Theresa Backhaus

Theresa Backhaus
Heinrich-Heine-Universität Düsseldorf | HHU · Department of Biology

PhD

About

8
Publications
3,388
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
160
Citations
Additional affiliations
December 2016 - February 2019
Heinrich-Heine-Universität Düsseldorf
Position
  • PhD Student

Publications

Publications (8)
Article
Full-text available
As part of the Biology and Mars Experiment (BIOMEX; ILSRA 2009-0834), samples of the lichen Circinaria gyrosa were placed on the exposure platform EXPOSE-R2, on the International Space Station (ISS) and exposed to space and to a Mars-simulated environment for 18 months (2014-2016) to study: (1) resistance to space and Mars-like conditions and (2) b...
Article
Full-text available
As part of the ESA space experiment BIOMEX (Biology and Mars Experiment) the lichen Buellia frigida has been exposed to space and simulated Mars analogue conditions on the expose facility EXPOSE-R2 placed outside the Russian Zvezda module on the International Space Station (ISS) for 1.5 years. Randomly Amplified Polymorphic DNA (RAPD) technique has...
Article
The lichen Buellia frigida was exposed to space and simulated Mars analog conditions in the Biology and Mars Experiment (BIOMEX) project operated outside the International Space Station (ISS) for 1.5 years. To determine the effects of the Low Earth Orbit (LEO) conditions on the lichen symbionts, a LIVE/DEAD staining analysis test was performed. Aft...
Article
Full-text available
BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports—among others—the BIOMEX investigations into the stability and level of degradation of space-exposed biosign...
Article
Full-text available
Lichen symbioses between fungi and algae represent successful life strategies to colonize the most extreme terrestrial habitats. Consequently, space exposure and simulation experiments have demonstrated lichens’ high capacity for survival, and thus, they have become models in astrobiological research with which to discern the limits and limitations...
Article
Lichen symbioses between fungi and algae represent successful life strategies to colonize the most extreme terrestrial habitats. Consequently, space exposure and simulation experiments have demonstrated lichens' high capacity for survival, and thus, they have become models in astrobiological research with which to discern the limits and limitations...
Article
Full-text available
Several investigations on lichen photobionts (PBs) after exposure to simulated or real-space parameters consistently reported high viability and recovery of photosynthetic activity. These studies focused on PBs within lichen thalli, mostly exposed in a metabolically inactive state. In contrast, a recent study exposed isolated and metabolically acti...
Article
Full-text available
In the past decade, various astrobiological studies on different lichen species investigated the impairment of viability and photosynthetic activity by exposure to simulated or real space parameters (as vacuum, polychromatic ultraviolet (UV)-radiation and monochromatic UVC) and consistently found high post-exposure viability as well as low rates of...

Network

Cited By

Projects

Projects (3)
Project
Archived project
Project
biosubstances-analysis with RAMAN, HPLC lichens-analysis with CLSM, REM and cultivation assay