Thomas Decarlo

Thomas Decarlo
Hawaii Pacific University · College of Natural and Computational Sciences

PhD

About

78
Publications
19,804
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,692
Citations

Publications

Publications (78)
Article
Full-text available
Reef-building corals typically live close to the upper limits of their thermal tolerance and even small increases in summer water temperatures can lead to bleaching and mortality. Projections of coral reef futures based on forecasts of ocean temperatures indicate that by the end of this century, corals will experience their current thermal threshol...
Article
Full-text available
Coral reefs exist in a delicate balance between calcium carbonate (CaCO3) production and CaCO3 loss. Ocean acidification (OA), the CO2-driven decline in seawater pH and CaCO3 saturation state (Ω), threatens to tip this balance by decreasing calcification, and increasing erosion and dissolution. While multiple CO2 manipulation experiments show coral...
Article
Full-text available
A 2 °C increase in global temperature above pre-industrial levels is considered a reasonable target for avoiding the most devastating impacts of anthropogenic climate change. In June 2015, sea surface temperature (SST) of the South China Sea (SCS) increased by 2 °C in response to the developing Pacific El Niño. On its own, this moderate, short-live...
Article
Full-text available
Quantifying the saturation state of aragonite (ΩAr) within the calcifying fluid of corals is critical for understanding their biomineralization process and sensitivity to environmental changes including ocean acidification. Recent advances in microscopy, microprobes, and isotope geochemistry enable the determination of calcifying fluid pH and [CO32...
Article
Full-text available
Ocean acidification threatens the persistence of biogenic calcium carbonate (CaCO3) production on coral reefs. However, some coral genera show resistance to declines in seawater pH, potentially achieved by modulating the chemistry of the fluid where calcification occurs.We use two novel geochemical techniques based on boron systematics and Raman sp...
Preprint
Full-text available
Ocean warming is increasing the incidence, scale, and severity of global-scale coral bleaching and mortality, culminating in the third global coral bleaching event that occurred during record marine heatwaves of 2014-2017. While local effects of these events have been widely reported, the global implications remain unknown. Analysis of 15,066 reef...
Article
Full-text available
The global impacts of climate change are evident in every marine ecosystem. On coral reefs, mass coral bleaching and mortality have emerged as ubiquitous responses to ocean warming, yet one of the greatest challenges of this epiphenomenon is linking information across scientific disciplines and spatial and temporal scales. Here we review some of th...
Article
Full-text available
Corals nucleate and grow aragonite crystals, organizing them into intricate skeletal structures that ultimately build the world’s coral reefs. Crystallography and chemistry have profound influence on the material properties of these skeletal building blocks, yet gaps remain in our knowledge about coral aragonite on the atomic scale. Across a broad...
Article
Full-text available
Coral reefs are experiencing a dramatic loss of hard coral abundance and associated habitat structure from a myriad of local and global factors. Here, utilizing U-Th radiometric age-dating of coral death assemblages, we investigated patterns of coral mortality from the eastern margin of the Red Sea along a latitudinal gradient (Yanbu, 24o N; Thuwal...
Article
Full-text available
Rising temperatures and extreme climate events are propelling tropical species into temperate marine ecosystems, but not all species can persist. Here, we used the heatwave-driven expatriation of tropical Black Rabbitfish ( Siganus fuscescens ) to the temperate environments of Western Australia to assess the ecological and evolutionary mechanisms t...
Preprint
Full-text available
Bioerosion on turbid inshore reefs is expected to increase with global climate change reducing reef stability and accretionary potential. Most studies investigating bioerosion have focused on external grazers, such as parrotfish and urchins, whose biomass is more easily measured. Yet, cryptic endolithic bioeroders such as macroboring (worms, sponge...
Article
Full-text available
X-ray computed tomography (CT) is a non-destructive imaging technique that provides three-dimensional (3D) visualisation and high-resolution quantitative data in the form of CT numbers. CT numbers are derived from the X-ray energy, effective atomic number and density of the analysed material. The sensitivity of the CT number to changes in material...
Article
Full-text available
Intensified coastal development is compromising the health and functioning of marine ecosystems. A key example of this is the Red Sea, a biodiversity hotspot subjected to increasing local human pressures. While some marine protected areas (MPAs) were placed to alleviate these stressors, it is unclear whether these MPAs are managed or enforced, thus...
Article
Full-text available
Ocean warming and acidification threaten the future growth of coral reefs. This is because the calcifying coral reef taxa that construct the calcium carbonate frameworks and cement the reef together are highly sensitive to ocean warming and acidification. However, the global-scale effects of ocean warming and acidification on rates of coral reef ne...
Article
Full-text available
Coral reef ecosystems are highly sensitive to thermal anomalies, making them vulnerable to ongoing global warming. Yet, a variety of cooling mechanisms, such as upwelling, can offer some respite to certain reefs. The Farasan Banks in the southern Red Sea is home to hundreds of coral reefs covering 16,000 km² and experiences among the highest water...
Article
On coral reefs, flow determines residence time of water influencing physical and chemical environments and creating observable microclimates within the reef structure. Understanding the physical mechanisms driving environmental variability on shallow reefs, which distinguishes them from the open ocean, is important for understanding what contribute...
Article
Full-text available
Accurate knowledge of the spatial and temporal patterns of coral bleaching is essential both for understanding how coral reef ecosystems are changing today and forecasting their future states. Yet, in many regions of the world, the history of bleaching is poorly known, especially prior to the late 20th century. Here, I use the information preserved...
Article
Full-text available
With predictions that mass coral bleaching will occur annually within this century, conservation efforts must focus their limited resources based on an accurate understanding of the drivers of bleaching. Here, we provide spatial and temporal evidence that excess nutrients exacerbate the detrimental effects of heat stress to spark mass coral bleachi...
Article
Full-text available
Few coral reefs remain unscathed by mass bleaching over the past several decades, and much of the coral reef science conducted today relates in some way to the causes, consequences, or recovery pathways of bleaching events. Most studies portray a simple cause and effect relationship between anomalously high summer temperatures and bleaching, which...
Article
Full-text available
The structure and function of coral reef ecosystems is increasingly compromised by multiple stressors, even in the most remote locations. Severe, acute disturbances such as volcanic eruptions represent extreme events that can annihilate entire reef ecosystems, but also provide unique opportunities to examine ecosystem resilience and recovery. Here,...
Article
Full-text available
Internal waves strongly influence the physical and chemical environment of coastal ecosystems worldwide. We report novel observations from a distributed temperature sensing (DTS) system that tracked the transformation of internal waves from the shelf break to the surf zone over a narrow shelf slope region in the South China Sea. The spatially conti...
Article
Full-text available
Crustose coralline algae play a crucial role in the building of reefs in the photic zones of nearshore ecosystems globally, and are highly susceptible to ocean acidification1–3. Nevertheless, the extent to which ecologically important crustose coralline algae can gain tolerance to ocean acidification over multiple generations of exposure is unknown...
Article
Full-text available
Figure 2 in the original article has been updated with this figure 2 due to discrepancies related to incorrect mapping with one of the islands.
Article
Full-text available
Identifying the long-term effects of ocean acidification (OA) and global warming on coral calcification has proven elusive yet has major implications for the continuing viability of coral reefs in the face of climate change. Here we address this question using seasonally and annually resolved boron proxies (¹¹B/¹⁰B and B/Ca) of calcifying fluid (cf...
Article
Full-text available
Natural variability in pH in the diffusive boundary layer (DBL), the discrete layer of seawater between bulk seawater and the outer surface of organisms, could be an important factor determining the response of corals and coralline algae to ocean acidification (OA). Here, two corals with different morphologies and one coralline alga were maintained...
Article
Full-text available
Ocean warming threatens the functioning of coral reef ecosystems by inducing mass coral bleaching and mortality events. The link between temperature and coral bleaching is now well-established based on observations that mass bleaching events usually occur when seawater temperatures are anomalously high. However, times of high heat stress but withou...
Article
Full-text available
Ocean warming is negatively impacting coral reef ecosystems and considerable effort is currently invested in projecting coral reef futures under 21st century climate change. A limiting factor in these projections is lack of quantitative data on the thermal thresholds of different reef communities, due in large part to spatial and temporal gaps in b...
Article
Full-text available
Coral skeletons are the most commonly used high-resolution temperature proxy in the tropical oceans, providing paleo-climate reconstructions dating back centuries to millennia. However, physiological differences in skeletal formation modes together with artifacts arising from coral biomineralization (‘vital effects’) can confound the temperature-de...
Article
Full-text available
Ocean acidification (OA) is a major threat to coral reefs, which are built by calcareous species. However, long-term assessments of the impacts of OA are scarce, limiting the understanding of the capacity of corals and coralline algae to acclimatize to high partial pressure of carbon dioxide (pCO2) levels. Species-specific sensitivities to OA are i...
Article
This study investigates the impact of extreme heat wave events on long‐lived massive corals (Porites spp.) from the central Saudi Arabian Red Sea using trace element (Sr/Ca, Li/Mg, Mg/Ca, U/Ca, B/Ca and Li/Ca) records preserved in the coral skeleton for the period between 1992 and 2012. Prior to 1998, the trace element records show strong correlati...
Preprint
Full-text available
Ocean warming threatens the functioning of coral reef ecosystems by inducing mass coral bleaching and mortality events. The link between temperature and coral bleaching is now well-established based on observations that mass bleaching events usually occur when seawater temperatures are anomalously high. However, times of high heat stress but withou...
Preprint
Full-text available
Ocean warming threatens the functioning of coral reef ecosystems by inducing mass coral bleaching and mortality events. The link between temperature and coral bleaching is now well-established based on observations that mass bleaching events usually occur when seawater temperatures are anomalously high. However, times of high heat stress but withou...
Article
Full-text available
Internal waves can influence water properties in coastal ecosystems through the shoreward transport and mixing of subthermocline water into the nearshore region. In June 2014, a field experiment was conducted at Dongsha Atoll in the northern South China Sea to study the impact of internal waves on a coral reef. Instrumentation included a distribute...
Article
Full-text available
The sensitivity of corals to ocean acidification depends on the extent to which they can buffer their calcifying fluid aragonite saturation state (Ωcf) from declines in seawater pH. While the seasonal response of the coral calcifying fluid Ωcf to seawater pH has been studied previously, relatively little is known about Ωcf dynamics on shorter (dail...
Article
Full-text available
The processes that occur at the micro-scale site of calcification are fundamental to understanding the response of coral growth in a changing world. However, our mechanistic understanding of chemical processes driving calcification is still evolving. Here, we report the results of a long-term in situ study of coral calcification rates, photo-physio...
Article
Full-text available
Ocean acidification poses a serious threat to marine calcifying organisms, yet experimental and field studies have found highly diverse responses among species and environments. Our understanding of the underlying drivers of differential responses to ocean acidification is currently limited by difficulties in directly observing and quantifying the...
Article
Full-text available
In an ocean with rapidly changing chemistry, studies have assessed coral skeletal health under projected ocean acidification (OA) scenarios by characterizing morphological distortions in skeletal architecture and measuring bulk properties, such as net calcification and dissolution. Few studies offer more detailed information on skeletal mineralogy....
Article
Full-text available
The oceans are warming and coral reefs are bleaching with increased frequency and severity, fueling concerns for their survival through this century. Yet in the central equatorial Pacific, some of the world’s most productive reefs regularly experience extreme heat associated with El Niño. Here we use skeletal signatures preserved in long-lived cora...
Article
Ocean acidification is a threat to the continued accretion of coral reefs, though some undergo daily fluctuations in pH exceeding declines predicted by 2100. We test whether exposure to greater pH variability enhances resistance to ocean acidification for the coral Goniopora sp. and coralline alga Hydrolithon reinboldii from two sites: one with low...
Article
Ocean acidification (OA) is a major threat to marine ecosystems, particularly coral reefs which are heavily reliant on calcareous species. OA decreases seawater pH and calcium carbonate saturation state (Ω), and increases the concentration of dissolved inorganic carbon (DIC). Intense scientific effort has attempted to determine the mechanisms via w...
Article
High-latitude coral reefs provide natural laboratories for investigating themechanisms andlimits of coral calcification. While the calcification processes of tropical corals have been studied intensively, little is known about how their temperate counterparts grow under much lower temperature and light conditions. Here, we report the results of a l...
Article
Full-text available
The isotopic and elemental systematics of boron in aragonitic coral skeletons have recently been developed as a proxy for the carbonate chemistry of the coral extracellular calcifying fluid. With knowledge of the boron isotopic fractionation in seawater and the B∕Ca partition coefficient (KD) between aragonite and seawater, measurements of coral sk...
Article
Full-text available
Understanding the mechanisms of coral calcification is critical for accurately projecting coral reef futures under ocean acidification and warming. Recent suggestions that calcification is primarily controlled by organic molecules and the biological activity of the coral polyp imply that ocean acidification may not affect skeletal accretion. The ba...
Article
Full-text available
The isotopic and elemental systematics of boron in aragonitic coral skeletons have recently been developed as a proxy for the carbonate chemistry of the coral extracellular calcifying fluid. With knowledge of the boron isotopic fractionation in seawater and the B / Ca partition coefficient (KD) between aragonite and seawater, measurements of coral...
Article
Full-text available
Quantifying the saturation state of aragonite (ΩAr) within the calcifying fluid of corals is critical for understanding their biomineralisation process and sensitivity to environmental changes including ocean acidification. Recent advances in microscopy, microprobes, and isotope geochemistry allow determination of calcifying fluid pH and [CO32−], b...
Article
Full-text available
In a recent review, "Bioerosion: the other ocean acidification problem," Scho nberg et al. claim that studies of bioerosion across natural chemical gradients are "flawed" or "compromised" by co-variation among environmental factors. Their discussion falls largely on two publications, Silbiger et al. and DeCarlo et al. Here, we demonstrate that crit...
Article
Full-text available
Mass die-offs of coral reef fauna were observed on Dongsha Atoll (20.7°N 116.8°E) in the South China Sea during May–June of 2014 and 2015. These die-offs were potentially caused by hypoxia, although further investigations will help validate this hypothesis. Due to the wide range of species affected, the large area impacted (km in scale), and the r...
Article
Full-text available
The skeletons of many reef-building corals are accreted with rhythmic structural patterns that serve as valuable sclerochronometers. Annual high- and low-density band couplets, visible in X-radiographs or computed tomography scans, are used to construct age models for paleoclimate reconstructions and to track variability in coral growth over time....
Article
With the rapid rise in pollution-associated nitrogen inputs to the western Pacific, it has been suggested that even the open ocean has been affected. In a coral core from Dongsha Atoll, a remote coral reef ecosystem, we observe a decline in the ^(15)N/^(14)N of coral skeleton–bound organic matter, which signals increased deposition of anthropogenic...
Code
This code calculates coral calcifying fluid carbonate ion concentration ([CO32-]) given inputs of skeleton boron/calcium (B/Ca) and boron isotopes (del11B) data. The default analysis will calculate the calcifying fluid [CO32-] of the international coral standard ”JCp-1” (a ground Porites skeleton), but this code may be applied to any other coral sa...
Article
Coral barium to calcium (Ba/Ca) ratios have been used to reconstruct records of upwelling, river and groundwater discharge, and sediment and dust input to the coastal ocean. However, this proxy has not yet been explicitly tested to determine if Ba inclusion in the coral skeleton is directly proportional to seawater Ba concentration and to further d...