Thibault AsselbornSwiss Federal Institute of Technology in Lausanne | EPFL · Computer-Human Interaction in Learning and Instruction (CHILI)
Thibault Asselborn
Docteur of Science
About
34
Publications
16,204
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
681
Citations
Introduction
Skills and Expertise
Publications
Publications (34)
The Dynamilis project examines and addresses elementary school students’ challenges with handwriting. Dynamilis is an evidence-based digital tool developed by School Rebound based on research done in the Human-Computer Interaction Lab of the Swiss Federal Institute of Technology. The tool uses artificial intelligence to create children’s complete h...
Writing disorders are frequent and impairing. However, social robots may help to improve children's motivation and to propose enjoyable and tailored activities. Here, we have used the Co-writer scenario in which a child is asked to teach a robot how to write via demonstration on a tablet, combined with a series of games we developed to train specif...
Do handwriting skills transfer when a child writes in two different scripts, such as the Latin and Cyrillic alphabets? Are our measures of handwriting skills intrinsically bound to one alphabet or will a child who faces handwriting difficulties in one script experience similar difficulties in the other script? To answer these questions, 190 childre...
This research occurred in a special context where Kazakhstan's recent decision to switch from Cyrillic to the Latin-based alphabet has resulted in challenges connected to teaching literacy, addressing a rare combination of research hypotheses and technical objectives about language learning. Teachers are not necessarily trained to teach the new alp...
Handwriting is a complex skill to acquire and it requires years of training to be mastered. Children presenting dysgraphia exhibit difficulties automatizing their handwriting. This can bring anxiety and can negatively impact education. 280 children were recruited in schools and specialized clinics to perform the Concise Evaluation Scale for Childre...
This research is situated in a specialized context offering a rarely occurring opportunity for research questions and technical objectives about language acquisition. The Kazakh language transition from Cyrillic to Latin alphabet in Kazakhstan raises challenges to teach the whole population to write and read in the new script. We propose an unique...
For the full presentation and audio, see here: https://www.youtube.com/watch?v=CmRBnVcBluo
In this article we investigate the role of interactive haptic-enabled tangible robots in supporting the learning of cursive letter writing for children with attention and visuomotor coordination issues. We focus on the two principal aspects of handwriting that are linked to these issues: Visual perception and visuomotor coordination. These aspects,...
This paper proposes new ways to assess handwriting, a critical skill in any child's school journey. Traditionally, a pen and paper test called the BHK test (Concise Evaluation Scale for Children's Handwriting) is used to assess children's handwriting in French-speaking countries. Any child with a BHK score above a certain threshold is diagnosed as...
A large body of research suggests that tangible robots could indeed be useful for supporting children in learning handwriting. However, few studies have investigated the role and use of robots in teaching handwriting to children with attention and/or visuo-motor coordination difficulties. Over the course of multiple iterations, globally involving 1...
In this article, we present a multi-level time scales framework for the analysis of human-robot interaction (HRI). Such a framework allows HRI scientists to model the inter-relation between measures and factors of an experiment. Our final goal with the introduction of this framework is to unify scientific practice in the HRI community for better re...
We consider the machine teaching problem in a classroom-like setting wherein the teacher has to deliver the same examples to a diverse group of students. Their diversity stems from differences in their initial internal states as well as their learning rates. We prove that a teacher with full knowledge about the learning dynamics of the students can...
For successful rehabilitation of a patient after a stroke or traumatic brain injury, it is crucial that rehabilitation activities are motivating, provide feedback and have a high rate of repetitions. Advancements in recent technologies provide solutions to address these aspects where needed. Additionally, through the use of gamification, we are abl...
Handwriting disorder (termed dysgraphia) is a far from a singular problem as nearly 8.6% of the population in France is considered dysgraphic. Moreover, research highlights the fundamental importance to detect and remediate these handwriting difficulties as soon as possible as they may affect a child's entire life, undermining performance and self-...
We consider the machine teaching problem in a classroom-like setting wherein the teacher has to deliver the same examples to a diverse group of students. Their diversity stems from differences in their initial internal states as well as their learning rates. We prove that a teacher with full knowledge about the learning dynamics of the students can...
Abstract The academic and behavioral progress of children is associated with the timely development of reading and writing skills. Dysgraphia, characterized as a handwriting learning disability, is usually associated with dyslexia, developmental coordination disorder (dyspraxia), or attention deficit disorder, which are all neuro-developmental diso...
In this paper, we present a robotic approach to improve the teaching of handwriting using the tangible, haptic-enabled and classroom-friendly Cellulo robots. Our efforts presented here are in line with the philosophy of the Cellulo platform: we aim to create a ready-to-use tool (i.e. a set of robot-assisted activities) to be used for teaching handw...
To escape danger or catch prey, running vertebrates rely on dynamic gaits with minimal ground contact. By contrast, most insects use a tripod gait that maintains at least three legs on the ground at any given time. One prevailing hypothesis for this difference in fast locomotor strategies is that tripod locomotion allows insects to rapidly navigate...
Gaits optimized for upward, downward, and sideways climbing using leg adhesion as well as ground walking with and without adhesion. A ventral view of the insect model walking with each of 15 optimized gaits for each condition. Gravity exerts a force on the model, pulling it backward, forward, rightward, and toward the substrate, respectively. Red c...
Raw data for insect model gait optimization and hexapod robot experiments.
Gaits improve over the course of optimization. A ventral view of the insect model walking using the best gait identified for iterations 1, 2, 5, 9, 13, 19, 58, and 144 of a single optimization experiment. Optimization was performed for upward climbing using leg adhesion (experiment #10). Red circles indicate that a leg is in contact with the substr...
Comparison of Drosophila melanogaster and the insect model. (top) Side view of a female D. melanogaster walking using a tripod gait.(bottom) Side view of the insect model walking using a tripod gait. Movie is slowed down to 0.05x real-time.
Supplementary Figures and Tables
Comparison of a hexapod robot walking on the ground without adhesion using either a tripod or a bipod gait.
Gaits optimized for upward 132 climbing using leg adhesionand ground walking without adhesion in a 25 mm, or 250 mm long insect model. Aventral view of the insect model walking at 5Hz (25 mm model), or 2Hz (250 mm model)with each of 15 optimized gaits. Gravity exerts a force on the model, pulling it backward (upward climbing), or toward the substra...