Thomas Daubon

Thomas Daubon
CNRS UMR5095 IBGC - BORDEAUX

PhD

About

77
Publications
10,742
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
1,517
Citations
Citations since 2017
48 Research Items
1163 Citations
2017201820192020202120222023050100150200
2017201820192020202120222023050100150200
2017201820192020202120222023050100150200
2017201820192020202120222023050100150200
Additional affiliations
November 2019 - present
IBGC UMR5095
Position
  • Researcher
November 2017 - present
French Institute of Health and Medical Research
Position
  • PostDoc Position
May 2013 - October 2017
University of Bergen
Position
  • Researcher

Publications

Publications (77)
Article
Glioblastoma (GB), the most malignant subtype of diffuse glioma, is highly aggressive, invasive and vascularized. Its median survival is still short even with maximum standard care. There is a need to identify potential new molecules and mechanisms, that are involved in the interactions of GB cells with the tumor microenvironment (TME), for therape...
Article
Full-text available
Organoids are unique tools to mimic how tumors evolve in a 3D environment. Here, we present a protocol to embed spheroids invading a 3D matrix into a paraffin mold. We describe steps for preparing spheroids, collagen and agarose inclusion, and paraffinization. We then detail procedures for sectioning, staining, and visualization. This protocol allo...
Article
Full-text available
The transfer of intact mitochondria between heterogeneous cell types has been confirmed in various settings, including cancer. However, the functional implications of mitochondria transfer on tumor biology are poorly understood. Here we show that mitochondria transfer is a prevalent phenomenon in glioblastoma (GBM), the most frequent and malignant...
Article
Glioblastoma (GBM) is the most deadly type of malignant brain tumor, despite extensive molecular analyses of GBM cells. In recent years, the tumor microenvironment (TME) has been recognized as an important player and therapeutic target in GBM. However, there is a need for a full and integrated understanding of the different cellular and molecular c...
Article
Full-text available
Cell motility is critical for tumor malignancy. Metabolism being an obligatory step in shaping cell behavior, we looked for metabolic weaknesses shared by motile cells across the diverse genetic contexts of patients' glioblastoma. Computational analyses of single-cell transcriptomes from thirty patients' tumors isolated cells with high motile poten...
Article
Full-text available
Lactate is a central metabolite in brain physiology but also contributes to tumor development. Glioblastoma (GB) is the most common and malignant primary brain tumor in adults, recognized by angiogenic and invasive growth, in addition to its altered metabolism. We show herein that lactate fuels GB anaplerosis by replenishing the tricarboxylic acid...
Conference Paper
Background Glioblastomas (GB) are the most severe and deadliest brain tumors in adults. Survival is estimated < 15 months after diagnosis and with a relapse rate > 95%. The current standard-of-care involves surgery, when possible, and radiotherapy coupled with chemotherapy. Two characteristics might underlie the high relapse rate in GB: 1) the infi...
Article
Full-text available
Radiosensitization of glioblastoma is a major ambition to increase the survival of this incurable cancer. The 5-aminolevulinic acid (5-ALA) is metabolized by the heme biosynthesis pathway. 5-ALA overload leads to the accumulation of the intermediate fluorescent metabolite protoporphyrin IX (PpIX) with a radiosensitization potential, never tested in...
Article
Full-text available
Glioblastoma (GB) are the most frequent brain cancers. Aggressive growth and limited treatment options induce a median survival of 12–15 months. In addition to highly proliferative and invasive properties, GB cells show cancer-associated metabolic characteristics such as increased aerobic glycolysis. Pyruvate dehydrogenase (PDH) is a key enzyme com...
Article
Full-text available
Lactate is a central metabolite in energy metabolism and is also involved in cell signaling and epigenetic regulations. Here, we describe an NADH-independent enzymatic assay allowing rapid, selective, and sensitive quantification of L-lactate down to the pmol range. We detail lactate extraction from intracellular and extracellular fractions, follow...
Preprint
Full-text available
Cancer cells in similar functional states are found in all glioblastoma, despite the genomic heterogeneity observed between and within these brain tumors. Metabolism being downstream of all signaling pathways regulating cell behaviors, we looked for metabolic weaknesses in link with motility, a key functional state for glioblastoma aggressiveness....
Article
Full-text available
Background: Despite the improvement of medulloblastoma (MB) treatments, survivors face severe long-term adverse effects and associated morbidity following multimodal treatments. Moreover, relapses are fatal within a few months. Therefore, chemotherapies inducing fewer adverse effects and/or improving survival at relapse are key for MB patients. Ou...
Article
Full-text available
Myeloid cells are a key determinant of tumor progression and patient outcomes in a range of cancers and are therefore being actively pursued as targets of new immunotherapies. The recent use of high-dimensional single-cell approaches, e.g., mass cytometry and single-cell RNA-sequencing (scRNA-seq) has reinforced the predominance of myeloid cells in...
Chapter
Tumor cell invasion is a major issue in oncology since it leads to tumor dissemination and recurrence. In glioblastomas, invasion is an important characteristic, making the disease difficult to treat since tumor recurrence occurs from invasive areas at the borders of the resection cavity. We are discussing herein some of the principal mechanisms at...
Article
Full-text available
Background Microtubes (MTs), cytoplasmic extensions of glioma cells, are important cell communication structures promoting invasion and treatment resistance through network formation. MTs are abundant in chemoresistant gliomas, in particular glioblastomas (GBMs), while they are uncommon in chemosensitive IDH-mutant and 1p/19q co-deleted oligodendro...
Preprint
Full-text available
Lactate is a central metabolite in brain physiology, involved in the astrocyte-neuron lactate shuttle, but also contributes to tumor development. Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults, recognized by angiogenic and invasive growth, in addition to its altered metabolism. By adapting their glycolytic or oxid...
Poster
Full-text available
Glioblastoma (GBM) is a common and devastating brain tumor, associated with a low median survival, despite standard therapeutic management. Among its major features, GBMs are highly angiogenic and exhibit paradoxically an elevated glycolysis. Most of differentiated cells convert glucose into pyruvate that enters into the Krebs cycle to maximize ene...
Poster
Full-text available
Microtubes (MTs) are cytoplasmic extensions of glioma cells serving as important cell communication structures while also promoting invasion and treatment resistance through network formation. MTs are abundant in chemoresistant gliomas, in particular glioblastomas, while they are uncommon in chemosensitive IDH mutated and 1p/19q co-deleted oligoden...
Article
Full-text available
SLIT2 is a secreted polypeptide that guides migration of cells expressing ROBO1&2 receptors. Herein, we investigated SLIT2/ROBO signaling effects in gliomas. In patients with glioblastoma (GBM), SLIT2 expression increased with malignant progression and correlated with poor survival and immunosuppression. Knockdown of SLIT2 in mouse glioma cells and...
Article
Full-text available
Aims: BMP9 and BMP10 mutations were recently identified in patients with pulmonary arterial hypertension (PAH), but their specific roles in the pathogenesis of the disease are still unclear. We aimed to study the roles of BMP9 and BMP10 in cardiovascular homeostasis and pulmonary hypertension using transgenic mouse models deficient in Bmp9 and/or...
Preprint
Full-text available
SLIT2 is a secreted polypeptide that guides migration of cells expressing ROBO1&2 receptors. Herein, we investigated SLIT2/ROBO signaling effects in gliomas. In patients with glioblastoma (GBM), SLIT2 expression increased with malignant progression and correlated with poor survival and immunosuppression. Knockdown of SLIT2 in mouse glioma cells and...
Poster
Full-text available
Glioblastoma (GBM) is a common and devastating brain tumor, associated with a low median survival, despite standard therapeutic management. Among its major features, GBMs are highly angiogenic, infiltrative, and exhibit paradoxically an elevated glycolysis. Most of differentiated cells convert glucose into pyruvate that enters into the Krebs cycle...
Article
Full-text available
Glioblastoma is among the most common tumor of the central nervous system in adults. Overall survival has not significantly improved over the last decade, even with optimizing standard therapeutic care including extent of resection and radio-and chemotherapy. In this article, we review features of the brain vasculature found in healthy cerebral tis...
Data
This tool will propose a pipeline for the automatic analysis of spheroids. Details available here : https://github.com/Guyon-J/Macro_for_Spheroid_Analysis/blob/main/README.md
Article
Glioblastomas (GBMs), grade IV malignant gliomas, are one of the deadliest types of human cancer because of their aggressive characteristics. Despite significant advances in the genetics of these tumors, how GBM cells invade the healthy brain parenchyma is not well understood. Notably, it has been shown that GBM cells invade the peritumoral space v...
Preprint
Full-text available
Microtubes (MTs), cytoplasmic extensions of glioma cells, are important cell communication structures promoting invasion and treatment resistance through network formation. MTs are abundant in chemoresistant gliomas, in particular glioblastomas (GBMs), while they are uncommon in chemosensitive IDH-mutant and 1p/19q co-deleted oligodendrogliomas. To...
Article
Full-text available
Protein tyrosine phosphatases are essential modulators of angiogenesis and have been identified as novel therapeutic targets in cancer and anti-angiogenesis. The roles of atypical Phosphatase of Regenerative Liver (PRL) phosphatases in this context remain poorly understood. Here, we investigate the biological function of PRL phosphatases in develop...
Article
Full-text available
Glioblastoma (GBM) are the most common tumors of the central nervous system and among the deadliest cancers in adults. GBM overall survival has not improved over the last decade despite optimization of therapeutic standard-of-care. While immune checkpoint inhibitors (ICI) have revolutionized cancer care, they unfortunately have little therapeutic s...
Chapter
Glioblastomas are brain tumors derived from astrocytes or oligodendrocytes. These tumors have a heterogeneous structure composed of a necrotic and vascularized center and an invasive periphery. The rapid growth of glioblastoma and its ability to invade surrounding tissues make this cancer difficult to treat. The median survival of patients afflicte...
Article
Invadosomes are specialised actin-based dynamic microdomains of the plasma membrane. Their occurrence has been associated with cell adhesion, matrix degrading and mechanosensory functions that make them crucial regulators of cell migration and invasion. Monocytic, cancer cell and Src-transformed cell invadosomes have been extensively described. Les...
Article
Two-dimensional (2D) cell cultures do not mimic in vivo tumor growth satisfactorily. Therefore, three-dimensional (3D) culture spheroid models were developed. These models may be particularly important in the field of neuro-oncology. Indeed, brain tumors have the tendency to invade the healthy brain environment. We describe herein an ideal 3D gliob...
Article
Full-text available
Dysregulated cholesterol metabolism is a hallmark of many cancers, including glioblastoma (GBM), but its role in disease progression is not well understood. Here, we identified cholesterol 24-hydroxylase (CYP46A1), a brain-specific enzyme responsible for the elimination of cholesterol through the conversion of cholesterol into 24(S)-hydroxycholeste...
Article
Full-text available
Background Glioblastomas are heterogeneous tumors composed of a necrotic and tumor core and an invasive periphery. Methods Here, we performed a proteomics analysis of laser-capture micro-dissected glioblastoma core and invasive areas of patient-derived xenografts. Results Bioinformatics analysis identified enriched proteins in central and invasiv...
Article
Full-text available
We undertook a systematic study focused on the matricellular protein Thrombospondin-1 (THBS1) to uncover molecular mechanisms underlying the role of THBS1 in glioblastoma (GBM) development. THBS1 was found to be increased with glioma grades. Mechanistically, we show that the TGFβ canonical pathway transcriptionally regulates THBS1, through SMAD3 bi...
Article
Full-text available
Background Glioblastoma (GBM) is a highly migratory, invasive, and angiogenic brain tumor. Like vascular endothelial growth factor-A (VEGF-A), placental growth factor (PlGF) promotes GBM angiogenesis. VEGF-A is a ligand for both VEGF receptor-1 (VEGFR-1) and VEGFR-2, while PlGF interacts exclusively with VEGFR-1. We recently generated the novel ant...
Article
Full-text available
CXCR3 plays important roles in angiogenesis, inflammation, and cancer. However, the precise mechanism of regulation and activity in tumors is not well known. We focused on CXCR3-A conformation and on the mechanisms controlling its activity and trafficking and investigated the role of CXCR3/LRP1 cross talk in tumor cell invasion. Here we report that...
Article
Full-text available
During angiogenic sprouting, endothelial tip cells emerge from existing vessels in a process that requires vascular basement membrane degradation. Here, we show that F-actin/cortactin/P-Src-based matrix-degrading microdomains called podosomes contribute to this step. In vitro, VEGF-A/Notch signaling regulates the formation of functional podosomes i...
Article
The CXCL4 paralog CXCL4L1 is a little studied chemokine that has been suggested to exert an anti-angiogenic function. However, CXCL4L1 is also expressed in patient tumors, tumor cell lines and murine xenografts, prompting a more detailed analysis of its role in cancer pathogenesis. We used genetic and antibody-based approaches to attenuate CXCL4L1...
Article
Background Amplification of the epidermal growth factor receptor (EGFR) and its mutant EGFRvIII are among the most common genetic alterations in glioblastoma (GBM), the most frequent and most aggressive primary brain tumor. Methods In the present work, we analyzed the clonal evolution of these major EGFR aberrations in a small cohort of GBM patien...
Article
Podosomes are dynamic cell-matrix contact structures that combine several key abilities, including adhesion, matrix degradation and mechanosensing. These actin-based cytoskeletal structures are well known in monocytic cells, but much less is known about those formed in other lineages. In this study, we characterize podosomes in capillary-derived mi...
Article
Full-text available
The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts...
Article
Modern analytical techniques provide an unprecedented insight to biomedical samples, allowing an in depth characterization of cells or body fluids, to the level of genes, transcripts, peptides, proteins, metabolites, or metallic ions. The fine grained picture provided by such approaches holds the promise for a better understanding of complex pathol...
Article
Full-text available
Gliomas are a highly heterogeneous group of brain tumours that are refractory to treatment, highly invasive and pro-angiogenic. Glioblastoma patients have an average survival time of less than 15 months. Understanding the molecular basis of different grades of glioma, from well differentiated, low-grade tumours to high-grade tumours, is a key step...
Article
Full-text available
Thirty years of research have accumulated ample evidence that podosome clusters qualify as genuine cellular organelles that are being found in more and more cell types. A podosome is a dynamic actin-based and membrane-bound microdomain and the organelle consists in an interconnected network of such basic units, forming a cytoskeletal superstructure...
Article
Full-text available
There is accumulating evidence that TrkA and its ligand Nerve Growth Factor (NGF) are involved in cancer development. Staurosporine derivatives such as K252a and lestaurtinib have been developed to block TrkA kinase signaling, but no clinical trial has fully demonstrated their therapeutic efficacy. Therapeutic failures are likely due to the existen...
Article
Full-text available
Transforming growth factor β (TGF-β) and related cytokines play a central role in the vascular system. In vitro, TGF-β induces aortic endothelial cells to assemble subcellular actin-rich structures specialized for matrix degradation called podosomes. To explore further this TGF-β-specific response and determine in which context podosomes form, ALK5...
Chapter
Full-text available
Glioblastoma (GBM) is the most prevalent malignant brain tumor in adults, causing over 1 % of cancer-related deaths. Although there are many histological subtypes as classified by the World Health Organization, gliomas are typically characterized by their angiogenic and infiltrative nature. It has been demonstrated that GBM can switch from an angio...
Article
Full-text available
Podosomes and invadopodia (collectively known as invadosomes) are specialized plasma-membrane actin-based microdomains that combine adhesive properties with matrix degrading and/or mechanosensor activities. These organelles have been extensively studied in vitro and current concerted efforts aim at establishing their physiological relevance and sub...
Article
Full-text available
We previously demonstrated that the Bcr-Abl oncogene, p210(bcr-abl), through its unique GEF domain, specifically activates RhoA and induces spontaneous amoeboid motility. We intend to study the pathways downstream RhoA controlling amoeboid motility. Mouse prolymphoblastic cells (Ba/F3 cell line) expressing different forms of Bcr-Abl were embedded i...
Article
Full-text available
Disabling mutations in the FGD1 gene cause faciogenital dysplasia (also known as Aarskog-Scott syndrome), a human X-linked developmental disorder that results in disproportionately short stature, facial, skeletal and urogenital anomalies, and in a number of cases, mild mental retardation. FGD1 encodes the guanine nucleotide exchange factor FGD1, wh...
Article
Full-text available
Podosomes are dynamic actin-rich adhesion plasma membrane microdomains endowed with extracellular matrix-degrading activities. In aortic endothelial cells, podosomes are induced by transforming growth factor β (TGF-β), but how this occurs is largely unknown. It is thought that, in endothelial cells, podosomes play a role in vessel remodeling and/or...
Article
Podosomes and invadopodia are highly dynamic, actin-rich adhesion structures and represent the two founding members of the invadosome family. Podosomes form spontaneously in cells of the myelomonocytic lineage but a plethora of other cells are endowed with this capacity, under appropriate stimulation, such as a soluble factor, matrix receptor, or c...
Article
Full-text available
Podosomes are specialized plasma-membrane actin-based microdomains that combine adhesive and proteolytic activities to spatially restrict sites of matrix degradation in in vitro assays, but the physiological relevance of these observations remain unknown. Inducible rings of podosomes (podosome rosettes) form in cultured aortic cells exposed to the...