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Abstract
Multidimensional scaffolds are considered to be ideal candidates for regenerative medicine and tissue
engineering based on their potential to provide an excellent microenvironment and direct the fate of the
cultured cells. More recently, the use of stem cells in medicine has opened a new technological
opportunity for controlled tissue formation. However, the mechanism through which the substrate directs
the differentiation of stem cells is still rather unclear. Data concerning its specific surface chemistry,
topology, and its signaling ability need to be further understood and analyzed. In our study, atomic force
microscopy was used to study the stiffness, roughness, and topology of the collagen (Coll) and metallized
collagen (MC) substrates, proposed as an excellent substrate for regenerative medicine. The importance
of signaling molecules was studied by constructing a new hybrid signaling substrate that contains both
collagen and laminin extracellular matrix (ECM) proteins. The cellular response—such as attachment
capability, proliferation and cardiac and neuronal phenotype expression on the metallized and
non-metallized hybrid substrates (collagen+ laminin)—was studied using MTT viability assay and
immunohistochemistry studies. Our findings indicate that such hybrid materials could play an important
role in the regeneration of complex tissues.

Keywords: nanomaterials, stem cell differentiation, gold-functionalized collagen–laminin substrate,
extracellular matrix

(Some figures may appear in colour only in the online journal)

1. Introduction

Recently, significant advances have been made in the area
of tissue engineering and organ reconstruction by using, as
therapeutic tools, a combination of 3D biomaterial scaffolds
with stem cells. There is considerable interest in synthesizing
6 Current address: Radiology Department, Emory University,
Wesley Woods Health Center, 1841 Clifton Road, Atlanta, GA 30329, USA.
7 Author to whom any correspondence should be addressed.

substrates that are able to control cellular adhesion and reg-
ulate the cells’ fate by surface-mediated signaling or by the
controlled release of active molecules [1–5]. The interaction
between the cell membrane and the synthesized substrate
controls cellular fate [6]. There is also evidence that the
mechanical environment along with the biomolecular com-
ponents of the substrate strongly affect cellular signaling and
cell fate [7]. Therefore, there is a great need to develop novel
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multifunctional materials with controllable properties that are
able to provide a substrate with well-controlled topography,
mechanical properties, and signaling molecules. A variety of
such substrates have been proposed in the literature: synthetic
materials, such as poly-L-lactic acid and poly-glycolic acid [8–
10] or natural materials, such as collagen [11, 12], fibrin [13],
arginine [14, 15] or hydrogel scaffolds [16]. Pure hydro-
gel matrix with laminin or a laminin-(-GGSDPGYIGSR-)
sequence has been found to change the mechanical properties
of the substrate and initiate neuronal differentiation [17, 18].

However, identifying a tunable biological substituent
that sustains and mimics tissue function still represents a
significant challenge that needs to be overcome. There is
a crucial need to address all of the limitations that lead to
unsuccessful differentiation. In order to develop an effective
tissue-engineering therapy, it will be necessary to control
the mechanical properties of the scaffolds, to decrease their
immunogenicity, and to increase their efficiency in supporting
cell fate [19].

In order to address these challenges, we propose the
application of nano-based approaches to chorion-derived mes-
enchymal stem cells (Ch-MSCs). The Ch-MSCs are stem cells
isolated from the chorionic villi of human term placenta,
and their role is to maintain and repair the placental tis-
sue [20]. The chorion-derived MSCs possess superior proper-
ties: they are multipotent, have low immunogenicity, and anti-
inflammatory functions. Their immunosuppressive properties
are explained by the fact that they do not express HLA-DR
molecules. Another specific property is their ability to differen-
tiate into several lineages, including osteocytes, chondrocytes,
myocytes, adipocytes, cardiomyocytes—and even into cells
of nonmesodermal origin, including hepatocytes, neurons,
and insulin-producing cells [21, 22]. Moreover, owing to the
unique features of nanomaterials—novel electronic, optical,
magnetic, and structural properties—nanotechnology can help
us to understand and control the biological signaling function
of a single cell or molecule and offers a promising tool for
controlling and guiding the differentiation process based on
the control of surface interaction energies, topography, and
mechanical properties. Holy et al [23] have suggested the
use of multi-walled carbon nanotubes (MWNTs) to direct
pluripotent stem cell differentiation, and Kim et al [24] have
successfully differentiated MSCs into neuronal cells using
carbon nanotubes. Similar, Yi et al [25] reported that gold
nanoparticles can promote osteogenic differentiation of MSCs
through the p38 MAPK pathway.

Here, we propose to underline the importance of using
nanomaterials in cell differentiation, based on their capacity to
control the topography and the mechanical properties of cell
substrates, and to show the importance of using biomolecules
as natural signaling agents. We intend to understand the
mechanism through which gold nanoparticles along with
biological molecules—laminin and collagen—control cellular
differentiation. We should note that the topology, surface
chemistry, and mechanical properties, along with biomolecule
signaling, have been found to be critical in controlling the cell
phenotype [26].

A novel layer-by-layer approach was used to construct the
scaffold. The first layer was composed of gold–collagen and

followed a second one composed of laminin. This procedure
was repeated 3 times in order to obtain the desired multi-
layer and multistructural composite scaffold. This scaffold
acts as an extracellular matrix and can be constructed with
controllable topographic stability and chemistry and high me-
chanicobiological properties due to the possibility of driving
the interconnection and further aggregation of the proteins’
fibers and their gold nanoparticle cross-linking. To our best
knowledge, such complex studies have not been previously
described. Pre-differentiation of placental stem cells on suit-
able scaffolds could make them potential candidates for use in
the regeneration of tissue or the treatment of various cardiac
and neurological disorders.

2. Experimental procedure

2.1. Materials

Type I collagen, phosphate buffer solution (PBS pH 7.4),
and laminin were delivered by Aldrich (Sigma-Aldrich Inc.).
Sodium borohydride (NaBH4) and tetrachloroauric acid
(HAuCl4) were delivered by Fluka. The collagen nanofiber
solution and the HAuCl4 solution were obtained as previously
described [27].

2.2. Substrate preparation

For the preparation of the substrate, we coated layer-by-layer
the surface of one-well chamber slides in a manner that
permitted the metallized collagen layer to sustain the second
layer of laminin. Collagen-based gold nanoparticles were
assembled and metallized, as we previously reported, by using
borohydrate as a reduction agent [27]. Laminin solution of
15µg ml−1 was prepared. The dimension of the particles used
for this experiment was 16 nm.

We applied the additional component of extracellular
matrix (ECM)-laminin on the dried metal absorbed collagen
substrate at a dilution of 1.5 µg cm−2. We used 300 µl of
collagen-based gold nanofiber solutions and 300µl of laminin
(15 µg ml−1) per well. Afterwards, another 300 µl of solution
was added. This procedure was repeated 3 times. After 5 min,
the excess of the solution was discharged and an adhesive
uniform layer was formed. In order to sterilize the plates, a
flow of ethylene oxide was used.

2.3. Analytical characterization

The morphology and roughness of the metallized collagen
+ laminin substrate compared with the non-metallized sub-
strate was investigated by AFM (Bruker DNP-S10), having a
spring constant: 350 pN nm−1, frequency: 50–80 kHz, radius:
10 nm. The measured parameters were as follows: spring
constant 354.03 pN nm−1, frequency: 65.11 kHz, Sensitivity
(deflection/volt): 50.11 nm V−1. For the elastic modulus, a
MFP-3D AFM (Asylum Research, Santa Barbara, CA) with a
tip velocity of 600 nm s−1 (1 Hz) was used. For the cantilever
spring constant, a thermal tuning method was employed.
In order to calculate the reduced elastic modulus (Er), the
Hertzian contact theory was applied. Also, the metallization
of the collagen fibers used in the construction of the substrate
was investigated by FTIR and UV–vis spectroscopy [27].
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2.4. Cell cultures

Adult stem cell isolation, differentiation protocol, immuno-
cytochemistry studies, and metabolic and viability assays—
MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) and FDA (fluorescein diacetate)—were performed
according to the protocol previously described [27].

2.5. Statistical analysis

In order to analyze the data, the GraphPad Prism 5 statistics
program (La Jolla, CA, USA) was used. A one-way ANOVA
Tukey’s multiple comparison test and a two-way ANOVA
Bonferroni post-test were performed in order to compare
the control data with the data obtained on each substrate.
(Statistical significance was set at p< 0.05.)

3. Results and discussions

In order to control cell differentiation, used for further regen-
eration of specific organs, efficient biocompatible substrates
capable of inducing contact stimuli, inhibitory cues [28, 29],
or signaling molecules are required [30]. We recently reported
the synthesis of such substrates, and we demonstrated that
the cross-linking of collagen fibers with gold nanoparticles
sustained better proliferation, growth, and differentiation of
MSCs into neuronal and cardiac cells, compared with collagen
alone [27].

As described herein, we continued our study by predicting
the mechanism through which the substrate components, such
as gold nanoparticles and biological molecules, control the dif-
ferentiation process. By metallization of the collagen substrate,
the mechanical properties and the surface chemistry, such as
roughness, elasticity modulus, and force curves, can be tuned.
The contact stimuli and the signaling of the substrate are more
favorable; therefore, superior cell adherence, proliferation, and
differentiation are induced. Moreover, we constructed a more
advanced substrate by combining two extracellular matrix
proteins, collagen and laminin, with gold nanoparticles.

The capacity of some cells to adhere and proliferate on
specific collagens by using these glycoproteins as a support
has been established. For example, chondrocytes adhere pref-
erentially on collagen II, while epithelial and endothelial cells
prefer type IV collagen. The adhesion of the cell is dependent
on temperature [31], as well as the electrostatic forces between
substrate and cells [32], and is inhibited by cytochalasin B [33].
Differentiation of cells is induced in a more accelerated way
on different extracellular matrix substrates compared with
controls without substrates. For example, Qian et al [34]
studied the impact of poly-D-lysine, poly-L-lysine, collagen,
laminin, fibronectin, and Matrigel substrates on the growth and
differentiation of MSCs. They found that all of the substrates,
except poly-D-lysine, enhanced proliferation and differentia-
tion.

The interface between nanomaterials and stem cells pro-
vides new strategies for the reconstruction of lost myocardial
or nervous tissue. In this study, based on the nanoparticles’
properties, along with the proteins’ functions, we were able
to create a substrate that acts as a cellular microenvironment

in order to control in vitro the MSCs’ behavior and func-
tionalities by promoting increased adhesion, proliferation, and
differentiation into myocardial and neuronal stem cells. AFM
proliferation/viability assays and immunocytochemistry stud-
ies were used to characterize the relationship of the substrates
with the stem cells’ growth and differentiation efficiency.

3.1. Metallization of the collagen fibers

The metallization reaction was performed using a Fisher
etherification reaction, and the linkage was demonstrated using
x-ray photoelectron spectroscopy (XPS). XPS is a powerful
surface analysis technique used to determine the elemental
composition, chemical, and electron states of the elements of
a material. The spectra are obtained by exposing the material to
x-rays and measuring the kinetic energy of electrons escaping
from the atoms. Depending on the chemical state of the element
in a material, the binding energy may shift, which serves to
reveal chemical changes in the material.

In the first spectra, figure 1(A), which is a survey scan of
the sample, various peaks show the presence of corresponding
elements. We indexed only the elements of interest: gold and
carbon. The second spectra, shown in figure 1(B), presents a
detailed scan of gold. Typically, the gold peak is a doublet
with one peak around 84 eV and the other around 87 eV.
This indicates that the gold was in a metallic form and did
not react chemically during the synthesis of gold-decorated
collagen. The third spectra, figure 1(C), shows a detailed scan
of the carbon (C 1s) peak in the sample that has only collagen
without gold. There are three-peaks (C–C, C–N and C–O),
which are typical for collagen. The fourth spectra, shown in
figure 1(D), presents carbon spectra in the gold-decorated
collagen sample. Two more new peaks appear. While the
C–C and C–N peaks are intact, an additional O=C–OH peak
appears based on the reaction of the COOH group from the
surface of gold nanoparticles with the OH group from the
collagen structure [35].

The metallized collagen fibers were further used for the
construction of a multilayer substrate in order to study the
mechanical changes made by the addition of the nanopar-
ticles. This study was conducted using AFM analysis. The
layered structure was found to be stable, with the first layer
(gold nanoparticles-based collagen) sustaining the second one
(laminin). This procedure was repeated 3 times.

The elastic modulus of the films was assessed using
force mapping measurements in 100 different positions of the
substrate. The substrate was not plastically deformed during
the analysis. The measurements performed on the same area
reasonably well. The force probe approach velocity applied
was 600 nm s−1 (1 Hz). For the mechanical calculations, we
applied the linear elasticity theory. In order to fit the force
curves, Hertz–Sneddon theory was used [36].

The elasticity modulus (E values) for the collagen sub-
strate was 152.0 (±63.9) MPa and, for gold-coated collagen,
879.7 (±417.4) mPa. Figure 1 presents the AFM images of
a typical collagen fiber (A) and metallized collagen (MC)
fiber (B) at the points selected for force measurement analysis.
The representative force curves of collagen (blue) and the
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Figure 1. (A)–(D) X-ray photoelectron spectroscopy of collagen molecule-decorated gold nanoparticles: (A) survey scan of the sample, (B)
detailed scan of gold, (C) detailed scan of the carbon (C 1s) peak in the sample that has only collagen without gold, (D) carbon spectra in the
gold-decorated collagen sample.

metallized collagen on gold substrate (black) are presented
in figure 2(C). From the statistical analysis, we concluded
that the calculated elastic modulus for the metallized collagen
substrate was significantly higher compared with the collagen
value (p< 0.05). E values were calculated by averaging over
all points where the force curves were collected. Further-
more, we determined the force curves for both substrates,
collagen and metallized collagen. In this case, the metallized
collagen material was compressed about 3 nm at 15 nN
force (figure 2(C) blue) compared with pure collagen, which
was compressed about 11 nm under a similar 15 nN force
(figure 2(C) black).

Previous reports have shown that, with an increase in the
stiffness, both the focal adhesion and cytoskeletal organization
increase [37–40]. The stiffness of the substrate is important in
influencing the cells’ response to different substrates, but is
not a bulk parameter for all types of cells. It has been recently
reported that the relationship between stiffness and cell be-
havior is associated through the mechanical feedback of the
ECM [41]. Trappmann et al [41] have also investigated how the
mechanical properties influence cell fate. They cultured human
epidermal stem cells and MSCs on polydimethylsiloxane and
polyacrylamide hydrogel surfaces coated with collagen. This
group found that cell differentiation was not affected by the
polydimethylsiloxane stiffness and that the cells did not adhere
to the polyacrylamide substrate due to the low elastic modulus
(0.5 kPa). However, when collagen was cross-linked with
hydrogel-nanoparticles, the cell attachment was significantly
affected. The authors believed that the stiffness of the substrate
is directly linked with cell behavior, but they reported that the

stiffness of the substrate changes the anchoring densities of
the cells to the collagen substrate. It is known that the cell
attachment on the collagen substrate is mediated by integrin
molecules; thus, when the ECM is loosely bound to the
substrate, the signaling is affected. In addition, the surface
chemistry and the topology of the substrate are believed to
be two major factors in directing cell fate. The roughness of
the collagen fiber can be controlled during the cross-linking
with gold nanoparticles and also by altering its concentration.
The roughness of the collagen substrate was found to be Rq:
39.8 nm and Ra: 31.8 nm, compared with that of the metallized
collagen of Rq: 45.7 nm and Ra: 34.2 nm, respectively.

This combined study of the elastic modulus and surface
topology indicates that, after the nanoparticles’ surface treat-
ment, the collagen substrate’s stiffness increases dramatically.
The differentiation potential increases when the roughness
of the same substrate increases. Earlier studies have shown
that the stiffness can control cell adhesion, viability, and
proliferation [42–44]. Therefore, it is of great interest in the
preparation of substrates with controlled mechanical proper-
ties and topography, as well as signaling molecules. By using
different types of nanoparticles, with different shapes, sizes
and concentrations, these challenges can be addressed.

3.2. Testing the efficiency of the hybrid substrates on the
differentiation of MSCs into neuronal and cardiac cells

Other parameters that should be considered in the construction
of a successful scaffold are the molecules used for the con-
struction of the substrate. These molecules should act as tissue
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Figure 2. AFM images of a typical collagen substrate (A) and metallized collagen (B) representative force curve of collagen (blue) and
metallized collagen on a gold substrate (black) (C).

substituents and should sustain and mimic tissue functions.
Moreover, it is also mandatory to use multi-composite signal-
ing biomolecules as cross-linking agents in order to further
approach the bio-signaling pathways that direct cell fate. The
goal is to synthesize an ‘artificial extracellular matrix’ with
controllable topology and mechanical properties.

Furthermore, we propose to show the importance of using
biomolecules, e.g., a combination of collagen and laminin,
as substrate components because they are natural signaling
agents that direct the cells’ fate. We constructed an artificial
extracellular matrix, a composite scaffold based on gold
nanoparticles, collagen I, and laminin, in order to test its
capacity to differentiate MSCs into neuronal and myocardial
progenitor cells in the presence of differentiation media.

In order to assess the biocompatibility of Ch-MSCs with
the substrates, we used the MTT (3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide) assay and FDA (fluo-
rescein diacetate) viability tests. The adult mesenchymal stem
cells were cultivated on the collagen + laminin substrate
and a nano-ECM substrate under different conditions: in the
presence of stem cell media (control) and treated with neuronal
and myocardial differentiation medium for seven days. Un-
differentiated chorion-derived placental MSCs cultivated on
laminin + collagen (CL) and metallized collagen + laminin
(MCL) resulted in increased proliferation. A statistically sig-
nificant difference was observed for MCL when compared to

the control (figure 3(A)). The cell proliferation and growth
was statistically significant for the collagen + laminin sub-
strate (figure 3(B)) when the cells were cultivated in the
presence of neuronal differentiation media. For myocardial
differentiation, the values were found to increase for cells
cultivated on both substrates, with no statistically significant
difference (figure 3(C)). MTT assay is a colorimetric method
which measures the mitochondrial enzymes’ activity and can
reflect the metabolic status of cells and consequently the
number of viable cells. FDA freely diffuses into cells and
is rapidly esterified once it enters the cell. The viability of
the cells is assessed from the hydrolysis product, fluorescein,
which cannot escape from live cells. Fluorescent signals are
correlated with the number and the size of individual viable
cells.

In order to determine if there was a difference in the
biocompatibility properties of the substrates and control sam-
ples, we performed further analysis using a two-way ANOVA
Bonferroni post-test comparison of grouped data in relation
to the substrates. No significant differences were observed be-
tween the analyzed data (figure 3(D)). A fluorescein diacetate
(FDA) test, a fluorimetric method, was used to investigate
the biocompatibility of cells cultivated on CL and MCL, in
the same differentiation conditions. The results were very
similar to those obtained from MTT assays in control samples
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Figure 3. MTT viability assay for Ch-MSCs after seven days of cultivation such as: in the presence of stem cell media (control), neuronal
differentiation medium (B) and myocardial differentiation medium (B), without substrates and on collagen + laminin and metallized
collagen + laminin (MCL). Statistical significance was set at p< 0.05. No statistically significant differences were observed between
substrates. (D) FDA fluorimetric assay of Ch-MSC cultivated in standard conditions (control without substrate), on collagen + laminin (CL)
and metallized collagen + laminin (MCL) substrates. (E) stem cell medium; (F) neuronal differentiation medium; (G) myocardial
differentiation medium.

(figure 3(E)). Ch-MSCs induced with neuronal differentiation
medium showed no difference between control and CL or
MCL substrates (figure 3(F)). Metallized collagen + laminin
induced an increase in cell viability in myocardial differentia-
tion conditions (figure 3(G)).

The viability tests were confirmed by microscopic anal-
ysis. For neuronal differentiation, Ch-MSCs were cultivated
on Permanox chamber slides and Petri dishes coated with
gold metallized collagen (MC) and a gold metallized colla-
gen + laminin (MCL) substrate in the presence of growth

factors (EGF, bFGF, and neuronal supplements B27 and N2
supplement) for 48 h, with a subsequent exposure for four
weeks to retinoic acid, IBMX, B27, and N2 supplement. Cells
cultivated without substrate were used as controls. A particular
phenomenon was observed in the case of MSCs cultivated
on Lab-Tek Permanox chamber slides coated with MC and
MCL. The number of cells decreased rapidly after exposure
to N2 medium, and cells extended long neural-like processes
and aligned, with the further appearance of some cellular
fibrillar structures resembling neuronal axons (figures 4(B) and
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Figure 4. Contrast-phase images of Ch-MSCs cultivated with neuronal differentiation medium without substrate (control) and on MC and
MCL substrates for four days and one month. Upper panel: cells cultivated on Lab-Tek Permanox chamber slides coated with MC and
MCL: images were taken after four days of exposure to neuronal differentiation medium. Lower panel: cells cultivated for one month on
Petri dishes coated with MC and MCL.

(C)). The differentiation process was accelerated for the MCL
substrate, and the cells developed neural-like extensions and
appeared to respond with the highest frequency of neural-like
cells when compared with cells cultivated without substrate
that responded after four weeks. The difference between MC
and MCL was an increased uptake of gold nanoparticles in the
case of the MCL substrate, as shown in figure 4(F).

Heaton et al [45] assessed possible laminin influences
by comparison with collagen on neuronal adhesion and nerve
fiber expression, concluding that laminin is more suitable for
initiating the differentiation process. In another study, it has
also been shown that laminin sustains neural expression and
growth. Moreover, the progenitor expression was blocked by
the antibody against integrin alpha6 or beta1 subunit [46].
Immunohystochemical staining of the samples revealed (fig-
ure 5) the expression of some neuronal differentiation markers:
GFAP was strongly expressed in cells cultivated on all sub-
strates used (metallized collagen—figure 5(B); metal absorbed
collagen+ laminin—figure 4(C)) when compared to the weak
fluorescence of GFAP in the control sample (figure 5(A)).

Staining for neurofilaments (NF), filaments found specif-
ically in neurons, revealed that cells differentiated on all
of the substrates—laminin, MC and MCL—expressed this
protein with a greater staining intensity for metallized collagen
and with a neurite-like morphology for the MCL substrate.
NF expression was present after four weeks of induction of
neuronal differentiation, as illustrated in figures 5(D)–(F). The
combination of gold nanoparticles, laminin, and collagen led
to better proliferation, growth, and differentiation efficiency.
The molecular configuration of the substrates, especially the
presence of laminin, was identified to be of critical importance
for neurite outgrowth and polarization during development
and regeneration [47, 48]. Recently, Solanki et al [49] and
Garcı́a-Parra et al [50] confirmed that the mechanical or
topographical features of micropatterned substrates (formed
from ECM components, especially laminin) can guide in a con-
trolled manner cell–cell and cell–ECM interactions and finally

promote neurogenesis. Studies of the neural differentiation of
embryonic stem cells have shown the advantage of laminin
or laminin-rich Matrigel on neural progenitors and neurite
outgrowth in a dose-dependent manner [46]. Mruthyunjaya
et al [51] observed a similar laminin-1 effect on the neuronal
phenotype of bone-marrow-derived MSCs cultivated on dif-
ferent ECM components. Cells plated with laminin-1 showed
accelerated changes with the development of a neurite-like
morphology. This team demonstrated the involvement of inte-
grin α6β1 and FAK-MEK/ERK signaling pathways of adher-
ent cells to the laminin-1 substrate. Different nanomaterials
were used for neuronal differentiation of stem cells, e.g.,
carbon nanotubes with diameters and lengths similar to ECM
molecules (collagens and laminin). These scaffolds have a
high stability and maintain their structural and mechanical
properties during cell differentiation and growth [52]. Gold
nanoparticles were used primarily for non-invasive imaging
of cells in vivo or in vitro using the surface-enhanced Raman
scattering (SERS) method. Karataş et al [53] and Sathuluri
et al [54] demonstrated the mitochondrial localization of
GNPs.

Cardiomyogenic differentiation of Ch-MSCs was inves-
tigated in relation to the substrate type collagen + laminin
and gold metal absorbed collagen + laminin, in comparison
with controls cultivated without substrate. The differentiation
protocol consisted of a four-week exposure to demethylating
agent 5-azacytidine (10 µM) for 24 h with one cycle of
exposure/week (in total-four cycles of 5-AZA). In order to
determine the induction of cardiac differentiation, immunos-
taining with cardiac markers was performed after four weeks
of cultivating the cells in the presence of myocardial differ-
entiation medium. We used antibodies against early cardiac
specific homeobox protein Nkx 2.5, atrial natriuretic peptide
cardiac hormone (ANP), and a staining protocol with phal-
loidin TRITC for the rearrangement of filamentous actin fibers
(figure 6). In control samples, without substrate, phase contrast
images highlighted the characteristic stick-like morphology of
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Figure 5. Immunostaining for GFAP–Texas Red (counterstaining with DAPI) after four weeks with neuronal differentiation medium: control
Ch-MSC without substrate (A); Ch-MSC on the gold metallized collagen substrate (B), Ch-MSC on metal absorbed collagen + laminin
(magnification 400×) (C); immunostaining for NF-FITC and the correspondent image in white light of Ch-MSC induced for neuronal
differentiation on laminin (D), metallized collagen (E), and metallized collagen + laminin (F) after four weeks (400× magnification).

induced cardiac progenitors (figure 6(B)) and a weak positivity
for Nkx 2.5 in immunofluorescence (figure 6(B)). MSCs culti-
vated on both substrates changed shape, adopting a polygonal
morphology, explained by the rearrangement and assembly
of myofibrils on the actin-stress fibers template coupled with
focal adhesion complexes [55, 56]. Differentiation on the MCL
substrate was characterized by a strong uptake of GNP in the
perinuclear compartment and the rearrangement of F-actin in
a characteristic manner, as observed in (figures 6(C) and (E))
by optical microscopy, with expression of intranuclear Nkx
2.5 in fluorescence microscopy (figures 6(D) and (F)).

A characteristic stick-like morphology (figure 7) with
the formation of typical striated sarcomeres was attained by
Ch-derived MSCs cultivated on metallized collagen+ laminin
after an initial step of pre-differentiation without substrate for
31 days (figure 7(B)). The control sample showed a weak
rearrangement of F-actin filaments (figure 7(A)).

The morphological changes induced in Ch-MSCs with 5-
AZA exposure cultivated on the metallized collagen+ laminin
substrate for four weeks were similar to those observed in
the case of the pre-differentiated cells protocol, with the
mention that in the pre-differentiation experiment the typical
striated sarcomers appeared only after a shorter time of
cultivation on the MCL substrate. ANP expression and the
arrangement of actin fibrils suggest a more differentiated state
of the cells cultivated on the MCL substrate (figures 7(C)
and (D)). In this study, even though GNPs were used only
as functionalization tool of collagen fibers (without being
released as vehicle molecules), the complex substrate of
metallized collagen + laminin was able to trigger essential
signals for starting the differentiation process, in the presence
of the guidance action of specific neuronal and myocardial
differentiation medium.

The possibility of using stem cells in cardiovascular dis-
eases for restoration and regeneration has been intensively

studied in the past few years. Cell therapies are indicated
in heart diseases because of the poor regeneration capacity
of myocardial tissue. The main disadvantages of stem cell
therapies are low cell retention and the lack of targeted lo-
calization, with less than 1% homing of delivered cells in
the intravenous route, and 90% cell death one week after
implantation [57]. Hematopoietic stem cells, for example, do
not trans-differentiate into myocardial cells; instead, they were
shown to become mature blood cells [58]. One of the goals
of tissue engineering is to activate resident stem cells or to
enhance their recruitment from stem cell niches to the site of
injury. On the other hand, the contribution of extra-cardiac
stem cells can be improved with genetic engineering and nan-
otechnology [59]. An ideal scaffold would be biodegradable,
biocompatible, and possess mechanical properties similar to
those of the myocardium [60]. ECM components, with their
capacity for self-assembling in 3D structures, offer a favorable
microenvironment as cell signal triggers, and their porosity
facilitates the adhesion, colonization, and proliferation of cells.
The mechanical properties of substrates have an important in-
fluence on myocardial differentiation [61]. Kim et al [62] have
shown that ECM promotes the critical microenvironment that
the cells need to proliferate and migrate. Rowlands et al [63]
have shown that substrates with more than 9 kPa stiffness
induced myocardial markers and sustained cell proliferation
without using DNA demethylation agents. Moreover, Kim
et al [64] demonstrated that nanotopography has a significant
impact in guiding the role of human tissue, activating its
specific functions and promoting its regeneration.

Another strategy proposed in cardiac tissue regeneration is
the development of controlled delivery systems for promoting
neovascularization by using, for example, encapsulated growth
factors, such as VEGF (vascular endothelial growth factor) or
PDGF (platelet-derived growth factor) in poly-(lactic/glycolic
acid) (PLGA) microspheres [65]. Gold nanoparticles can serve
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Figure 6. Immunostaining for cardiomyocytemarkers (Nkx 2.5-FITC and TRITC phalloidin; counterstained with DAPI) and, in the lower
panel, corresponding phase contrast images of placental MSC exposed four weeks to 5-azacytine therapy (10 µM, one cycle of
therapy/week): (A) phase contrast image of Ch-MSC induced for myocardial differentiation, control without substrate
(magnification 100×), (B) Nkx 2.5-FITC expression of chorion MSC without substrate. (C) and (D) Nkx 2.5 and actin F staining of chorion
MSC cultivated on a metallized collagen + laminin substrate; increased cellular intake of GNP (magnification 200×). (E) and (F) Nkx
2.5-FITC and actin F-phalloidin TRITC staining of Ch-MSC cultivated on a metallized collagen + laminin substrate (400× magnification).

as vehicles for various biomolecules or genes implicated in
stem cell differentiation or for the initiation of vascularization.

The future of stem cell research and therapy will continue
to provide novel avenues for diagnostics, therapeutics, and
tissue regeneration.

Herein, we show that our synthesized substrate is promis-
ing for Ch-MSCs cellular differentiation and proliferation into
both cardiac and neural cells. Based on the composition (col-
lagen and laminin) and the presence of the gold structures, this
substrate has the potential ability to activate specific signaling
pathways by triggering the synthesis of specific growth factors
or other biologically active molecules implicated in the control
and fate of mesenchymal stem cells. In a short period of time,
using specific differentiation media, neuronal and cardiac stem
cells were obtained.

This technology may possibly represent a solution to
overcome the existing limitations in the treatment of neurode-
generative diseases. However, the mechanisms that govern the
interactions between various substrates and stem cells is still
under investigation. It has been reported that the implanted
stem cells could contribute to neuro-regeneration by stimu-
lating the formation and production of neurotropic factors,
reducing the neuro-inflammation or even by replacing the non-
neuronal cells [66]. For example, in the case of Parkinson’s

disease, where the dopaminergic neurons are affected, using
mesenchymal stem cell transplantation, the partial alleviation
of symptoms has been reported [67]. Moreover, other cell
therapies using neuronal stem cells isolated from olfactory
mucosa [68], embryonic stem cells derived from dopaminic
neurons [69], etc, have been proposed. Therefore, a variety
of complex clinical approaches to address current limitations
in treating various medical conditions are expected to emerge
soon. Macchiarini et al [70] have reported the successful clin-
ical transplantation of the stem cells from a patient suffering
from failing airways, with none of the immune rejections
typical of traditional organ transplantation. Another promising
application of stem cell research is the use of pre-differentiated
MSCs in treating cardiac diseases [71]. In this case, conven-
tional approaches cannot currently provide successful thera-
pies for heart failure. Similar to the case of neurodegenerative
diseases, after heart failure or a myocardial infarction, the
regenerative potential of the muscle is low, having no capacity
to fully regenerate. For this purpose, different types of cells
have been tested: hematopoietic stem cells were transplanted,
but the improvement of cardiac functions was rather limited
because of the onset of immunogenic problems [72, 73]. Since
MSCs were reported to have HLA-DR molecules on their
surface with immunosuppressive properties, they are therefore
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Figure 7. Immunochemical staining with TRITC—phalloidin for evidence of F-actin. (A) Chorion MSC cultivated 31 days without
substrate, (B) chorion MSC pre-differentiated 31 days without substrate with five therapies of 5-AZA followed by a passage on gold
metallized collagen + laminin for 19 days with one therapy of 5-AZA. White arrow indicates a cardiomyocyte with typical striated
sarcomeres (magnification 200×). Immunochemical staining for ANP-FITC (C) and F-actin-TRITC phalloidin (D) expression of Ch-MSCs
on metallized collagen + laminin substrates for 31 days with five therapies of 5-azacytidine (four weeks of cultivation) (magnification
200×).

highly promising compared to other types of cells. However,
more studies need to be performed in order to determine
the type of cell lines that need to be used for a specific
condition [74]. The exploration of the pluripotent properties
of MSCs has enormous potential for the treatment of various
currently incurable diseases. In all these exciting medical
developments, one of the real promising approaches include
the use of nanostructural engineered materials with multifunc-
tional properties and characteristics [75–81]. In the near future,
clinical trials showing the effectiveness of stem cell therapy
are expected to generate exciting medical developments in the
treatment of various conditions and diseases that currently do
not have treatments.

4. Conclusions

A complex nanosubstrate composed of gold nanoparticles,
metallized collagen, and laminin was synthesized, and its abil-
ity to sustain cell differentiation was tested. The synthesized
substrate, based on its complex composition, enhanced all con-
tact stimuli inhibitory cues and signaling molecules, making
it an ideal candidate for Ch-MSCs cellular differentiation and
proliferation into cardiac and neural cells. First, in order to
demonstrate the importance of using gold nanoparticles in the

substrate composition, we tested the change in the mechan-
ical properties of the substrate, using AFM microscopy. In
this case, a higher elasticity modulus, roughness, and curve
forces of the metallized substrate were observed. Thus, we
concluded that the use of gold nanoparticles in the substrate
composition leads to better control of their structural and
mechanical characteristics. Moreover, based on its attached
gold nanoparticles, this substrate has the potential to de-
liver growth factors or other biologically active molecules
to the cells in order to control and regulate their differen-
tiation, leading to defined populations of cells. The signaling
molecules of the substrate, such as collagen and laminin, along
with the mechanical changes induced by the presence of the
gold nanoparticles contributed efficiently to differentiation
(in comparison with the controls—no substrate comprised
of a combination of collagen and laminin) into cardiac and
neural cells. The synthesized substrate enhanced all contact
stimuli, inhibitory curves, and signaling molecules, making it
an ideal candidate for Ch-MSCs cellular differentiation and
proliferation. The efficiency of the substrate was tested using
MSCs cultivated in differentiation media. Cytotoxicity and
immunohistochemistry studies were performed in order to
show their biocompatibility and to mark the expression of
specific markers upon differentiation of MSCs into neuronal
and cardiac progenitors.
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