distance from the battery. Finally,
the rainbow activity allows making obvious the pauses during handwriting (Figure 5.4 E).
In a turn taking with the therapist that mirrors the CoWriter activity with Nao, the child
writes alternatively on the tablet. First, the therapist writes a word (or a small text). Each
time, there is a lift of the pen, the color of the ink changes. The child then needs to write
the same word (or text) with the goal of reproducing the same color. If the color matches
between the two words (one of child and one of therapist), it means that the child writes
while performing pauses and liaisons in an optimal way. The fourth component of the set-
up is the therapist who controls the rhythm of the therapy session, decides whether or not
Nao gives feedbacks (e.g. “Come on, try again”), but can also participate in the gaming
session when the child appears bored playing with Nao or asks to play the grasping game
with the therapist. One after another, the therapist and the child need to grasp a fruit from
a randomly chosen color and avoid the fall of all fruits. Finally, the setup also includes
two 2D cameras to follow posture and face and offer specific metrics (Figure 5.4 F).

5.2.2 Experimental design and metrics

To assess longitudinally how R. behaves during therapeutic sessions with the CoWriter set
up, we monitored the sessions and registered several metrics, either clinical or digital as
both can be complementary to describe with more detail the motor difficulties of children
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Figure 5.4: Screenshots from the tablet showing the different games used for hand-
writing training: A. CoWriter activity; B. Tracking; C. Pressure; D. Tilt; E. Rain-
bow; and F. Grasping.

with dysgraphia [143]. We assessed: (i) the acceptability and feasibility of the devises,
software and set up in a clinical setting using a qualitative approach with an observer
listing all significant events and R’s comments during sessions; (ii) how the handwriting
improved according to digital metrics and the gold standard clinical testing of handwrit-
ing called BHK [82]; (iii) how the posture of the child tracked with a 2D camera evolved
through remediation, as it is known that children with dysgraphia show posture impair-
ments during handwriting [132].

To assess writing, we collected BHK every five sessions. Each clinical BHK was
randomly and blindly scored by two experts. We also computed several digital metrics
to monitor R’s progress within each game. Table 5.2 summarizes each metric per game.
Finally, we recorded R’s posture. The posture the child assumed during the handwriting
sessions has been extracted and evaluated by analyzing high definition videos (25 fps)
of the BHK writing assessment (5 min writing of the same text). The camera was conve-
niently placed at a distance of 1.5 m from the front-left of the child. Videos collected were
analyzed frame-by-frame through the OpenPose library (Figure ?? A, page ??) [73, 365]
to extract a fine temporal evolution of the child skeleton. For each frame, the skeleton
is composed of 94 key points in the (u,v) image space representing the position in the
image of the body, of the hands and of the facial landmarks of the child. Notably, for each
extracted point, the OpenPose library exposes a confidence measure (p). The temporal
evolution of the key points is then reconstructed using the framerate of the camera. To
enssure a reliable comparison between the metrics extracted from different videos cap-
tured on different days, the camera was fixed in its specific position thanks to markers
on the floor. Moreover, to minimize further possible errors, data were normalized among
videos using the distance between the child’s left eye and his left’s ear as a fixed, reliable
reference, simple to compute. A metric indicating the quality of the child’s posture was
defined as the distance between his nose and his right-hand since R. was right-handed.
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Table 5.2: Digital metrics per CoWriter/Dynamico activities

Activity Possible metrics Metrics shown in Figure 5.6

CoWriter Word length

During the CoWriter activity, we tracked
the average number of letters used in
the word chosen with the child to teach
the robot. Shorter words are easier than
longer one.

Tracking
Ratio between the number of points
recorded outside the path and inside the
path

Time required by the R to reach the end of
the path (speed)

During tracking activity, we tracked the
success ratio and the child speed. A suc-
cess corresponds to the fulfillment of the
tracking task respecting the imposed path
without the child leaving the path. Since
it was a race with the robot, the cursor
speed (here the head of the robot) was
also tracked.

Pressure
Level of difficulties to reach the maze

Time required by the user to reach the
end of the maze

During the pressure activity, we tracked
the difficulty and the time to reach the
maze. The child was able to choose the
difficulty of the exercise. An easier maze
was a maze with more space between the
obstacles and a more difficult one with a
smaller space.

Tilt Number of collisions with the bombs.

Time spent before success

In the tilt activity, due to the very high
success rate, we tracked the time to finish
the maze.

Rainbow Difference between the number of strokes recorded
by the therapist and the child

This metric can be interpreted as a reflection of the body posture in the median anatom-
ical plane. Small measures would indicate a head close to the table, while larger ones
would suggest a better seat in his chair. Outliers were extracted and removed from the
temporal evolution of the defined metric through a rolling window-based median filter
and through the exclusion of aberrant samples lying outside ± 2 standard deviations.

5.3 Results

R. immediately engaged with Nao. During the first sessions he appeared to really believe
in the scenario: he asked “where does Nao come from?”, “does he have siblings?” He
felt competitive and wanted to show him. Then, progressively, he understood that Nao
”knew” how to write but was here to help him improve his handwriting: ”It is not the
robot who learns, it is me”. In the following sessions, he focused on gaming proposals
but Nao sometimes intertwined to support him and he smiled. During the 20 sessions of
training, he tried all games, improved dramatically his behaviour regarding schooling, and
improved his handwriting. Figure 5.5 shows BHK scores according to time. Both writing
quality and speed improved with time. As expected when R. tried to write faster, quality
decreased for a brief period of time. At the end of the 20 sessions, around 500 minutes,
he was now ready to go back to a regular school where he received special education (see
video demo presented at the International Conference on Robotics and Automation-ICRA
2020 conference https://ieeetv.ieee.org/a-cowriter-robot-david-cohen).

Digital low-level metrics are summarized in Figure 5.6. During the CoWriter activity,
R. was writing short words composed of simple letters like ”man” at the beginning of
the therapy, while progressively writing longer and more complex words like ”jamais”
(never) at week 10 or ”football” or ”serpent” (snake) at week 30 (Figure 5.6 A). During
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Figure 5.5: Clinical BHK scores according to time during occupational therapy ses-
sions with CoWriter/Dynamico. The z-score shows how many standard deviation the
handwriting quality/speed is compared to other children of the same gender and age. A
child is diagnosed with dysgraphia when his score is below -1.8 (dot red line). Of note,
during the 30 weeks of treatment, R. had 20 sessions in total because of during vacation
remediation stops.

the Tracking activity, despite some fluctuation in the metrics that paralleled an increase
of the robot’s speed between week 10 and 30, we found an increase of both success ratio
(which appears to be a proxy of precision) and R’s handwriting speed (Figure 5.6 B).
During the Pressure activity, the time to reach the end of the maze (being a proxy of R.’s
proficiency in the exercise) stayed relatively constant on average (around 15 seconds) de-
spite a clear increase of the exercise difficulty (Figure 5.6 C). This shows an improvement
in the performance of R. along the 30 weeks of therapy. During the Tilt activity, we found
no decrease of the time R. was taking to collect the five batteries (Figure 5.6 D).

Finally, R improved his posture during the sessions. As shown in Figure 5, the distance
between nose and right hand increased from week 1 to week 30: at the beginning of the
treatment, R’s head was close to the paper when he was writing with an average distance
of 21 cm. At the end of the treatment, the average distance increased and the child was
less bent on his writing sheet with a distance close to 30 cm.

5.4 Discussion
We performed a long-term child-robot interaction to train the handwriting skills of a child
with a complex NDD. The principle of the proposed treatment relies on multiple aims: rel-
ativizing and responsibility through a protégé effect scenario [84] employing a learning-
by-teaching paradigm [185, 206]; handwriting skills through a serious games platform
proposing activities specifically aimed to exercise pressure, tilt, speed and letter liaison
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Figure 5.6: Digital metrics according to time during occupational therapy sessions
with CoWriter/Dynamico A. CoWriter activity. Average number of letters in the words
written by R throughout the sessions. The blue line represents the evolution of the average
number of letters computed with a linear regression. B. Tracking activity. In red, the
Success Ratio (ratio between the number of points recorded outside and inside the path);
in blue, child’s speed computed as a number of pixel per seconds. The dash lines represent
the linear interpolations of both the success ratio and child’s speed. During weeks 10 and
20, the robot’s speed was increased by the therapists. C. Pressure activity. In red, the
time to reach the end of the maze; in blue, the width between the peaks (which is a
proxy of the maze difficulty). The dash lines represent the linear interpolation of both the
activity’s difficulty and the time to reach the end of the maze. D. Tilt activity. In red, the
time to finish the activity; the dash lines represent the linear interpolation of the time to
finish the activity.

controls [21, 143]. In R’s case, we observed a decrease of the avoidance behaviors, a bet-
ter commitment and an improvement of R’s handwriting skills. We believe that a possible
explanation for such observations would rely on the shift from the classical pen-and-paper
rehabilitation paradigm to the presented scenario. Observations from future experimental
studies involving larger samples would eventually confirm this hypothesis. The use of this
longitudinal methodology has been made possible by the integration of several domains
of expertise related to clinical science, development, computer science and robotics [274].
Interestingly, R’s improvement of writing (Figure 1) followed the usual course of writing
learning and automatization with steps: first of quality improvement then speed improve-
ments [2,254,352]. R. also changed his posture during his writing progress as expected in
learners who mature with writing [132]. However, the role of child robot interaction and
Dynamico may not be exclusive as the occupational therapist was still present during the
sessions. Given the very experimental nature of our scenario, we wanted to ensure that
an expert could follow the course of the sessions. In addition during the beginning of the
treatment the design was iterative and patient-centered to seek a scenario development fo-
cused on the end-user needs [170]. This implies that we tried to integrate feedbacks that
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Figure 5.7: Distance between nose and right hand (cm) according to time during
occupational therapy sessions with CoWriter/Dynamico. Mean (in dark blue), standard
deviation (in light blue), linear regression (in dot red) = [0.15 x + 21.44] (R2=0.038)

the occupational therapist provided after the first three sessions. The main innovations
were to include the rainbow game within Dynamico and to be directly involved in the
sessions with the grasping activity. We are aware that the role of the therapist in the pre-
sented scenario was not investigated. But we can speculate on its role from the anecdotal
experience achieved from the presented case but also from two other contexts in which the
identical setup was exploited: in a classical therapy setting with two occupational thera-
pists in Lausanne (3) and in a classroom with children with ASD in Paris. Interestingly,
even if the principles of fine motor skills and writing principles were similar, it seems that
the strategies of occupational therapists could be quite different. With R, the occupational
therapist had a developmental perspective, meaning that the child needed to master basic
skills that would ultimately lead to mastering handwriting. She decided not to ask R to
perform handwriting activities since R had refused to do so after one year of ‘pen-and-
paper’ occupational therapy with the same professional. In Lausanne, the occupational
therapists were more intensive in their approach. The idea was to train writing, since,
ultimately, that was the targeted goal. This diversity of approaches among occupational
therapists is in line with dysgraphia literature review (see introduction) [37, 132, 188]. In
the context of the classroom, the teacher focused on how the children could think about
their own strategy and performance, trying to praise them and guide them. While the
therapists were very interventionist and wanted to tailor as much as possible the activities
of the child to his/her needs, the teacher was interested in the use of the Dynamico device
in semi-autonomy with the Nao robot. She said that a more autonomous system “would
allow her to focus more on some children for other activities since their pedagogical goals
could be different with different learning curves”. Regarding serious games included in
Dynamico, we proposed numerous scores related to features that were sensitive to changes
and that paralleled clinical improvement. We hope in the future to compute a novel ver-
sion of the serious game including tailored feedback based on these features to guide
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handwriting training and monitor the progresses of the child in a more autonomous way2.
These features congruent with the theoretical framework of digital phenotyping have the
advantage to be motorized and thus easier to track [199]. The usability of the set up was
good for the therapist and the child, and the system was not invasive even after weeks
of sessions showing the promise of robotics in education [35]. The number of sessions
and the length of the session enlight the good acceptability of the setup. The child had
previously avoidance behaviours with the pen and paper remediation. He was pretending
to be a cat. He was breaking pencils due to frustration. This behaviour was not repeated
during the sessions with the robot. The child could be reluctant and could be rigid about
the scheduling of the sessions (the sessions needed to be finished strictly on time.) These
comments disappeared through the sessions. The child was accepting more and more the
handwriting rehabilitation that was proposed to him. The motivation was increased since
he could even asked to be challenged by harder fine motor skills and handwriting exerci-
ces. This evaluation is purely clinical, even if several practitioners attended the sessions.
Follow-up study would require to use standardised and validated scales to assess the ac-
ceptability of the device from the patient and practitioner point of view, the motivation
and engagement of the user. Some metrics could be used also from the camera using
affective computing approaches. In this feasibility study, the reactions of the children to
the robot interventions were measured clinically, even if several practitioners attended the
sessions and debriefed the session at its end this method can induce biases. Follow-up
study would require to use standardised and validated scales to assess the reactions of the
children to the robot intervention. Some metrics could be used also from the camera us-
ing affective computing approaches. A formal evaluation of acceptability is planned with
an improved version of the Dynamico-Nao setup in both occupational therapy sessions
and in a classroom for children with special needs [316]. Although several feature scores
improved during R’s treatment, it was not the case for the time to finish the tilt activity
which did not significantly decrease. One explanation is that during an automated hand-
writing, the tilt must be controlled and very stable [20]. The change of tilt may not be
a relevant feature for treatment assessment despite its relevance for classifying children
with dysgraphia compared to typically developing children [21]. An alternative hypoth-
esis could be related to tilt activity in Dynamico. We wonder whether making feedbacks
more explicit when the child touches an obstacle would help (sounds of explosion when
he touches the bomb for instance). In addition, given the stability of the tilt during hand-
writing, we wonder whether a new activity training the stability of the tilt while changing
the position of the pen would be of interest. Beyond the acceptability and feasibility of
this framework, we cannot generalize it or suggest some of its ingredients as a treatment
of dysgraphia due to the limitation of a single case longitudinal methodology. Even if the
failure of previous approaches to treat R’s dysgraphia makes alternative hypotheses clin-
ically unlikely [42], we cannot formally exclude a spontaneous resolution of dysgraphia.
A randomized controlled trial with sufficient power will be necessary to make such claims
of efficacy. Furthermore, it would be useful to assess the relative importance of either the
complex system with a social robot or the writing tablet serious games alone. We also
believe that using the serious games – Dynamico – implemented on much easier tablets
(e.g. Ipad) would be of interest for scalability3. In this study, we performed analysis on
low-level features that allowed giving real-time feedback during serious games directly
based on position, pressure, and tilt. Future analysis should take into account more high

2https://www.dynamico.ch/
3https://www.dynamico.ch/

98

https://www.dynamico.ch/
https://www.dynamico.ch/


Chapter 5. Tablets to guide the rehabilitation of dysgraphia

level features such as those described in Asselborn et al. [21] during BHK itself. They
would allow to guide rehabilitation by identifying the cluster of dysgraphia the child is
in [143], by describing with more details the evolution of the child, since some exercises
are more appropriate at the end than at the beginning of the rehabilitation [37]. The social
interactions of the robot also had many limitations. We plan to endow it with more social
skills to improve (1) the learning scenario, (2) the quality of the feedback, (3) metacog-
nition and self-reflection of the child and (4) motivation. Affective computing would be
useful to assess the answers of the child after such behaviors. Robotics showed promising
results in the field of special education, especially in the case of ASD, in which the chil-
dren have interpersonal difficulties. Robots appear to be more predictable and reassuring
for them [53, 115, 165, 355]. A key aspect to be improved is also the general ergonomics
of the system. While it allowed a rather fast improvement of writing in the case of R.,
the proposed experience was very heavy for clinical users due to time consuming instal-
lation before starting a session, complex wiring and unhandy interfaces. Besides the use
of a stand-alone tablet (iPad®) to improve the user interface, we may also improve Hu-
man Robot Interaction smoothness with a more stable and social expressive robot (e.g., Qt
robot). We conclude that this longitudinal single case shows the feasibility and acceptabil-
ity of the CoWriter set up. Larger clinical studies are required to confirm that dysgraphia
could benefit from this set up. We believe that implementation into the classroom as a
regular educational proposal may also be a reasonable goal in particular if a version for
stand-alone tablets may be computed.

5.5 Conclusion
We showed how we could use the insights provided by the analysis of the features, to
develop specific activities to remediate handwriting. It will be important to improve user
experience of the system for therapists to collect more data. This will enable to confirm
and refine the models, to better track the progression of the children and to guide adap-
tatively the rehabilitation process. This finer analysis could help to better understand the
rhythm of the therapy: should the therapist focus on a progressive approach based on
fine motor skills training before writing or directly target handwriting which is the goal
of the reeducation. Like we showed in the introductory chapter, the rehabilitation for ev-
ery children should not be the goal if the handwriting training is too difficult and can be
substituted properly to keyboard typing without disabling the child (Figures 1.4 and 4.6).

However, the social behaviours of the robot were limited in richness and number.
In the following chapter, we propose a theoretical framework (Table 6.1) based on the
observation of children. It has implemented but has not been yet tested on the field in a
rigorous way (comparative way) nor for a sufficient time (long-term interaction).

Data and code availability
The skelleton analysis pipeline for this study can be found in the OSF website
https://osf.io/u6bdz/.
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Chapter 6

Enhancing the rehabilitation using
social robotics

“ROXANE, CHRISTIAN, CYRANO

d’abord caché sous le balcon.

ROXANE,
entrouvrant sa fenêtre.

Qui donc m’appelle ?

CHRISTIAN.
Moi.

ROXANE.
Qui, moi ?

CHRISTIAN.
Christian.

ROXANE,
avec dédain.

C’est vous ?

CHRISTIAN.
Je voudrais vous parler.

CYRANO,
sous le balcon, à Christian.

Bien. Bien. Presque à voix basse.

ROXANE.
Non ! Vous parlez trop mal. Allez-vous-en !

CHRISTIAN.
De grâce !. . .

ROXANE.
Non ! Vous ne m’aimez plus !

CHRISTIAN,
à qui Cyrano souffle ses mots.

M’accuser, — justes dieux ! — De n’aimer
plus. . . quand. . . j’aime plus !

ROXANE,
qui allait refermer sa fenêtre, s’arrêtant.
Tiens, mais c’est mieux !

CHRISTIAN,
même jeu.

L’amour grandit bercé dans mon âme in-
quiète. . . Que ce. . . cruel marmot prit pour. . .
barcelonnette !

ROXANE,
s’avançant sur le balcon.

C’est mieux ! — Mais, puisqu’il est cruel,
vous fûtes sot De ne pas, cet amour, l’étouffer
au berceau !

CHRISTIAN,
même jeu.

Aussi l’ai-je tenté, mais tentative nulle
Ce. . . nouveau-né, Madame, est un petit. . .
Hercule.

ROXANE.
C’est mieux !

CHRISTIAN,
même jeu.

De sorte qu’il. . . strangula comme rien. . .
Les deux serpents. . . Orgueil et. . . Doute.

ROXANE,
s’accoudant au balcon.

Ah ! c’est très bien. — Mais pourquoi
parlez-vous de façon peu hâtive ? Auriez-vous
donc la goutte à l’imaginative ?

CYRANO,
tirant Christian sous le balcon

et se glissant à sa place.
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Chut ! Cela devient trop difficile !. . .

ROXANE.

Aujourd’hui. . . Vos mots sont hésitants.
Pourquoi ?

CYRANO,

parlant à mi-voix, comme Christian.

C’est qu’il fait nuit, Dans cette ombre, à
tâtons, ils cherchent votre oreille.”

Edmond Rostand, Cyrano de Bergerac, IIIème
acte E. Fasquelle, 1926, première édition, 1898.

Abstract

Introduction
Handwriting rehabilitation is a long process (several months). In this exploratory

study, we tested whether a robot companion could be useful to improve motivation during
handwriting remediation, thanks to the protégé effect. In the first clinical experiments
(chapter 5), the behaviours of the social assistive robot were limited. The long-term
interaction presented in previous chapter emphasised the need for different social be-
haviours, to sustain motivation and engagement in the task, and to bypass the novelty
effect. Here, we proposed a theoretical and operationalized framework describing such
behaviours thanks to an exploratory study.

Materials and methods
We developed a wizard of Oz interface (in Python and QML) able (1) to control mo-

tor activities and verbal intervention of a Nao robot during the co-writer setup, and (2)
to annotate children’s responses to robot’s feedbacks. We explored the usability of the
system on four boys with dysgraphia during one or two rehabilitation sessions (60 min
each) with their occupational therapists using a robot. Depending on children’s reactions,
we implemented iteratively different behaviours and tested them operationally.

Results based on early child-robot interactions
Based on children’s reaction, we defined and implemented a library of 21 robot’s be-

haviours, corresponding to 4 categories: (1) framing of the scenario, (2) tailored feedback
for the child, (3) enhancement of metacognition and self-regulation skills, (4) promotion
of the child motivation. During the exploratory study, we found that most of the children’s
verbatim or behaviours in response to the robot’s interventions confirmed the expected ef-
fects on the child. However, the user interface did not allow to easily annotate children’s
immediate responses since the tablet was also controlling the cursor of the laptop. Addi-
tionally, the movement of the robot was often problematic due to oscillations of the Nao
robot.

Discussion This framework allowed the implementation of a wizard of Oz in Qt cre-
ator. The interface was functional in a laboratory setting but usability was poor in a
clinical setting. To counter the low clinical usability, a new system is proposed with (1) a
standalone tablet (iPad®) to fix the problem of cursor management and improve scalabil-
ity, (2) a more stable robot able to display social reactions on its face (Qt robot).

Conclusion This pilot study allowed to conceptualize irecheck project. Future studies
with the new devices and implementation should assess in a larger sample of children
with severe dysgraphia (1) the behaviours and efficacy during a longitudinal study, (2) the
specific effect of the social robot compared with a standalone tablet (Dynamico).
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6.1 Introduction
Building on top of the lessons learned in the CoWriter studies (chapter 5), this chapter
describes strategies (and specifically, robot behaviours) for a long-term child-robot in-
teraction scenario aiming at improving handwriting via the protégé effect. Long-term
children robot interactions are still technically challenging after the ”novelty effect” fades
away. Kanda [214] suggested to have a progressive self-disclosure of the abilities of the
robot and to allow for discoveries during the interaction. Leite propose to develop em-
pathic behaviours in the robot. [239]. In our scenario, it seemed important to have a robot
in the position of a peer [239].

Specifically, in this chapter, we discuss how we operationalized and implemented such
strategies in a proof-of-concept Wizard-of-Oz (WoZ) set-up, preliminarily evaluated for
feasibility in a case study involving 5 participants (Section 6.2).

Careful attention is given to the discussion of the rationale motivating our choices
in designing the robot’s behaviour (in Section 6.3), and in reporting first reactions from
the children. In the Discussion (Section 6.5), we will propose some perspectives and
limitations that will be important to consider during larger field experiments.

6.2 Materials and methods

6.2.1 Scenario and experimental context
In the CoWriter scenario, a child is first asked to teach a robot how to write. He/she
chooses a word, the robot writes it down, then the child is asked to do several fine motor
skills activities aimed to train tilt, pressure, speed and letter trajectory. (Figure 5.1). The
sessions lasted 45 to 60 minutes. The field pilot studies discussed in this chapter arise
from two different case studies:

• Study 1: one boy, (10 years old) interacting with the CoWriter set-up with very
basic automatic social behaviours for 20 consecutive weekly sessions. The clinical
case was fully described in Chapter 5.

• Study 2: four boys (7-9 years old) participating in a pilot study to evaluate the
feasibility of the introduced social behaviours. Three children interacted with the
system for 2 sessions, while one child interacted with the system during a single
session of 45 min.

All children were treated for severe dysgraphia, with different diagnosis and often
comorbidities (DCD, Autism Spectrum Disorder, ADHD, dyslexia).

6.2.2 WoZ interface
The WoZ interface was developed in Python and QML. A demonstration can be found
here https://youtu.be/uwdfpdtqSZQ (Figure 6.1).

6.3 Rationale
The goal of this system is to propose to children with dysgraphia a playful, engaging and
efficient reeducation opportunity for their fine motor control skills. We built our rationale
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Figure 6.1: The WoZ Interface. The therapist can connect to the robot (top-left), choose
the activity to engage the child in (mid-left), and annotate the child’s responses to the
robot’s behaviour (bottom-left). On the right side, buttons to trigger various robot be-
haviours.

for activities that require learning from the child (in our case writing) based on theoretical
grounding from psychology chosen from clinical experience with the system, as well as
general principles that help a participant to interact with a robot [318]. These include
spatio-temporal coordination, coordinated decision making, perception of a partner’s ef-
fort, adaptative performance of the robot (not too low, not too high), the use of social
signals and implicit forms of communications [318]. All the proposed behaviours, their
rationales, their expected effect and the early outcomes with child’s supporting verbatim
are presented in Table 6.1.

6.3.1 Framing
Mystification

The child is part of an engaging handwriting activity in which a social robot is able
to establish with him a strong empathic link, thanks to an appropriate exploitation of the
protégé effect. The emergence of such connection relies mainly on the ability of the robot
to be perceived by the child in a believable way: this can be achieved through its coherent
participation to the task in an active, reliable and social way. However, endowing robots
with such skills in a real, complex scenario, such as the one considered in this work, can
be a very difficult task. In this chapter, we rely on teleoperation to overcome the limits
of current technologies in the comprehension of the mutual social interaction between the
child and the robot. The idea of using teleoperation to remotely control a social robot (and
thus give to the participant interacting with the robot the illusion of an autonomous robot
behaviour), called WoZ, is largely adopted in Human-Robot Interaction studies [328].

In the specific scenario we consider, the complexity of the robotic system can be
further reduced thanks to the imagination of children: we do not really need a robot able
to write with a pen, because the simple gesture of pointing toward a cardboard cutout of
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a tablet (preferably built by the child himself) can be enough to maintain the illusion of
writing. The robot can explain such special ability: “you know, I don’t need a pen”.

In general, a background story, a personality and the mystification of the robot’s own
abilities arouse in children the projection towards the robot of a sort of social intelligence:
the robot is not seen anymore as an object but as a kind of “living creature”, a com-
panion with a character, its past experiences, its skills, its weaknesses, and the ability of
expressing simple emotions [11]. Milgram already studied the belief we can project on
teleoperated humans with the cyranoı̈d concept [276]. This concept is based on a theater
play of Rostand. In this play, Cyrano want to court Roxane, but affraid to be rejected be-
cause of his ugly face, he asks the handsome but stupid Christian to repeat his love words
to seduce her [340]. Cyrano (like a wizard-of-Oz in robotics terminology) is teleoperating
Christina (the cyranoı̈d in Milgram terminology). Interestingly, even if the mystification
with a robot can be limited, children seem prone to believe it, engaging with the robot
accordingly.

Lastly, we also hypothesize that small talk expressions such as “Hello”, “Bye”, “Yes”,
“No”, “Can you repeat ?” and using the name of the child would contribute to the projec-
tion of social intelligence on the robot and have a positive impact on the child’s engage-
ment with it.

Framing the limits
Our functional analysis (Figure 1.3, in chapter 1) shows that the children could be

prone to avoiding motors skills training and writing, as they could trigger negative emo-
tions. Even if avoidance is helpful in the short-term, operant conditioning predicts that
it will reinforce the avoidance behaviour and in the long-term, it increases the fear, and
the avoidance in a vicious circle [93, 366]. To have a robot which is limited in its be-
haviour and cannot adapt to the short-term needs of the child is relevant since it prevents
the avoidance behaviour of the child.

Low performing robot with a humble attitude
The long-term interaction of case study 1 showed some of the technical limitation of

the robot (freezing, falling). Instead of trying to fix all of them, we believe that they are
congruent with the scenario of a low performer robot, and we made the robot react to
them with sentences such as “Ah, finally, I can stand”, “I am sorry, I am tired today”, “I
am sick”, “I am rusty”. This allows the child to relativise his/her own writing difficulties.
The robot can also amplify a humble attitude that triggers the feeling of responsability in
the child.

According to the Observational Learning theory [27] and identification theories [349],
children do not only learn by trial and error but also by imitation. This process could be
helpful for modelling the request for help and dealing with aggressivity.

Dealing with aggressivity and frustration with humour
Writing can be frustrating for these children. They can be bullied because they cannot

perform as well as their classmates. We saw that one child was ”bullying” the robot: ”I
will throw you by the window”. We hypothesise that the child was copying what he was
experiencing outside [27]. Thus, reversely, it is important that the robot displays good
coping behaviours, as suggestions for the child about how to behave if he/she is mocked
or bullied. Examples include: “You know, I have muscles in plastics”, “I progressed a
lot”, “I do the best I can”. Whenever the child shows frustration or anger about the task,
it is important that the robot expresses empathy (e.g. via statements such as “You seem
angry”, “You seem tired, let’s have a break and then start again”).

Congruent audio-motor behaviours
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While implementing these behaviours, we also added social postures for the robot
which are congruent with the verbal utterances and make the system more believable
[389]. See also the posture in the demonstration video https://youtu.be/uwdfpdtqSZQ.

6.3.2 Feedback

Increase self esteem by progressive training, clear positive feedback and valorisation
Positive reinforcement is a good strategy to help learning processes and increase self-

esteem. The robot can praise the child verbally (“Well done”, “Congrats” [277]) or even
physically, children asked to do a “High five” that could induce a complicity with the
child. To label (social labeling) [33] the child is also a techniques that showed promising
results. We propose to explicitly include the robot into the loop of positive reinforce-
ment (”We progressed a lot together today”, ”We are so good”) and we call this process
valorisation [277] with inclusion, or labelling [33] with inclusion.

Error acceptance and negative feedback
If the child fails with his/her performance, the robot should show support and relativise

the behaviour to help him/her accept the error: ”It is ok, it happens”, ”Take a breath and
try again”. It is important that the child is able to process and accept the error as an
opportunity to learn and to go out of his/her comfort zone [109]. Negative feedback and
direct advice are very common but not recommended (”righting reflex” [277]) since they
can decrease self-esteem, intrinsic motivation and are incongruent with the scenario.

Multi-sensorial feedback
A visual and auditory automatic feedback was added on the tablet to denote occur-

rences of the child performing the wrong action during one of the activities. A clear,
repetitive feedback facilitates the training, especially if it is multisensory [268]. How-
ever, it seems theorerically important to decouple this automatic tablet behaviour with the
robot behaviour since, it could be considered as a righting reflex of the partner that could
be detrimental to the relationship, interaction and credibility of the set-up [277]

6.3.3 Metacognition and self-regulation

According to the Cognitive Orientation to Daily Occupational Performance (CO-OP) ther-
apeutic model [317], motor planning is as important as the execution of the movement
itself. A very close technique used in sport is to visualise the movement before executing
it [218]. We operationalise this concept in the robot via sentences such as: “How many
times maximum you expect to go out of the trajectory during the speed activity?, ”How
many bombs do you expect to touch, during the tilt activity?”. The robot can also ask
”Can you draw the trajectory?” to check whether the child has a motion strategy and to
differentiate a lack of training from a difficulty of fine motor skills (”I did not understand,
can you explain how to do this letter?”). Furthermore, this behaviour can normalise any
request for help the child may make [27].

6.3.4 Motivation

Self determination theory states that there exist two kinds of motivation, intrinsic and
extrinsic [262].

Intrinsic motivation
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Intrinsic motivation is ”an expression of a person’s sense of who they are, of what
interests them” [108]. Intrinsic motivation leads to better conceptual learning, greater
creativity, more cognitive flexibility, and enhanced well-being relative to extrinsic moti-
vation [343].

We think that the framing is very important to sustain intrinsic motivation, along-
side progressive training and session preparation. Concerning the former, Csikszentmi-
halyi [96] showed the importance of focusing on an activity neither too difficult neither
too easy, to reach an optimal flow. This motivated the development of levels of increas-
ing difficulties. In addition, while consistency and rationalization are important drivers
of human behaviour [175], in order to trigger change talk (patient talk consistent with
a targeted behaviour [277]), the robot can check and sollicitates behaviour engagement
outside sessions (e.g., “How did you train since last time?”, “How do plan to train before
the next session?”, “Can you bring me a letter for my notebook so I can have a souvenir
from you and an example to train my writing?”).

Extrinsic motivation
Extrinsic motivation ”involves doing an activity because it is instrumental to some

separate consequence. [...] Thus, people are extrinsically motivated for an activity when
they do it in order to earn money, avoid punishment, or comply with social norms.” [108].
We think that the various types of feedbacks embedded in the system are very important
to sustain extrinsic motivation.

6.4 Reactions to the social behaviours

6.4.1 Framing
Case study 1 (long-term single case study) suggests that the mystification is quite power-
ful. The child greeted the robot (Nao) and asked if it had cousins. This mystification was
maintained for several sessions by the child, even after demystification occurred (identi-
fied at the time the child said ”It’s not really the robot that learns, it’s me”). From that
moment on, the child looked happy to still act “as if” he was really helping the robot. We
propose to coin this phenomenon as the “Santa Claus effect”, in which the child is am-
bivalent about the truth but likes remembering the belief he adhered to at the beginning
(just like with Santa Claus and Christmas).

One of the children in study 2 was very avoidant about writing and, at the beginning,
only wanted to play something related to trains with the robot. In this case, the limits
of the framing (the robot was only here to write and make fine motor skills exercises)
were very helpful since they limited avoidance (writing was necessary to interact with the
robot). In general, children were very happy of the robot’s low performance and humble
attitude and could mock the robot which doesn’t seem to be a problem theoretically.

6.4.2 Feedback
Positive feedback was observed to facilitate the interaction, helping steer clear from situa-
tions that could put the child in learned-helplessness [74]. Specifically, it was very helpful
for the children in study 2 to receive a clear multi-sensory feedback on their performance
(when they tilted their stylus in a wrong direction, when they were going out of the given
path in a path-following activity). In contrast, during study 1, the child became over-
confident and wanted to do everything as fast as possible, not caring for his mistakes. As
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soon as multi-sensory feedback was implemented, it allowed him to limit his impulsivity,
a trait often found with ADHD, helping him to take time to plan his strategy.

6.4.3 Metacognition and self-regulation
Whenever the children were able to reflect on their performance, instead of rushing to-
wards the end of the exercise, they would decrease their speed and impulsivity and focus
on quality (e.g. ”I will try to go out of the trajectory 3 times instead of 4, this time” or
”I will use this path” in an activity consisting in controlling a cursor with the tilt of the
stylus to reach a reward while avoiding bomb obstacles).

Even in study 1, with the robot not equipped with social behaviours, we saw that
the children were prone to challenge themselves progressively and move towards harder
tasks.

6.4.4 Motivation
The system allowed a good commitment of the child. In the long-term study, avoidance
behaviours decreased, such as producing cat vocalisation, or being rigid about the time
schedule. The child even asked whether he could show to a friend what he was doing with
the robot.

The improvement of the robot’s writing was also an important factor of motivation.
For instance, the boy of study 1 could be frustrated because the robot was not learning
fast enough and he felt helpless because of that. To overcome that issue, we changed the
speed of learning of the robot, pushing it to its maximum. The social behaviours to trigger
transfer outside of sessions (e.g., ”what can you write for me next time?”) were not tested
long enough to allow for any type of conclusion about their effects.

6.5 Discussion

6.5.1 Importance of a closed feedback loop
The purpose of this CoWriter set-up, as any other remediation technology, is to have
a positive impact on the skill for which remediation is needed. In our case, this calls
for very clear metrics to measure the child’s writing quality and track its evolution over
time. Luckily, the assessment of fine motor skills can be robustly done via the analysis of
the pressure, tilt, position and speed of movement of the stylus [21], and we previously
showed a strong correlation between fine motor skills and overall handwriting quality,
allowing for the definition of “handwriting quality metrics” based on tablet and digital
stylus data [21]. It allows a tailored feedback tracking early artefacts (something which
is measured and unrelated to the child performance, e.g., we can see such artifacts in
electro-encephalography).

6.5.2 Evolution of the robot’s behaviours over time
A crucial factor to sustain effective long-term interactions is the robot’s ability to evolve
and grow over time, e.g. by displaying increasingly complex behaviours. At the same
time, the goal of any remediation technology is to become useless, i.e., to empower its
user sufficiently to continue to progress without it. The goal of a social robot is ”not
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to reach the myth of media richness, i.e. the belief that the more a robot interacts as
a human (understands language, perceives emotions), the better it will be for learning”.
The goal is to control the necessary ”cognitive load induced by the construction of new
schemas” [116]. To tackle these two goals, we think that the robot’s behaviours could
evolve with time in complexity and frequency, e.g., moving from frequent, simple and
automatic feedback at the beginning, to fewer and more abstract social behaviours later
on. Along this line, a sign of success of the therapy could be complete removal of the
robot in the last sessions, replaced by a stylus and tablet, or even pen and paper.

6.5.3 Robot as a peer
In CoWriter, the robot could be considered as a protégé that needs the child’s help (”The
robot is even worse in writing than me”), as well as a peer with whom the child is doing
turn taking activities and sharing interests (”I like trains, what do you like?”). This role of
the peer could be further examined by exploring the experiments in the social facilitation
paradigm, in which the performance of subjects increase while being observed by others
subjects [375, 391]. While we don’t think that it would be beneficial, in our context, to
place the robot in the role of an instructor (”In this activity, you need to do that and that”)
or advisor (”Beware, you are going too fast”), we think that the flexibility to change the
role will allow to perform more rigorous evaluation in the field. At the end, we believe
that the robot’s strongest asset will likely be its humble attitude and the limitation of its
abilities.

6.5.4 Role of the therapist/teacher
Two different requests emerged from the case studies. The therapists involved in study
2 were asking for a very adaptable and controllable robotic system, allowing them to
tailor as much as possible the remediation to the needs of the child. Conversely, in the
classroom, the teacher preferred a more autonomous robot, allowing her to focus on the
other activities involving other children. The robot in the classroom should therefore
decrease the cognitive load on the teacher.

An interesting approach to integrate the two requests in a single framework is the
Supervised Progressively Autonomous Robot Competencies (SPARC) approach [358].
In this approach, the robot can learn over time which of its behaviours are relevant, and
when, and suggest them to the Wizard (the operator) controlling it, thus reducing its
cognitive load while still allowing for full control.

6.5.5 Limitations
Lack of a Field Evaluation

To date, our proposal is mostly theoretical, since we only tested it in pilot observational
qualitative studies (study 1 and 2), lacking a rigorous experimental design.

Emergence problem and impact of framing in the long-term

In Figure 1.3, we reported the negative vicious loop that describes writing difficulties in-
surgence and evolution. In the same way, we could draw the positive loop that is activated
with remediation. If the child shows an increases in self-esteem, invests more energy on
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writing and is given a positive reinforcement [366] on his attitude, ultimately seeing that
his/her performance improves, then, he/she will be more prone to invest even more energy
in writing, by feeling more confident.

However, a complex system like reeducation can induce the emergence of unsolicited
behaviours and attitudes that would make this theoretical framework totally or partly in-
accurate. Thus, it is important to mix long term clinical and laboratory approaches to
better understand how children learn and are motivated, at the same time taking care of
implementation and testing on the field.

6.6 Conclusion
An insight from experimental, and social psychology and remediation seemed useful to
develop a Wizard of Oz social robot to improve education, especially in the case of hand-
writing, even if the marriage between robotics and social psychology looks unseasy to
other researchers [200].

The naive idea of a complex and high performer robot that will be useful for reme-
diation is here theoretically challenged since (1) the scenario and the mystification are
fundamental and must be taken into account, (2) a low performer robot is more prone to
need help from the child that a high performer robot, (3) the goal is not substitute the
teacher (or a therapist) but to alleviate the work overload, to offer more research opportu-
nities, or to perform a specific role, like helping to tackle avoidance behaviours.

However, only early usability data were done and showed that the child could be more
engaged with the system when the robot was social.

We are planning to conduct a proper study (with the project IReCHeCk) with this
robotic architecture and this scenario with children with severe dysgraphia.

The advantage of taking children with severe dysgraphia even if they are more difficult
to recruit and to engage in therapy is that, they could be (1) the end users of the system
; (2) it would be easier to show differences during the remediation since the margin of
improvement is larger.

A large data base would also allow (1) to check the relevance of the robot behaviors in
the field, which of them are useful, useless, which kind of child behaviours emerge? Is the
long-term interaction sustained? Is the attachment, separation with the robot a problem?
(2) Is it efficient on writing features in a large sample? Is a randomized control trial
feasible? What is the optimal profile of the children that would benefit from this system?
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Table 6.1: Design framework used to implement the behaviours to sustain long-term child-robot interaction

Dimension in the
model

Concept and supporting ev-
idence

Robot behaviour/proposal Expected effect on the
child

Child’s support-
ing verbatim or
behaviour

Framing Cyranoı̈d [276] ; Wizard of
Oz [232]

Deception (”I need help”, ”I
am very bad at writing”)

Engagement in the
child-robot interaction

”It’s not really the robot
that learns, it’s me”

Small talk (”Hello”, ”Bye”,
”Yes”, ”No”, ”Can you re-
peat”)

Engagement in the
child-robot interaction

”Do you have cousin ?”

Naming (”Hello Marcel”) Engagement in the
child-robot interaction

”Hello Nao”

Preventing avoidance, Nega-
tive reinforcement [366]

Framing the limits (”You
know I am a robot I don’t un-
derstand much”)

Focus on motor skills
and writing tasks

”Can we play train with
the robot ?”

Giving instructions (”Can
you help me write cat ?”)

Focus on motor skills
and writing tasks

”Ok”

Responsability: Protégé ef-
fect [206], Relativization

Bad writter (”I am very bad at
writing”)

Increase self esteem,
positive emotional va-
lence

”It is even worse than
me”

Observational learning, So-
cial cognitive Theory [27]

Ask for help (”Can you help
me ?”)

Engagement in the
child-robot interaction

”Yes, I can try”

Observational learning, So-
cial cognitive Theory [27]

Coping behaviours when at-
tacked

Mimicking good cop-
ing behaviours when at-
tacked

”I will through you out
of the window”

Feedback Positive reinforcement [366] Valorisation: ”High five”,
”congrats”

smile, engagement in
the task, grit, self-
esteem

smile, engagement in
the task
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onclusion

Labelling [33] ”You are so good” smile, engagement in
the task, grit, self-
esteem

smile, engagement in
the task

Valorisation and inclusion,
Positive reinforcement [366]
?

”We progressed a lot together
today”

smile, engagement in
the task, grit, self-
esteem +

smile, engagement in
the task

Error acceptation [109], Rel-
ativization

Support: ”It happens”, ”Take
a breath, and we try again”

grit persistance on the task

Rather unrecommended (Ex-
pert position, righting reflex
[277] People feel less risk to
be judged by an avatar than
by a human [215]

Social Negative feedback?;
Advice ? (”You go to fast”)

increase awareness, in-
crease stress, decrease
self esteem

Multi-sensorial feed-
back [268]

Automatic Negative feedback
(explosion or skid noise)

increase awareness,
increase stress, refine
child perception action
loop model

Awareness of the child,
challenge attitude, de-
crease impulsivity

Metacognition and
self-reflection

Plannification / motor im-
agery [43]

How many bombs you will
hit?”

increase awareness,
increase stress, refine
child perception action
loop model

”I just did 4, I will try
3”

Check strategy and planifica-
tion [317]

Can you draw the trajectory? increase awareness, re-
fine strategy, decrease
impulsivity-Reaction
time

”I will take this path”
(while pointing)

Confidance on the perfor-
mance

“Is it too easy, or too difficult
?”

increase awareness ”I want to try the harder
level”
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Check strategy and planifica-
tion [317]

“I did not understand, can you
explain how to do this letter
?”

increase awareness, re-
fine strategy, decrease
impulsivity (Reaction
time)

engagement in the task

Empathy : Reflecting feel-
ings [333], non specific fac-
tors [297])

”You look anxious today” increase awareness not tried

Motivation Flow [96] Push toward other / harder
task

Focus on motor skills
and writing tasks

”The robot is not learn-
ing fast enough”

Modeling - Observational
learning, Social cognitive
Theory, [27]

sharing interest Acceptance on writing
task

”ok I can write train,
then”

Congruent speech and be-
haviour ; Cognitive disso-
nance [175], Foot in the door
[141,311] ; Change talk [277]

Engagement triggering Transfer outside reed-
ucation session, make
the robot useless

not tried
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Chapter 7

Discussions and Perspectives

In this thesis, we showed how electronic sensors and algorithms open new methods in the
way we can describe movement and handwriting in particular. This could help to increase
our understanding on how we learn handwriting. This approach uses previously hidden
features (as it allow analysing the full dynamic of handwriting with a high sampling rate).
We can, thus, describe more precisely and with a new perspective, a well-known process
in educational and clinical settings. In addition, we have shown encouraging preliminary
results for treatment using these hidden features. Handwriting impairments of some chil-
dren could be improved using tailored serious games and a robot as a learning companion.

7.1 Writing and technologies

7.1.1 Handwriting is still important despite the development of key-
boards and new interfaces

Despite the development of physical keyboards or keyboards in touch screens, handwrit-
ing remains important. During the process of learning, the graphomotor aspects (drawing
the letters) help children to memorize and to differentiate letters, whereas such move-
ments are not learned while typing, which impairs the memorization of performing the
letter [247]. This educational effect was only seen in 5-year old children but not in
younger ones. Neuronal activities measured by Electro encephalo graphy (EEG) also
differ between handwriting and typing [301]. A recent review, on early writing, compar-
ing handwriting and keyboard typing showed that handwriting outperforms keyboarding
to learn how to write [409]. A study showed that the handwriting process of taking notes
in university, being cognitively costly, required students to summarize lessons provided
during oral presentations and thus improves memorization compared with taking notes
with a laptop [287]. Thus, despite availability of laptops computers and electronic tablets,
handwriting is still important to learn and improve memorization.

7.1.2 A better understanding of the current diversity of clinical
strategies

In the introduction, we showed some principles that were studied to validate different writ-
ing rehabilitation strategies. From them, we theorised a trade-off between a progressive
and an intensive approach (Figure 1.3) that needs to be better evaluated. However, theses
approaches are very different, depend a lot from the culture of the variety of professionals
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that can take care of these difficulties. For instance, we showed large practical difference
between psychomotricians practice in Paris and occupational therapist in Lausanne, due
to different theoretical background and training. We did not find a synthetic description
of this diversity in Europe. Conducting a European online survey, taking advantage of
European networks such as the European Federation of Psychiatric Trainees, the Euro-
pean Society of Child and Adolescent psychiatry would allow to have a better overview
about: the diversity of tools used (1) to diagnose handwriting impairments, and (2) to
rehabilitate dysgraphia, (3) the diversity of the professionals involved, (4) the economical
consequences on the families, and (5) the acceptability of using new technologies. We
began to implement such a survey but proofreading and a pilot phase would be necessary
before dissemination.

7.2 Generalisability
Future research will need to take into account some precautions concerning data collec-
tion and interpretation. In this thesis, we focused mainly on handwriting features. The
features extracted strongly depend on the device used to record them (sampling frequency,
resolution) and the software used to extract them, which may prevent generalisation of the
results. For instance, we were not able to directly use the studied features (presented in
chapter 3 and 4 collected on Wacom® intuos), in the rehabilitation part (chapter 5). Even
if we used the same hardware, we used a different software that relied on a different
sampling method (event time stamps or periodic sampling). Other devices that may be
cheaper or easier to use will require to train new models on these new features.

Beyond handwriting features, we showed that it was possible to track posture with
different strategies with different technical challenges. Both a simple hardware (like a
camera), combined with complex deep learning algorithms (like Openpose [73]), or a
more complex hardware (a Kinect®), combined with a more easily interpretable random
forest algorithm1 can measure posture. Recording a large database, or analysing the pos-
ture with a complex program raise different issues. In this case there is still an open
question between the trade-off of accessibility of the device or algorithm to disseminate
more largely this approach.

7.3 Mystification and ethical aspects
The protégé effect is working in this scenario because the child believed that the robot
needs him/her to improve its writing. This does not really make sense in an implementa-
tion level since the quality of writing is only a given parameter to the robot controlled by
the experimenter. Still, this mystification was good enough to initiate a therapeutic child-
robot interaction even if this mystification was not sustained, since the child reported “It’s
not the robot who learns, it is me”. Fortunati et al, showed how children had high expec-
tations (stereotypes) toward robots shaped by media, even if the human-like features of
fictional robots are more advanced than those reachable by the factual ones [138]. Nu-
merous experiments in psychology showed how human are prone to biases [18, 272] as
well as their tendency for mystification and rationalization [34, 148]. This was also done
with a human instead of the robot. In experiments with cyranoı̈ds, people are fooled by

1https://www.fondationorange.com/Pictogram-room
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Figure 7.1: Several E-mental health strategies with increasing hardware complexity
and professional investment. Apps : applications on smartphone, ICBT: Internet-based
Cognitive Behavioural Therapy, SAR: Social Assistive Robotics

a senior experimenter secretly ”tele-operating” a child via earphones. People interacting
with a child often do not understand that there is an incompatibility between the body and
the cognitive function of an individual even with a large difference of age [276]. This
question was also raised in the Turing test [353] that tried to provide a method to assess
”whether or not a machine can think”. If a subject cannot distinguish an interaction with a
human and a machine, he assumes that the machine thinks. To explore further these false
attributions, we defend that in such an interaction, instead of a binary question (“is this
mind-body conjunction possible ?” or “is this machine intelligent”), we could investigate
the belief projected by the child on the robot.

Thus, we began to investigate such beliefs during the journée des classes (schools
days) in EPFL university in a group of 61 children during one day. Classrooms were
invited in EPFL university to take part with different experiments developped by re-
searchers. Children were able to interact with Nao proposing the co-writer exercices (only
the turn-taking writing activity in this scenario). They then rated their perception and in-
ference about the ability of the robot on a Likert scale. We propose several dimensions
that could be evaluated: (1) a simple perception dimension describing abilities performed
actually by the robot, e.g. the robot is speaking, is moving, is progressing, (2) inferences
induced by the scenario, e.g. the robot is progressing, the robot learns to write, the robot
has difficulties to write, (3) arbitrary inferences, e.g. the robot is happy in its interaction
with me, the robot is nice, the robot is a boy, the robot is annoying, the robot thinks I
improved, (4) perception of the robot’s autonomy, e.g. the robot is controlled by a human,
the robot is living, a human programmed the robot. This day showed the feasibility of this
kind of study even if data should still be analyzed. It could allow to discriminate between
different scenarios.

7.4 E-mental health

Perspectives on the use of technologies in psychiatry
Prevention in mental health is critical albeit still poorly implemented. A prevention would
be particularly decisive during during critical sensitive developmental periods [17]. E-
mental health approaches could help (1) to decrease the treatment gap, (2) to support
prevention, (3) to better understand the optimal care.

Here, we will describe several strategies ranked according to increasing hardware
complexity and professional investment (Figure 7.1).
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Figure 7.2: E-Goliah rehabilitation app targeting motor and social skills training for
ASD

Meta-analyses based on randomised trials clearly indicate that therapist-guided stand-
alone application can result in meaningful benefits for a range of indications. The clinical
significance of improvements in purely self-guided interventions is for many disorders
less clear [122]. Some very well studied psychotherapeutical principles can be applied
via apps: app-guided mindfulness is used for depression [233]2, exposition and response
prevention for Obsessive Compulsive Disorders (OCD) [220]3. Serious games were de-
veloped as accessible proxy of evidence-based therapies in ASD such as the E-Goliah
serious game (Figure 7.2 [48, 211]).

Other serious games are tested for visuo-spatial tasks like Tetris® (Figure 7.3) to
prevent [145, 202] and treat intrusive memories after a trauma [63, 217], arcade games in
ADHD [228], role play and simulation games for psychoeducation4. Chatbots is another
strategy that was used in depression and anxiety5.

Social medias can be used to help patients share their experience together and em-
power them [291]. Remote consultation (telepsychiatry) deployed rapidly in the context
of COVID crisis. In systematic reviews, most controlled studies reported no statistical
differences between videoconferencing and in-person psychotherapy in depression [38].
Several meta-analyses [9] and non-inferiority trials [10, 402] showed that Internet Cog-
nitive Behavioural Therapy (online exercises programmed by a therapist) was efficient
or even as efficient as face-to-face Cognitive Behavioural Therapy. Systematic reviews
showed no evidence that Virtual Reality (VR) is significantly less efficacious than in-vivo
exposure in specific phobia like agoraphobia [404]. A preliminary study used VR to en-
hance sensory integration in ASD [212]. Avatars show promising results in the treatment
of hallucinations in schizophrenia [94]. Contrary to robots -especially Social Assistive
Robots (SAR)- that are presented in this thesis, these technologies have already reached

2e.g. https://www.petitbambou.com/, https://www.headspace.com/
3e.g. https://www.treatmyocd.com/
4https://www.sparx.org.nz/ [266]
5https://www.facebook.com/owlielechatbot/ , https://www.wysa.io/ ,

https://woebothealth.com/
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Figure 7.3: Preventing intrusive memories by reminders cues and visuo-spatial task
with Tetris, in the golden hours just after a trauma (¡72h), to prevent consolidation
into a Post-Traumatic Stress Disorder

maturity. For instance, virtual agents could be promising in early stage since, it seems
to elicit, in some cases, more easily self-disclosure in socially anxious interactants since
participants expect not to be judged [215].

Future research ought to assess the acceptability and training of the professionals to
critically use these technologies (from apps to SAR). One needs to assess feasibility of
technical promises, implementation in a larger scale, responsibility concerning both the
potential inefficacy or side effects that could occur using these technologies, especially
if human presence is quite far, for instance with apps. How to fund or even reimburse6

new treatments based on Information Communication Technologies (ICT)? Developing
specific and convincing methods of validation is difficult since the design of these tech-
nologies is often iterative and user-centered and the classical one-shot randomised control
trial, which is the gold standard method of evaluation in medicine, does not fit well with
this approach.

On the other side, despite the surge of enthusiasm sparked by these opportunities,
some authors raised concern about the over presence of screens and their negative impact
on development, especially for language disorders [90]. When controlling for confusing
factors, larger studies do not show this large detrimental effect and conclude that this
effect is “too small to warrant policy change” [252, 299]. However, the use can be very
different, future research, would need to distinguish different uses of ICT technologies.
Some activities with screen like educational content or co-view with the parent can have
a positive effect [253]. It would allow to better understand the advantages and negative
effect of these technologies.

6https://www.kalb.com/2020/06/16/fda-approves-video-game-for-treating-adhd-in-kids-2/
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7.5 A better understanding of Autism Spectrum Disor-
der

7.5.1 An opportunity for the development of biomarkers

Electronic-based assessment of movement difficulties could lead to the development of
bio-markers [418]. This would complement the classical questionnaire-based clinical
evaluation, first step for the application of precision medicine in ASD [46]. It could then
help to guide rehabilitation thanks to tailored automatic feedback loops. Eye-tracking
[140, 307] and event-related pupil dilation [4] in social orientation tasks are promising
and affordable methods. Scaling-up those methods, thanks to widespread and affordable
devices like smartphones could lead to a better understanding of ASD physiopathology
and allow screening of ASD in the long term [123].

7.5.2 Sensorimotor difficulties in ASD, the foundation for other dif-
ficulties?

Many cognitive theories have been suggested to underlie the behavioural and develop-
mental manifestations of autism. Evidence suggests that individuals with ASD are slower
to process information at a global level, particularly, when a concurrent local information
is present [47,131]. However, the prominence and the consensus on the potential explana-
tory value of these cognitive theories “have declined in the past decade” [249] mainly due
to the lack of longitudinal developmental studies to support them [131,249] and to distin-
guish causal mechanisms and compensatory strategies developed by the child.

When analysing 16 autobiographical writings and 5 interviews with autistic persons,
Chamak et al, showed that all of them reported unusual perceptions and information pro-
cessing as well as impairment in emotional regulation [80]. This suggests that the di-
agnostic criteria of (1) difficulty of communication and socialization and (2) restricted
and repetitive behaviours are only consequences of this peculiar perceptive and emotional
processing style.

A developmental sensorimotor approach could be useful. A fundamental approach
from cognitive sciences defends that sensory and motor information are integrated in a
loop and each refines the other thanks to internal models [411].

Sensorial difficulties are frequent in autistic persons [238, 421]. Higher intensities of
sensory issues were associated with more prominent social difficulties and lower adaptive
functioning [227]. In the same way, impaired praxis (that included gestures to command,
imitation, and tool-use in children) were strongly correlated with the social, communica-
tive, and behavioural impairments that define ASD [121].

The internal models built during development through sensorimotor contigencies
[205] are likely early requirements for the development of higher level function like lan-
guage, cognitive skills and social skills [91]. Impairment of neuronal circuits under-
pinning sensorimotor functions could trigger an atypical developmental cascade [45, 46]
(Figure 7.4). It is important to have a developmental approach since these processes can
improve via compensation mechanisms through development.

The social feedback theory states that individuals express on their own face, in a mir-
ror way and unconsciously, the emotions they perceive on the face of other individu-
als [89,292]. Altering the sensorimotor feedback disrupted visual discrimination of facial
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Figure 7.4: Cascade model connecting sensorimotor difficulties to impaired social
cognition and socialisation in ASD (inspired by [45])

expressions [292,412]. This suggests that the sensorimotor loop is crucial for understand-
ing social information. This fine sensorimotor tuning to social stimulation could be an
early developmental step crucial for the acquisition of social competences.

Helt et al., found a strong relationship between the struggle to reproduce emotions in
individuals with ASD, and the insensitivity to facial feedback [181]. Trevisan showed in a
meta-analysis that the production of facial expressions was impaired in autism (moderate
effect size). Facial expressions of individuals with ASD are less frequent and shorter.
These individuals are less likely to share facial expressions with others or automatically
mimic the expressions of real faces or pictures with faces stimuli [387].

Repetitive behaviours are the only motor symptomatology included in the current
ASD diagnostic criteria of the Diagnostic and Statistical Manual of Mental Disorders,
fifth edition (DSM-5) [8] and in the International Classification of Diseases, 11th edition7

(Chapter 1). Here, we propose, based on this sensorimotor perspective, that social dif-
ficulties are primarly driven by sensorimotor issues. If this is true, early detection and
rehabilitation of these sensorimotor impairments would avoid triggering this detrimental
developmental cascade, and therefore limit the subsequent difficulties in social cognition,
which then lead to leading to difficult socialization (Figure 7.4).

7.5.3 Computational psychiatry as a way to modelize these sensori-
motor difficulties

Computational methods offer opportunities to characterize social difficulties in ASD, with
tools like synchrony, imitation measures, interpersonal distance (Chapter 2). However,

7https://icd.who.int/en/
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they also allow characterizing and simulating internal functionning in ASD.
The goal of computational psychiatry is to describe and modelize with algorithms the

difficulties found in mental disorders. It is a recent field with still quite heteregeneous
findings. [32, 191].

Pellicano proposed that individuals with ASD perceived the world too realistically
and rely less on their internal models. Thus, this could lead to sensory overload [312].
Using the bayesian decision theory, they suggest that those children have hypo-priors.
They over-rely on bottom-up sensory evidence [312] and under-rely on their priors mod-
els shaped by experience. That could explain, the clinical difficulties of these individuals
to manage variable sensory stimuli and their tendency to stick on routines. Lawson used
a decision task to assess the learning process in ASD. They showed that adults with ASD
overestimate the volatility of the sensory environment, i.e., the behavioural and pupil-
lometric measurements showed that adults with ASD were less surprised than controls
when their expectations were violated. Instead of focusing on their inner model of the
task, they over-rely on the sensory input [235]. This strategy was also investigated with
physiological approach, describing different processing of stimuli change [154, 357] and
the activation of autonomic nervous system [31].

The embodiement of a humanoid robot dealing with ecological tasks like a ball in-
teraction with a human experimenter allows modelling these sensorimotor difficuties at
a controllable computational level. Idei et al., used a humanoid robot (Nao) controlled
by a neural network using a precision-weighted prediction error minimization mecha-
nism, to simulate computationally the motor disturbances of ASD. They showed that both
increased and decreased sensory precision could induce the behavioural rigidity char-
acterized by resistance to change characteristic of autistic behavior [194]. In an other
experiment, they simulated changes in intrinsic neuronal excitability at the neural level.
After the training of the algorithm, it induced hyper sensory precision and overfitting to
sensory noise. These changes led to multifaceted alterations at the behavioral level, such
as inflexibility, reduced generalization, and motor clumsiness [195].

7.5.4 Toward new therapeutic strategies focusing on the rehabilita-
tion of sensorimotor difficulties

Child’s development has been depicted as a non-linear process, where multiple develop-
mental windows restrict the period during which a given function can be learned, i.e.,
some function needs sometimes to be developed during a certain period and cannot be
developed later on due to a reduced brain plasticity [59, 183]. Thus, it is important to
propose early remediation respecting the development of the child.

Virtual reality (VR) offers the opportunity (1) to control and reproduce the stimuli
presented to the children and (2) to offer a realistic stimulation that mimics an ecological
situation (Figure 7.5 A). A sensory overload can trigger behavioural disorders in children
with ASD, like tantrums, avoidance, etc. A VR setting could improve the understanding
of the therapist, the child and his/her family on the way they process these sensory inputs
and help them to cope and to habituate. Such system using a CAVE setup and a 3 di-
mensional video is installed in Tours8 in order to perform progressive exposure therapy to
children with ASD with sensory peculiarities. Such system could to help understanding
their atypical behavioural responses and how they habituate to these ecological stimu-
lations. Children and adolescent with ASD who have atypical sensory overresponsivity

8https://youtu.be/JGACdBOsrf8
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Figure 7.5: Two sensorimotor rehabilitation strategies using information technolo-
gies. A: The Cube: Virtual Reality system to habituate to sensory stimulation, B: Cellulo
robot, developped in EPFL, to evaluate and train sensorimotor difficulties of upper arm

exhibit atypical and distinct patterns of brain responses of habituation and generalization
of response to new, similar stimuli [162].

Since grasping and upper arm mouvements are one of the first acquired set of mouve-
ments, their study with tangible robots, like Cellulo (Figure 7.5 B), could allow to confirm
strategies based on sensorimotor rehabilitation that would prevent the initiation of an im-
paired developmental cascade9.

A better understanding of these sensory peculiarities could: (1) allow preliminary
screening with new biomarkers before the evaluation of higher level functioning like so-
cial skills, (2) improve our understanding of the development of ASD with computational
models, (3) help us imagine management strategies of these sensorimotor anomalies that
could be remediated before the florishing of later social difficulties that are still necessary
for the diagnosis (Figure 7.4).

7.6 Follow-up of the project

7.6.1 Mercator and CHILI funding for a serious game

The electronic sensors used in the first prototype was a Wacom®. This limits the size of
the data collection of the system since it needed to be connected to laptop. A new version
of the software funded by Mercator Switzerland foundation and the CHILI laboratory,
EPFL, Lausanne will be based on iPad® (Figure 7.610), a stand alone tablet more available
on the consumer market, that will allow to scale up this system.

The iPad® tablets are easier to use and allow to display real-time stimuli to perform
real time feedback like the Wacom® cintiq we used in chapter 5 and 6. However, the
contact between a glass and the pen is different from the one between paper and a pen [5],
even if it appears possible to detect handwriting difficulties on a tablet in the same way

9https://ecnp33-ecnp.ipostersessions.com/Default.aspx?s=1B-AB-90-D2-C6-B9-B3-3C-45-AF-18-21-
1C-90-E7-7D

10https://www.dynamico.ch/
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Figure 7.6: Screenshots of Dynamico exercices (from top left to bottom right), adapted
games from chapter 5: pressure training game, tracking game, tilt training game, cowriter
game and a new game: grasping game.

as for the paper support [23]. All the features presented in chapter 3 and 4 were using
this strategy, but did not allow to control dynamicaly the stimuli like a Wacom® cintiq
allow with its screen. Two strategies would be possible: to consider that the transfer of
the motor abilities of children is trivial from the glass of the screen to paper, or to use
other system that allow to stick a material on the surface that can provide the same feeling
and resistance11.

The goal of this project could be to develop a scalable system able (1) to screen and
help the evaluation of writing for any child, (2) to better understand user experience and
use in normal education, and/or specialised care (a better understanding of handwriting
development would allow to better identify which kind of children would benefit from
a rehabilitation, maybe some children would benefit much more from an adaptation of
their environment), (3) to propose tailored adaptative activities to rehabilitate handwriting,
to better understand the rhythm of therapy considering the debate between bottom-up
and top-down approaches, (4) to validate the efficacy and cost-efficacy of this approach
compared with treatment at usual.

The importance of multisensory feedback should also be tested (e.g., audiovisual feed-
back associated). Such tablets will be used with or without a robot and this will allow to
study the specific role of the robot. If the robot is important, we will learn until when it is
necessary during rehabilitation.

7.6.2 ANR-FNS funding for a social robot

The CoWriter project was funded by a common grant, under the name iReCHeCk 12, from
the Agence Nationale de la Recherche (ANR) in France and Fond National Suisse (FNS)
in Switzerland: (1) to scale up the prototype in order to allow studies with a larger sample
and (2) to study long-term child-robot interaction in this set-up. It will benefit from an
other robot, the Qt Robot, which is more stable than a Nao robot and is able to display

11doodroo for iPad - The Real PaperFeeling screen protector, https://www.doodroo.com/
12https://irecheck.github.io/
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Figure 7.7: Implementation of the wizard of Oz scenario on a QT robot. See a video
demonstration of the implementation: https://youtu.be/hHuEMFIXCEo

emotions to sustain engagement with the children [165](Figure 7.7). See 13 and 14 for
demos.

A new question is the usability of the system and how different populations (of clin-
icians and educators) will take charge of it. Standardised scales could help to measure
it [58]. On one side, specialists in writing rehabilitation (psychomotricians and occupa-
tional therapists) reported their wish to control as much as possible the therapy with a
non-autonomous system, such a wizard of Oz system. On the other side, teachers, with
which we did some class sessions in schools, want the system to be more autonomous
to enable a child with specific needs to work alone on handwriting activities so that they
can focus on other activities with the other children. Some questions remain, how to
handle turn-taking activities between several children in class, how to make the robot
more aware of the environment to react accordingly (suggest behaviours–like the SPARC
framework [358]), how the robot is accepted in class and how children accept it, what
are the beliefs about its abilities and limitations, compare the practice, funding and ac-
ceptability of using new technologies in different contexts. This long-term child-robot
interaction in a medical context could allow to better characterize the behaviour of the
children and how to adapt the behaviour of the robot [78]. It could be helped by social
computing tools assessing non-verbal behaviours, that we described in Chapter 1, but
also verbal behaviours [350, 400] and their interaction [399]. This interaction would be
particularly interesting in ASD for instance since their difficulty to detect irony is well
described [111], where irony ”can be considered a case of emergence where, e.g., the
verbal and non-verbal components of a message are opposite to one another” [399].

13https://youtu.be/iZzBAZbiSVA
14https://youtu.be/IZbOC772yPs
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7.7 Conclusion
New electronic sensors and algorithms allow to track movement more easily and objec-
tively. They allow the implementation of closed feedback loops, that are highly relevant
for rehabilitation, especially in handwriting. Rehabilitation can be done with a tablet,
combined or not with social assistive robotics. We begin to understand how to use these
technologies to tailor education to the special needs of children with NDD. Beyond pro-
totypes, important development is required to improve usability for professionals and
children. Larger scales studies, during long-enough periods, will allow to better under-
stand their usability, their acceptability and their efficacy. Ultimately, these technologies
could help children with special needs by bridging the gap between adequate adaptations
they need and practical possibilities in scholar education. It could foster their inclusion,
and allow everyone to learn at his or her own pace.
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“Our subjective belief and feeling is that we are in charge of our actions. These phe-
nomena appear to be related to our left hemisphere’s interpreter, a device that allows us to
construct theories about the relationship between perceived events, actions and feelings.”

Gazzaniga, M. S. (2000). Cerebral specialization and interhemispheric communica-
tion: does the corpus callosum enable the human condition?. Brain, 123(7), 1293-1326.

“Pour résumer, la théorie Bayésienne fournit un modèle mathématique de la manière
optimale de mener un raisonnement plausible en présence d’incertitudes. Dès la nais-
sance, le bébé semble doté de compétences pour ce type de raisonnement probabiliste.
L’inférence Bayésienne rend également bien compte des processus de perception : étant
donné des entrées ambigües, le cerveau en reconstruit l’interprétation la plus probable. La
règle de Bayes indique comment combiner, de façon optimale, les a priori issus de notre
évolution ou de notre mémoire avec les données reçues du monde extérieur.”

Stanislas Dehaene, Le cerveau statisticien : la révolution Bayésienne en sciences
cognitives, cours de la chaire de psychologie expérimentale du collège de France, 2011-
2012

“En effet, ce qu’on appelle la personalité d’un homme, d’un individu, se bâtit sur un
bric-à-brac de jugements de valeurs, de préjugés, de lieux communs, qu’il traı̂ne et qui,
à mesure que son âge avance deviennent de plus en plus rigides et qui sont de moins en
moins remis en question. Et quand une seule pierre de cet édifice est enlevée, tout l’édifice
s’écroule. Il découvre l’angoisse. Et cette angoisse ne reculera, ni devant le meutre pour
l’individu ni devant le génocide ou la guerre, pour les groupes sociaux, pour s’exprimer.
[...] On commence à comprendre par quels mécanismes, pourquoi et comment, à travers
l’histoire et dans le présent, se sont établies des échelles hiérarchiques de dominance.
Pour aller sur la lune, on a besoin de connaı̂tre les lois de la gravitation. Quand on connaı̂t
ces lois de la gravitation, cela ne veut pas dire qu’on se libère de la gravitation. Cela veut
dire qu’on les utilise pour faire autre chose. Tant que l’on aura pas diffusé très largement
à travers les hommes de cette planète la façon dont fonctionne leur cerveau, la façon dont
ils l’utilisent et tant qu’on aura pas dit que jusqu’ici ça toujours été pour dominer l’autre,
il y a peu de chance qu’il y ait quelque chose qui change.”

Henri Laborit, cité par Alain Resnais, Mon oncle d’Amérique, 1980
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�Les grandes personnes aiment les chiffres. Quand vous leur parlez d’un nouvel ami,
elles ne vous questionnent jamais sur l’essentiel. Elles ne vous disent jamais : ”Quel est le
son de sa voix ? Quels sont les jeux qu’il préfère ? Est-ce qu’il collectionne les papillons
? ” Elles vous demandent : Quel âge a t’il ? Combien a-t-il de frères ? Combien pèse-t-il ?
Combien gagne son père ? ” Alors seulement, elles croient le connaı̂tre. Si vous dites aux
grandes personnes : ”J’ai vu une belle maison en briques roses, avec des géraniums aux
fenêtres et des colombes sur le toit...” elles ne parviennent pas à s’imaginer cette maison.
Il faut leur dire : ”J’ai vu une maison de cent mille francs.” Alors elles s’écrient : ”Comme
c’est joli ! ”

Ainsi, si vous leur dites : ” La preuve que le petit prince a existé, c’est qu’il était ravis-
sant, qu’il riait et qu’il voulait un mouton, c’est la preuve qu’il existe” elles hausseront les
épaules et vous traiteront d’enfant ! Mais si vous leur dites : ”La planète d’où il venait est
l’astéroı̈de B612” alors elles seront convaincues , et elles vous laisseront tranquille avec
leurs questions. Elles sont comme ça. Il ne faut pas leur en voulour. Les enfants doivent
être très indulgents envers les grandes personnes.�

Antoine de Saint-Exupéry, Le petit Prince, chap. IV, cité par Antoine Houlou-Garcia
et Thierry Maugenest, Le Théorème d’Hypocrite, une histoire de la manipulation par les
chiffres de Pythagore au COVID-19, Albin Michel, 2020
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Archives de Pédiatrie, 24(4):384–390, 2017.

[46] F. Bonnet-Brilhault, L. Tuller, P. Prévost, J. Malvy, R. Zebib, S. Ferré, C. Dos San-
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N. Žaja, M. J. V. Florido, Ó. Soto-Angona, et al. Preventing post traumatic stress
disorder in the general population induced by trauma during the covid pandemic:
A simple brief intervention based on cognitive science that could be delivered dig-
itally. European Journal of Trauma & Dissociation, page 100193, 2020.

[146] T. Gargot, S. Recht, and A. Guneysu Ozgur. The imitation game: A perception-
action loop based, imitation activity with tangible robots for children with asd, ac-
cessible on https://ecnp33-ecnp.ipostersessions.com/default.aspx?s=1b-ab-90-d2-
c6-b9-b3-3c-45-af-18-21-1c-90-e7-7d#. In The 33th European Congress of Neuro
Psychopharmacology (ECNP), Sept. 2020.

[147] M. Garvey, S. Avenevoli, and K. Anderson. The national institute of mental health
research domain criteria and clinical research in child and adolescent psychiatry.
Journal of the American Academy of Child & Adolescent Psychiatry, 55(2):93–98,
2016.

[148] M. S. Gazzaniga. Cerebral specialization and interhemispheric communication:
does the corpus callosum enable the human condition? Brain, 123(7):1293–1326,
2000.

[149] Q. Geissmann, L. Garcia Rodriguez, E. J. Beckwith, A. S. French, A. R. Jamasb,
and G. F. Gilestro. Ethoscopes: An open platform for high-throughput ethomics.
PLoS biology, 15(10):e2003026, 2017.

[150] Q. Geissmann, L. Garcia Rodriguez, E. J. Beckwith, and G. F. Gilestro.
Rethomics: An r framework to analyse high-throughput behavioural data. PloS
one, 14(1):e0209331, 2019.

[151] E. Gessaroli, E. Santelli, G. di Pellegrino, and F. Frassinetti. Personal space regu-
lation in childhood autism spectrum disorders. PloS one, 8(9):e74959, 2013.

[152] S. Ghidoni, S. M. Anzalone, M. Munaro, S. Michieletto, and E. Menegatti. A
distributed perception infrastructure for robot assisted living. Robotics and Au-
tonomous Systems, 62(9):1316–1328, 2014.

[153] A. Gomez-Marin, J. J. Paton, A. R. Kampff, R. M. Costa, and Z. F. Mainen. Big
behavioral data: psychology, ethology and the foundations of neuroscience. Nature
neuroscience, 17(11):1455, 2014.

[154] M. Gomot and B. Wicker. A challenging, unpredictable world for people with
autism spectrum disorder. International Journal of Psychophysiology, 83(2):240–
247, 2012.
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[288] M. R. Munafò, B. A. Nosek, D. V. Bishop, K. S. Button, C. D. Chambers, N. P.
Du Sert, U. Simonsohn, E.-J. Wagenmakers, J. J. Ware, and J. P. Ioannidis. A
manifesto for reproducible science. Nature human behaviour, 1(1):0021, 2017.
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Algorithms and robotics allow to
describe how we learn handwriting and
how to better help children with
difficulties

Handwriting difficulties are frequent and impairing. However, the assessment of motor
learning skills is difficult and limits early stage rehabilitation.

Electronic sensors and algorithms can help to measure motor difficulties more easily
and objectively. Electronic tablets, for instance, give access to handwriting features that
are not usually evaluated in classical assessments. We describe how such digital features
(in static, dynamic, pressure, and tilt domains) allow diagnosing dysgraphia and how
they evolve during children development. From a finer analysis, three different clusters
of dysgraphia emerge, longitudinal studies will allow to underline different patterns of
development that seemingly require tailored remediation strategies.

However, those digital features are not used in the context of conventional pen and
paper therapies. It is possible to engage children with typical development in handwrit-
ing exercises by asking them to teach a robot to write. We implemented a long-term case
study (20 sessions, 500 minutes in total) observing a child with severe Developmental Co-
ordination Disorder who did not progress anymore with a classic pen and paper approach
by enriching this setup with various training activities using real-time feedback loops (on
tilt, pressure, dynamic, pauses). We show how this new method tackles previous child’s
behavior avoidances, boosting his motivation, and improving his motor and writing skills.

This thesis demonstrates how new writing digital features allow the implementation
of innovative handwriting remediation interventions, which rely on fostering children’s
personal characteristics and adaptation skills.

Keywords: writing, dysgraphia, robotics, electronic tablets, machine learning, autism
spectrum disorders, neurodevelopmental disorders

169


	Abstract
	Résumé
	Résumé substanciel
	Remerciements
	List of Figures
	List of Tables
	Introduction
	General objectives
	Organisation
	Neurodevelopmental Disorders
	A dimensional approach of Neurodevelopmental Disorders
	Motor difficulties in Neurodevelopmental Disorders
	Handwriting difficulties

	Innovative assessment of motor disorders
	Introduction
	Methods
	Results
	Discussion
	Conclusion

	An automatic handwriting diagnosis
	Introduction
	Materials and methods
	Results
	Discussion
	Conclusion

	Writing development and a new classification of dysgraphia
	Introduction
	Materials and methods
	Results
	Discussion
	Conclusion

	Tablets to guide the rehabilitation of dysgraphia
	Introduction
	Materials and methods
	Results
	Discussion
	Conclusion

	Enhancing the rehabilitation using social robotics
	Introduction
	Materials and methods
	Rationale
	Reactions to the social behaviours
	Discussion
	Conclusion

	Discussions and Perspectives
	Writing and technologies
	Generalisability
	Mystification and ethical aspects
	E-mental health
	A better understanding of Autism Spectrum Disorder
	Follow-up of the project
	Conclusion

	Bibliography
	List of abbreviations
	Author publications

