Thomas Franosch

Thomas Franosch
Friedrich-Alexander-University Erlangen-Nürnberg | FAU · Institute of Theoretical Physics

About

160
Publications
12,605
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
5,112
Citations

Publications

Publications (160)
Preprint
We elaborate and validate a generalization of the renowned transition-path-sampling algorithm for a paradigmatic model of active particles, namely the Run-and-Tumble particles. Notwithstanding the non-equilibrium character of these particles, we show how the consequent lack of the microscopical reversibility property, which is usually required by t...
Preprint
Full-text available
We analyze gravitaxis of a Brownian circle swimmer by deriving and characterizing analytically the experimentally measurable intermediate scattering function (ISF). To solve the associated Fokker-Planck equation we use a spectral-theory approach and find formal expressions in terms of eigenfunctions and eigenvalues of the overdamped-noisy-driven-pe...
Preprint
Full-text available
We study a lattice model describing the non-equilibrium dynamics emerging from the pulling of a tracer particle through a disordered medium occupied by randomly placed obstacles. The model is considered in a restricted geometry pertinent for the investigation of confinement-induced effects. We analytically derive exact results for the characteristi...
Preprint
Full-text available
We consider a lattice model in which a tracer particle moves in the presence of randomly distributed immobile obstacles. The crowding effect due to the obstacles interplays with the quasi-confinement imposed by wrapping the lattice onto a cylinder. We compute the velocity autocorrelation function and show that already in equilibrium the system exhi...
Preprint
Full-text available
We consider a tracer particle performing a random walk on a two-dimensional lattice in the presence of immobile hard obstacles. Starting from equilibrium, a constant force pulling on the particle is switched on, driving the system to a new stationary state. Our study calculates displacement moments in discrete time (number of steps $N$) for an arbi...
Article
Full-text available
We employ renewal processes to characterize the spatiotemporal dynamics of an active Brownian particle under stochastic orientational resetting. By computing the experimentally accessible intermediate scattering function (ISF) and reconstructing the full time-dependent distribution of the displacements, we study the interplay of rotational diffusio...
Preprint
Full-text available
We calculate thermodynamic and structural quantities of a fluid of hard spheres of diameter $\sigma$ in a quasi-one-dimensional pore with accessible pore width $W $ smaller than $\sigma$ by applying a perturbative method worked out earlier for a confined fluid in a slit pore [Phys. Rev. Lett. \textbf{109}, 240601 (2012)]. In a first step, we prove...
Article
Full-text available
We calculate thermodynamic and structural quantities of a fluid of hard spheres of diameter σ in a quasi-one-dimensional pore with accessible pore width W smaller than σ by applying a perturbative method worked out earlier for a confined fluid in a slit pore [Franosch et al. Phys. Rev. Lett. 109, 240601 (2012)]. In a first step, we prove that the t...
Article
Full-text available
Microswimmers able to switch their dynamics between standard and active Brownian motion can learn how to optimize their odds of finding unknown targets by tuning the probability of switching from the active to the passive phase and vice versa .
Article
Full-text available
We introduce a numerical method to extract the parameters of run-and-tumble dynamics from experimental measurements of the intermediate scattering function. We show that proceeding in Laplace space is unpractical and employ instead renewal processes to work directly in real time. We first validate our approach against data produced using agent-base...
Article
Full-text available
We characterize the full spatiotemporal gait of populations of swimming using renewal processes to analyze the measurements of intermediate scattering functions. This allows us to demonstrate quantitatively how the persistence length of an engineered strain can be controlled by a chemical inducer and to report a controlled transition from perpetual...
Article
We investigate the usage of a recently introduced noise-cancellation algorithm for Brownian simulations to enhance the precision of measuring transport properties such as the mean-square displacement or the velocity-autocorrelation function. The algorithm is based on explicitly storing the pseudorandom numbers used to create the randomized displace...
Preprint
Developing behavioral policies designed to efficiently solve target-search problems is a crucial issue both in nature and in the nanotechnology of the 21st century. Here, we characterize the target-search strategies of simple microswimmers in a homogeneous environment containing sparse targets of unknown positions. The microswimmers are capable of...
Article
Full-text available
Developing behavioral policies designed to efficiently solve target-search problems is a crucial issue both in nature and in the nanotechnology of the 21st century. Here, we characterize the target-search strategies of simple microswimmers in a homogeneous environment containing sparse targets of unknown positions. The microswimmers are capable of co...
Article
Full-text available
Temperature, particle number and volume are the independent variables of the Helmholtz free energy for a bulk fluid. For a fluid confined in a slit pore between two walls, they are usually complemented by the surface area. However, an alternative choice is possible with the volume replaced by the pore width. Although the formulations with such two...
Preprint
We solve the time-dependent Fokker-Planck equation for a two-dimensional active Brownian particle exploring a circular region with an absorbing boundary. Using the passive Brownian particle as basis states and dealing with the activity as a perturbation, we provide a matrix representation of the Fokker-Planck operator and we express the propagator...
Article
We solve the time-dependent Fokker-Planck equation for a two-dimensional active Brownian particle exploring a circular region with an absorbing boundary. Using the passive Brownian particle as basis states and dealing with the activity as a perturbation, we provide a matrix representation of the Fokker-Planck operator and we express the propagator...
Preprint
We present mode-coupling theory (MCT) results for densely packed hard-sphere fluids confined between two parallel walls and compare them quantitatively to computer simulations. The numerical solution of MCT is calculated for the first time using the full system of matrix-valued integro-differential equations. We investigate several dynamical proper...
Article
We present mode-coupling theory (MCT) results for densely packed hard-sphere fluids confined between two parallel walls and compare them quantitatively to computer simulations. The numerical solution of MCT is calculated using the full system of matrix-valued integro-differential equations. We investigate several dynamical properties of supercooled...
Preprint
Full-text available
We calculate the thermophoretic drift of a charged single colloidal particle with hydrodynamically slipping surface immersed in an electrolyte solution in response to a small temperature gradient. Here, we rely on a linearized hydrodynamic approach for the fluid flow and the motion of the electrolyte ions while keeping the full nonlinearity of the...
Article
We calculate the thermophoretic drift of a charged single colloidal particle with hydrodynamically slipping surface immersed in an electrolyte solution in response to a small temperature gradient. Here we rely on a linearized hydrodynamic approach for the fluid flow and the motion of the electrolyte ions while keeping the full nonlinearity of the P...
Article
Full-text available
We measure the thermophoresis of polysterene beads over a wide range of temperature gradients and find a pronounced nonlinear phoretic characteristic. The transition to the nonlinear behavior is marked by a drastic slowing down of thermophoretic motion and is characterized by a Péclet number of order unity as corroborated for different particle siz...
Article
Full-text available
Artificial cells can be engineered to display dynamics sharing remarkable features in common with the survival behavior of living organisms. In particular, such active systems can respond to stimuli provided by the environment and undertake specific displacements to remain out of equilibrium, e.g. by moving towards regions with higher fuel concentr...
Preprint
We characterize the full spatiotemporal gait of populations of swimming {\it Escherichia coli} using renewal processes to analyze the measurements of intermediate scattering functions. This allows us to demonstrate quantitatively how the persistence length of an engineered strain can be controlled by a chemical inducer and to report a controlled tr...
Preprint
Full-text available
We introduce a numerical method to extract the parameters of run-and-tumble dynamics from experimental measurements of the intermediate scattering function. We show that proceeding in Laplace space is unpractical and employ instead renewal processes to work directly in real time. We first validate our approach against data produced using agent-base...
Preprint
Full-text available
We investigate the dynamics of a single chiral active particle subject to an external torque due to the presence of a gravitational field. Our computer simulations reveal an arbitrarily strong increase of the long-time diffusivity of the gravitactic agent when the external torque approaches the intrinsic angular drift. We provide analytic expressio...
Article
We investigate the dynamics of a single chiral active particle subject to an external torque due to the presence of a gravitational field. Our computer simulations reveal an arbitrarily strong increase of the long-time diffusivity of the gravitactic agent when the external torque approaches the intrinsic angular drift. We provide analytic expressio...
Preprint
We provide an analytical solution for the time-dependent Fokker-Planck equation for a two-dimensional active Brownian particle trapped in an isotropic harmonic potential. Using the passive Brownian particle as basis states we show that the Fokker-Planck operator becomes lower diagonal, implying that the eigenvalues are unaffected by the activity. T...
Article
We provide an analytical solution for the time-dependent Fokker-Planck equation for a two-dimensional active Brownian particle trapped in an isotropic harmonic potential. Using the passive Brownian particle as basis states we show that the Fokker-Planck operator becomes lower diagonal, implying that the eigenvalues are unaffected by the activity. T...
Preprint
We study a strongly interacting crowded system of self-propelled stiff filaments by event-driven Brownian dynamics simulations and an analytical theory to elucidate the intricate interplay of crowding and self-propulsion. We find a remarkable increase of the effective diffusivity upon increasing the filament number density by more than one order of...
Preprint
We simulate a hard-sphere liquid in confined geometry where the separation of the two parallel, hard walls is smaller than two particle diameters. By systematically reducing the wall separation we analyze the behavior of structural and thermodynamic properties, such as inhomogeneous density profiles, structure factors, and compressibilities when ap...
Article
Full-text available
Confinement modifies the properties of a fluid. The particle density is no longer uniform but depends on the distance from the walls; parallel to the walls, layers with different particle densities form. This affects the particle packing in the layers. We investigated colloidal fluids with volume fractions between 0.19 and 0.32 confined between rou...
Preprint
We present numerical results for the tagged-particle dynamics by solving the mode-coupling theory in confined geometry for colloidal liquids (cMCT). We show that neither the microscopic dynamics nor the type of intermediate scattering function qualitatively changes the asymptotic dynamics in vicinity of the glass transition. In particular, we find...
Preprint
Within a recently developed mode-coupling theory for fluids confined to a slit we elaborate numerical results for the long-time limits of suitably generalized intermediate scattering functions. The theory requires as input the density profile perpendicular to the plates, which we obtain from density functional theory within the fundamental-measure...
Preprint
We investigate the tagged-particle motion in a strongly interacting quasi-confined liquid using periodic boundary conditions along the confining direction. Within a mode-coupling theory of the glass transition (MCT) we calculate the self-nonergodicity parameters and the self-intermediate scattering function and compare them with event-driven molecu...
Preprint
We investigate exploration patterns of a microswimmer, modeled as an active Brownian particle, searching for a target region located in a well of an energy landscape and separated from the initial position of the particle by high barriers. We find that the microswimmer can enhance its success rate in finding the target by tuning its activity and it...
Article
We investigate exploration patterns of a microswimmer, modeled as an active Brownian particle, searching for a target region located in a well of an energy landscape and separated from the initial position of the particle by high barriers. We find that the microswimmer can enhance its success rate in finding the target by tuning its activity and it...
Preprint
The relaxation dynamics of glass forming liquids and their structure are influenced in the vicinity of confining walls. In view of the great potential of this effect for applications in those fields of science and industry, where liquids occur under strong confinement (e.g., nano-technology), the number of researchers studying various aspects and c...
Preprint
Full-text available
In a microrheological set-up a single probe particle immersed in a complex fluid is exposed to a strong external force driving the system out of equilibrium. Here, we elaborate analytically the time-dependent response of a probe particle in a dilute suspension of Brownian particles to a large step-force, exact in first order of the density of the b...
Preprint
We study the 2D motion of colloidal dimers by single-particle tracking and compare the experimental observations obtained by bright-field microscopy to theoretical predictions for anisotropic diffusion. The comparison is based on the mean-square displacements in the laboratory and particle frame as well as generalizations of the self-intermediate s...
Article
Full-text available
We study the two-dimensional motion of colloidal dimers by single-particle tracking and compare the experimental observations obtained by bright-field microscopy to theoretical predictions for anisotropic diffusion. The comparison is based on the mean-square displacements in the laboratory and particle frame as well as generalizations of the self-i...
Article
Full-text available
We investigate the tagged-particle motion in a strongly interacting quasi-confined liquid using periodic boundary conditions along the confining direction. Within a mode-coupling theory of the glass transition we calculate the self-nonergodicity parameters and the self-intermediate scattering function and compare them with event-driven molecular dy...
Article
Target search by active agents in rugged energy landscapes has remained a challenge because standard enhanced sampling methods do not apply to irreversible dynamics. We overcome this nonequilibrium rare-event problem by developing an algorithm generalizing transition-path sampling to active Brownian dynamics. This method is exemplified and benchmar...
Article
We study a strongly interacting crowded system of self-propelled stiff filaments by event-driven Brownian dynamics simulations and an analytical theory to elucidate the intricate interplay of crowding and self-propulsion. We find a remarkable increase of the effective diffusivity upon increasing the filament number density by more than one order of...
Article
We present numerical results for the tagged-particle dynamics by solving the mode-coupling theory in confined geometry for colloidal liquids (cMCT). We show that neither the microscopic dynamics nor the type of intermediate scattering function qualitatively changes the asymptotic dynamics in vicinity of the glass transition. In particular, we find...
Article
Numerical solutions of the mode-coupling theory (MCT) equations for a hard-sphere fluid confined between two parallel hard walls are elaborated. The governing equations feature multiple parallel relaxation channels which significantly complicate their numerical integration. We investigate the intermediate scattering functions and the susceptibility...
Preprint
Target search by active agents in rugged energy landscapes has remained a challenge because standard enhanced sampling methods do not apply to irreversible dynamics. We overcome this non-equilibrium rare-event problem by developing an algorithm generalizing transition-path sampling to active Brownian dynamics. This method is exemplified and benchma...
Article
Multiple relaxation channels often arise in the dynamics of liquids where the momentum current associated to the particle-conservation law splits into distinct contributions. Examples are strongly confined liquids for which the currents in lateral and longitudinal direction to the walls are very different, or fluids of nonspherical particles with d...
Preprint
We provide a detailed derivation of the mode-coupling equations for a colloidal liquid confined by two parallel smooth walls. We introduce irreducible memory kernels for the different relaxation channels thereby extending the projection operator technique to colloidal liquids in slit geometry. Investigating both the collective dynamics as well as t...
Preprint
Within the mode-coupling theory (MCT) of the glass transition, we reconsider the numerical schemes to evaluate the MCT functional. Here we propose nonuniform discretizations of the wave number, in contrast to the standard equidistant grid, in order to decrease the number of grid points without losing accuracy. We discuss in detail how the integrati...
Preprint
We simulate the dynamics of a single circle microswimmer exploring a disordered array of fixed obstacles. The interplay of two different types of randomness, quenched disorder and stochastic noise, is investigated to unravel their impact on the transport properties. We compute lines of isodiffusivity as a function of the rotational diffusion coeffi...
Article
Full-text available
We simulate the dynamics of a single circle microswimmer exploring a disordered array of fixed obstacles. The interplay of two different types of randomness, quenched disorder and stochastic noise, is investigated to unravel their impact on the transport properties. We compute lines of isodiffusivity as a function of the rotational diffusion coeffi...
Preprint
Numerical solutions of the mode-coupling theory (MCT) equations for a hard-sphere fluid confined between two parallel hard walls are elaborated. The governing equations feature multiple parallel relaxation channels which significantly complicate their numerical integration. We investigate the intermediate scattering functions and the susceptibility...
Preprint
The sensitivity of anomalous transport in crowded media to the form of the inter-particle interactions is investigated through computer simulations. We extend the highly simplified Lorentz model towards realistic natural systems by modeling the interactions between the tracer and the obstacles with a smooth potential. We find that the anomalous tra...
Preprint
The complex behavior of confined fluids arising due to a competition between layering and local packing can be disentangled by considering quasi-confined liquids, where periodic boundary conditions along the confining direction restore translational invariance. This system provides a means to investigate the interplay of the relevant length scales...
Preprint
Multiple relaxation channels often arise in the dynamics of liquids where the momentum current associated to the particle-conservation law splits into distinct contributions. Examples are strongly confined liquids for which the currents in lateral and longitudinal direction to the walls are very different, or fluids of nonspherical particles with d...
Preprint
Confined fluids display complex behavior due to layering and local packing. Here, we disentangle these effects by confining a hard-sphere fluid to the surface of a cylinder, such the circumference extends only over a few particle diameters. We compare the static structure factor and the pressure measured in computer simulations to the Percus-Yevick...
Preprint
Transport properties of a hard-sphere colloidal fluid are investigated by Brownian dynamics simulations. We implement a novel algorithm for the time-dependent velocity-autocorrelation function (VACF) essentially eliminating the noise of the bare random motion. The measured VACF reveals persistent anti-correlations manifested by a negative algebraic...
Article
Full-text available
We provide a detailed derivation of the mode-coupling equations for a colloidal liquid confined by two parallel smooth walls. We introduce irreducible memory kernels for the different relaxation channels thereby extending the projection operator technique to colloidal liquids in slit geometry. Investigating both the collective dynamics as well as t...
Preprint
Full-text available
Microswimmers exhibit noisy circular motion due to asymmetric propulsion mechanisms, their chiral body shape, or by hydrodynamic couplings in the vicinity of surfaces. Here, we employ the Brownian circle swimmer model and characterize theoretically the dynamics in terms of the directly measurable intermediate scattering function. We derive the asso...
Preprint
Full-text available
We explore the elastic behavior of a wormlike chain under compression in terms of exact solutions for the associated probability densities. Strikingly, the probability density for the end-to-end distance projected along the applied force exhibits a bimodal shape in the vicinity of the critical Euler buckling force of an elastic rod, reminiscent of...
Article
Transport properties of a hard-sphere colloidal fluid are investigated by Brownian dynamics simulations. We implement a novel algorithm for the time-dependent velocity-autocorrelation function (VACF) essentially eliminating the noise of the bare random motion. The measured VACF reveals persistent anti-correlations manifested by a negative algebraic...
Article
In a microrheological setup a single probe particle immersed in a complex fluid is exposed to a strong external force driving the system out of equilibrium. Here, we elaborate analytically the time-dependent response of a probe particle in a dilute suspension of Brownian particles to a large step force, exact in first order of the density of the ba...
Article
Full-text available
We demonstrate differential dynamic microscopy and particle tracking for the characterization of the spatiotemporal behavior of active Janus colloids in terms of the intermediate scattering function (ISF). We provide an analytical solution for the ISF of the paradigmatic active Brownian particle model and find striking agreement with experimental r...
Article
Full-text available
We consider the motion of a single tracer particle on a three-dimensional lattice in the presence of hard, immobile obstacles at low density. Starting from an equilibrium state, a constant pulling force on the tracer particle is switched on. We elaborate a complete solution for the dynamics, exact in first order of the obstacle density. The time-de...
Article
We explore the elastic behavior of a wormlike chain under compression in terms of exact solutions for the associated probability densities. Strikingly, the probability density for the end-to-end distance projected along the applied force exhibits a bimodal shape in the vicinity of the critical Euler buckling force of an elastic rod, reminiscent of...
Preprint
Full-text available
We demonstrate differential dynamic microscopy and particle tracking for the characterisation of the spatiotemporal behavior of active Janus colloids in terms of the intermediate scattering function (ISF). We provide an analytical solution for the ISF of the paradigmatic active Brownian particle model and find striking agreement with experimental r...
Article
We present results for the fluctuations of the displacement of a tracer particle on a planar lattice pulled by a step force in the presence of impenetrable, immobile obstacles. The fluctuations perpendicular to the applied force are evaluated exactly in first order of the obstacle density for arbitrarily strong pulling and all times. The complex ti...
Preprint
We present results for the fluctuations of the displacement of a tracer particle on a planar lattice pulled by a step force in the presence of impenetrable, immobile obstacles. The fluctuations perpendicular to the applied force are evaluated exactly in first order of the obstacle density for arbitrarily strong pulling and all times. The complex ti...
Article
We investigate how structural relaxation in mixtures with strong dynamical asymmetry is affected by the microscopic dynamics. Brownian and Newtonian dynamics simulations of dense mixtures of fast and slow hard spheres reveal a striking trend reversal. Below a critical density, increasing the mobility of the fast particles fluidizes the system, yet,...
Preprint
We investigate how structural relaxation in mixtures with strong dynamical asymmetry is affected by the microscopic dynamics. Brownian and Newtonian dynamics simulations of dense mixtures of fast and slow hard spheres reveal a striking trend reversal. Below a critical density, increasing the mobility of the fast particles fluidizes the system, yet,...
Article
Microswimmers exhibit noisy circular motion due to asymmetric propulsion mechanisms, their chiral body shape, or by hydrodynamic couplings in the vicinity of surfaces. Here, we employ the Brownian circle swimmer model and characterize theoretically the dynamics in terms of the directly measurable intermediate scattering function. We derive the asso...
Article
Within a recently developed mode-coupling theory for fluids confined to a slit we elaborate numerical results for the long-time limits of suitably generalized intermediate scattering functions. The theory requires as input the density profile perpendicular to the plates, which we obtain from density functional theory within the fundamental-measure...
Article
We provide an overview of recent advances of the complex dynamics of particles in strong confinements. The first paradigm is the Lorentz model where tracers explore a quenched disordered host structure. Such systems naturally occur as limiting cases of binary glass-forming systems if the dynamics of one component is much faster than the other. For...
Preprint
We study the dynamics of solutions of infinitely thin needles up to densities deep in the semidilute regime by Brownian dynamics simulations. For high densities, these solutions become strongly entangled and the motion of a needle is essentially restricted to a one-dimensional sliding in a confining tube composed of neighboring needles. From the de...
Article
We study the dynamics of solutions of infinitely thin needles up to densities deep in the semidilute regime by Brownian dynamics simulations. For high densities, these solutions become strongly entangled and the motion of a needle is essentially restricted to a one-dimensional sliding in a confining tube composed of neighboring needles. From the de...
Preprint
Exact solutions for the elastic and thermodynamic properties for the wormlike chain model are elaborated in terms of Mathieu functions. The smearing of the classical Euler buckling instability for clamped polymers is analyzed for the force-extension relation. Interestingly, at strong compression forces the thermal fluctuations lead to larger elonga...
Article
Exact solutions for the elastic and thermodynamic properties for the wormlike chain model are elaborated in terms of Mathieu functions. The smearing of the classical Euler buckling instability for clamped polymers is analyzed for the force-extension relation. Interestingly, at strong compression forces the thermal fluctuations lead to larger elonga...
Preprint
We study a strongly interacting dense hard-sphere system confined between two parallel plates by event-driven molecular dynamics simulations to address the fundamental question of the nature of the 3D to 2D crossover. As the fluid becomes more and more confined the dynamics of the transverse and lateral degrees of freedom decouple, which is accompa...
Preprint
Full-text available
Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more ge...
Article
Full-text available
Scientific Reports 6 : Article number: 36702 10.1038/srep36702 ; published online: 10 November 2016 ; updated: 04 January 2017 The original version of this Article contained errors. The publication date of the Article, 10th November 2016, was incorrectly listed as 10th October 2016.
Article
We consider a tracer particle on a lattice in the presence of immobile obstacles. Starting from equilibrium, a force pulling on the particle is switched on, driving the system to a new stationary state. We solve for the complete transient dynamics of the fluctuations of the tracer position along the direction of the force. The analytic result, exac...
Preprint
We consider a tracer particle on a lattice in the presence of immobile obstacles. Starting from equilibrium, a force pulling on the particle is switched on, driving the system to a new stationary state. We solve for the complete transient dynamics of the fluctuations of the tracer position along the direction of the force. The analytic result, exac...
Article
Full-text available
Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more ge...
Article
We study dynamically crowded solutions of stiff fibers deep in the semidilute regime, where the motion of a single constituent becomes increasingly confined to a narrow tube. The spatiotemporal dynamics for wave numbers resolving the motion in the confining tube becomes accessible in Brownian dynamics simulations upon employing a geometry-adapted n...
Preprint
We study dynamically crowded solutions of stiff fibers deep in the semidilute regime, where the motion of a single constituent becomes increasingly confined to a narrow tube. The spatiotemporal dynamics for wave numbers resolving the motion in the confining tube becomes accessible in Brownian dynamics simulations upon employing a geometry-adapted n...
Article
We investigate the emergence of subdiffusive transport by obstruction in continuum models for molecular crowding. While the underlying percolation transition for the accessible space displays universal behavior, the dynamic properties depend in a subtle nonuniversal way on the transport through narrow channels. At the same time, the different unive...
Preprint
We investigate the emergence of subdiffusive transport by obstruction in continuum models for molecular crowding. While the underlying percolation transition for the accessible space displays universal behavior, the dynamic properties depend in a subtle non-universal way on the transport through narrow channels. At the same time, the different univ...
Article
By event-driven molecular dynamics simulations we investigate magneto-transport in a two-dimensional model with randomly distributed scatterers close to the field-induced localization transition. This transition is generated by percolating skipping orbits along the edges of obstacle clusters. The dynamic exponents differ significantly from those of...