
Uniformity, Interpolation and Modulespeci�cation in a Development WorkspaceT. Dimitrakos and T.S.E. MaibaumImperial College, 180 Queen's Gate, London SW7 2BZ, U.K.Abstract. Interpolation and Schematic Reasoning are shown to under-lie critical and somewhat complementary aspects of designing and (syn-tactically) manipulating speci�cation modules. In addition, the presenceof a Uniform presentation of interpolants facilitates the speci�cationof modules. Also, the ability to encapsulate and manipulate UniformSchemata may assist us in reasoning with (abstractions of) hidden data.Unfortunately, most formalisms that have been used in fundamental ap-proaches to software engineering lack uniform interpolation and do notdirectly support schematic reasoning. This paper reveals the critical roleof uniform interpolants and uniform schemata from the perspective ofmodularity, and quotes a general construction indicating that a poten-tially large class of calculi can be extended conservatively so that a uni-form presentation of the critical interpolants becomes available and themanipulation of uniform schemata is supported.1 IntroductionThere is a well established relation between interpolation [7, 25, 40, 2] and modu-larity properties of re�nement [26, 27, 53, 50, 52, 51, 15, 14, 13] and databases [29].Also, some operations of module algebras [5] are linked directly with a \splitting"version of interpolation ([37] discussing an earlier version of [5]). The behaviourof the language restriction operator [14, 13](also \information hiding"operatorin [9]) is associated with an interpolation property of the speci�cation formal-ism. In addition, the presence of uniform interpolants facilitates formal reasoningand syntactic manipulations in all the above cases, as explained in [13] and [14].On the other hand, uniform schemata, ie., schemata whose application conservesconsequence through language expansions (as the �rst order equality schema, the�rst order induction schema, and the classical Hilbert-style axiomatisations do),can be used for encapsulating general properties of abstractions of the \hidden"data. Unfortunately, many logics that have been used in work on re�nement ordatabases lack the desirable interpolation properties, and schematic reasoning isoften exogenous and it is usually treated by means of purpose-built proceduresor tactics that depend intrinsically on the application. To compensate for theabsence of modularity, several groups of researchers have proposed techniques torestrict these logics to fragments that have the desirable modularity properties



(eg. interpolation/modularisation). Some of these enterprises have focused onalgebraic/categorical aspects of modularity (eg. persistence [16]), whereas othershave emphasised interpolation (eg. taming logics [3, 32]). Our approach is in asense dual [13]: we seek methods to expand a speci�cation formalism orthogo-nally, so that an adequately strong version of the critical interpolation propertiesis obtained and uniform schemata become logical. Some features of these meth-ods reect the way that theorem provers manipulate meta-variables and, thus,a possible interpretation of what is going on when the expansion is performedis as \adding meta-theoretic facilities" [4] to one's favorite speci�cation logic.Of course, our intention is not to substitute meta-reasoning, but rather to in-ternalise { in a uniform and well-founded way { some fundamental meta-logicalstatements that associate derivability with linguistic transformations.The paper is structured as follows:In section 2 we outline the interpolation properties we are interested in, and insection 3 we emphasise their uniform versions. Some (simpli�ed) illustrative ex-amples regarding interpolation, module presentation and information hiding arepresented in paragraph 3.2 from the perspective of uniformity. We also present,in association with these examples, a technique for demonstrating, by means ofcounterexamples, that a given logic lacks a uniform version of interpolation. Infact, many logics that have been used for speci�cation design and re�nementhave been shown to lack a uniform version of interpolation.In section 4 we explain how derivations are a�ected by a schematic supposi-tion, and we underline some fundamental di�erences between a schema and a setof sentences with a common syntactic pattern. Then, we distinguish the class ofuniform schemata and illustrate how they assist in reasoning with (abstractionsof) hidden operators.In an attempt to compensate for the inability of many logics that have beenused in computing to provide a uniform presentation of interpolants and tocope with schematic reasoning, we have studied general methods to expand or-thogonally a logical formalism ESpec, so that uniform interpolants in derivationsbetween ESpec-sentences become available and reasoning with uniform schematais supported. (The skeleton of such an expansion method has been outlined in[14], described in more detail in [11] and analysed in [13].) The intuition behindthe expansion method, together with some salient characteristics of the notionsof consequence involved, are quoted in section 5. Then, the previously presentedillustrative examples are revisited, emphasising on how this expansion su�cesto provide a uniform presentation of the critical interpolants, and a precise en-capsulation of the essential constituents of (uniform) schematic reasoning. Inthe context of this paper the focus is on extending (�nitary) propositional and�rst order languages. The choice of these languages has been made on the basisof familiarity; as is explained in [13], similar methods are applicable for largerclasses of logics.



2 PreliminariesAn Entailment System [30] E = hSign;gram;`Ei (also called a �-Institution inthe chronologically earlier paper [18] and in the more recent revision of [20])provides an abstract presentation of logical consequence, consisting of(1) a category Sign of signatures;(2) a functor gram:Sign!Set, that assigns to each signature � the set ofsentences/well-formed-formulae built over �;(3) a Sign-indexed family of binary relations (entailment) `L, such that, `E� �2gram(�)�gram(�) is reexive, monotonic, transitive, and stable un-der translation 1;The tuple G[L] = hSign;grami is the Grammar G[E ], which presents the (cat-egory of) languages in E . In addition, E is called compact i� whenever �`E�',there exists a �nite A � � such that A`E�'.As it is explained in [13] (also noted in [30]), this presentation of logicalconsequence is independent of the means by which it has been de�ned (eg. proof-calculus, satisfaction system, forcing, etc.). The usefulness of the EntailmentSystems framework stems from its power of abstraction. By analysing propertiesand describing development frameworks by means of Entailment Systems, onegains generality: Every concrete development framework that de�nes the samenotion of logical consequence is a candidate for being used in applications2. Nowlet us consider some encapsulations of interpolation properties in the context ofEntailment Systems:An Entailment System E possesses Craig-Robinson Interpolation (CRI) i�for every pushout diagram D in Sign, as depicted to theright, and every A � gram(�A), B � gram(�B), ' 2gram(�B), such thatAi0`E�C'e0 , there is a set I(A;B;';D) �gram(�R) of interpolants such that1. A`E�AIe(A;B;';D),2. Ii(A;?;';D)[B`E�B'. �A �CD�R �Be i0 e0iwhere for each translation i:�1!�2 and � 2 gram(�1) the writing of �i 2gram(�2) denotes the image of the formula � under the translation inducedby i. Analogously, if � � gram(�1) then �i = f�i : � 2 �g. Finally, �`E��for �;� � gram(�) mean �`E�� for each � 2 �. Notice the use of the pushoutconstruction to capture the idea that the interpolants are in a \shared" language,which is required for stating the property (as in [46]). If E is compact then, foreach ', the set of interpolants is �nite. If there is also a deduction theorem for Ethen the set of interpolants I(A;B;';D) can be viewed independently of B. Finally,1 That is, f'g`E�'; if � � � and �`E�' then �`E�'; if �`E�' and �`E��, for all � 2 �,the �`E�'; and for every i:�1!�2 in Sign, if �`E�1' the gram(i)(� )`E�2gram(i)(').2 Of course, the e�ectiveness of the concrete framework depends heavily on the meansused for de�ning this logical consequence and some important issues involved in themechanisation may not appear at the level of Entailment Systems.



if E is a weakly structural �-Institution then some structural axioms on D needto be taken into account. (See [20] and [13].)E possesses Craig Interpolation (CI) when the above de�ned property holds(at least) for B = ?. For calculi on propositional and predicate languages, CIcoincides with the well-known Craig's Interpolation Lemma [7].A property similar to CRI �rst appeared explicitly in the literature in [25]where it was established for the intuitionistic propositional calculus (see also [2]).\Maehara Interpolation" { a term now commonly used in sentential logic{andCRI coincide (at least) for calculi on propositional and predicate languages. Inthe computer science literature the terms \Splitting", \Strong" and \Pushout"Interpolation have been used to designate either precisely the same or similar(ie., equivalent for calculi on propositional and predicate languages) propertiesas CRI (see [37, 46, 19, 9] and [20] among others). Finally, the term CRI originallyappeared at Shoen�eld's book [40] and recently reappeared in [51] and [14, 12].Note that although CRI is generally stronger than CI (the latter requires theproperty just for B = ?), the two are equivalent for both classical and intuition-istic propositional and �rst order logics. In fact, they generally seem to collapsefor compact calculi with a deduction detachment property.CRI is strongly related with theModularisation property [27, 50, 19, 50, 51, 12,15, 14] which is an important property for speci�cation design and re�nementby means of implementation steps [47]. The critical role of MP in speci�cationtheory has been analysed in [27, 50, 19, 50, 51, 15, 13], and in [12, 14, 13] from theperspective of uniformity. The Modularisation property (MP) is captured in theEntailment Systems framework as the preservation of conservative extensionsunder pushouts:If e:h�R;Ri!h�A;Ai is a conservative exten-sion and D is a pushout diagram in the cate-gory of theories over an Entailment System E thene0:h�B;Bi!h�C;Ai0 [Be0i is also a conservativeextension. h�A;Ai h�C;Ai0[Be0 iDh�R;Ri h�B;Bie ii0 e0The strength of the relation between CRI and MP is underlined in the followingstatement which is known as the \Modularisation theorem":An Entailment System E possesses CRI i� E possesses the MP.This equivalence was put forward in [27] and proved in detail in [50] and [52]for the particular case of �rst order logic. A proof for the general case of anEntailment System can be found in [13], together with a critically stronger resultshowing that he equivalence holds for the (grammatical) locus of all theories onD (ie., the universal meta-quanti�cation on D is shifted outside the equivalence).3 Uniform interpolants and Module speci�cationsRecall that a module, in speci�cation theory, can be viewed as one (logical)theory A in the employed logic. (See also [5, 9] and [13]). Moreover, if A is the



theory of some speci�cation h�A;Ai (ie., A has a �nite �A-axiomatisation A)A is called speci�able. In computing, one would clearly prefer all basic modulesto be speci�able and all operations on modules to preserve speci�ability. Un-fortunately, this fails for some simple, intuitively clear, operations based on the\(sub)module" of relation3: The submodule R of A on �R is given by the restric-tion of the theory A to the sublanguage gram(�R). If A is speci�able by h�A;Aithen R is called the �R-module of h�A;Ai. The purpose of this section is de�nethe notion of a uniform interpolant and disclose a strong connection betweenthe existence of uniform interpolants and the speci�ability of (sub)modules oflogical speci�cations.Assume that an Entailment System E possesses CRI. Given a pushout diagramD in the category of signatures, and A � gram(�A), B � gram(�B) we saythat interpolants have a uniform presentation i� there is a set of interpolantsI(A;B;D) such that:(1). A`E�AIe(A;B;D),(2). I(A;B;D)`E�RI(A;B;';D) for every ' 2 gram(�B), and(3). I(A;B;D) is �nite whenever A is �nite.(ie. for each assertion � 2 A there is a �nite set of interpolants which isstronger than any other interpolants and independent of the consequence ')E possesses Uniform Craig-Robinson Interpolation (UCRI) i� for every A, B andD there is a uniform presentation I(A;B;D) of the Craig-Robinson interpolants.Consequently, E possesses Uniform Craig Interpolation (UCI) i� for every A,B and D there is a uniform presentation I(A;?;D) of the Craig interpolants.(Alternatively, the requirement of uniformity can be directly embodied in thede�nition of CRI (resp. CI) by strengthening the property as in [15, 14] and [13].)An immediate consequence of Uniform interpolation is that the restrictionR of a �nitely axiomatisable theory A to a sublanguage �R has some �nite �R-axiomatisation (consisting of the uniform interpolants).Recall that the theory R of the restriction of A= h�A;Ai to a sublanguage gram(�R) is de�nedas the set of the �R-consequences of A, ie., R =f' 2 gram(�R) : A`E�A'g. Now if I(A;?;e) is the(set of) uniform interpolant(s), and e is the sub-signature inclusion e:�R!�A (viewed as pushoutof e along id�R , identity morphism on �R), then �A A`E�A'e�R I(A;?;De)`E�R'ea(ny)�R-sentence ' belongs to R i� I(A;?;e)`E�R'. The conditional is immediatefrom the de�nition of uniform interpolation and the converse conditional followsbecause `E is transitive and stable under translation.3 Note that modules have been de�ned in a variety of di�erent ways in programming,speci�cation and automated reasoning. The de�nition sketched here is a simpli�ca-tion / abstraction of those which are common in speci�cation theory and consis-tent with the view of the speci�cation design and development as theory manipula-tion. In any case, most seem to agree on the conservativeness underlying the \is a(sub)module of" relation.



An obvious use of the above equivalence (also noted in [14]) is as a method forderiving negative results, ie., for proving that a logic lacks Uniform interpolation,it su�ces to �nd a speci�cation A on �A and a subsignature �R on which A hasa (�nitely) unspeci�able restriction. Such a counterexample for �rst order logicis given by restricting the speci�cation of a dense linear order to the languageof equality. It is well known (there have been several arguments mostly fromgame theory) that linear density is not speci�able by means of a �nite numberof �rst order sentences in the language of equality. Similar counterexamples canbe found easily for equational logic, propositional dynamic logic, in�nitary logic(L!1!), monadic second order logic, etc.3.1 Information HidingInformation Hiding is an important and well-known technique in both conven-tional programming and formal speci�cation design. Already in the early 70's,Parnas [34, 33] had emphasised the importance of hiding implementation detailswithin a module. This is accomplished by allowing access to the data repre-sentation of a speci�cation only through operations exported by its module. Ina somewhat similar spirit, Bergstra and Tucker [1] had shown that any recur-sive �R-algebra can be speci�ed as the �R-restriction of an initial �A-algebrade�ned by a �nite set A of �A-equations, attempting to compensate for thenegative result of [28] that certain �R-algebras cannot be speci�ed as the initial�R-algebra of a �nite set of �R-equations. In many calculi that are currentlyused in computing, there are interesting �R-theories which lack a �nite presenta-tion on gram(�R) and can be seen only as �R-restrictions of some speci�cationh�A;Ai which includes both visible and hidden features.It easily follows from our preceding analysis that if a calculus (presented bymeans of an Entailment System E) possesses UCRI, then the above problemsof specifying modules reduces to the problem of deriving uniform interpolants:all (sub)modules based on a speci�cation h�A;Ai are (directly) speci�able. Anobvious �nite axiomatisation is given by the corresponding set of uniform in-terpolants. Furthermore, if E possesses uniform interpolation (UCI also su�ces)locally over e, then the �R-module of h�A;Ai is speci�able and h�R; I(A;?;e)iis a speci�cation of this module: If �R is a subsignature of �A, denoted bye:�R!�A, then a speci�cation R = h�R;Ri is a �R-module of A = h�A;Ai i�A`E�ARe and R`E�RI(A;?;e).R`E�RI(A;?;e) �R �A A`E�AReeGeneralising, every �nitely axiomatisable theory on �A has a �nitely axiomati-sable restriction on �R (wrt. e) i� UCI holds locally on e.The following examples may assist the reader in understanding the role of in-terpolants in a derivation in relation to uniformity. For simplicity we use unsorted



grammar and we assume familiarity with the calculi of (classical) propositionaland �rst order logics, denoted by CPC and CFOC respectively.3.2 ExamplesLet �A present a propositional alphabet including the propositional symbols p, rand q and let e:�R!�A denote the inclusion of the subalphabet �R in �A suchthat �R excludes q (ie., q is the \hidden" proposition). Consider an arbitraryformula  in the propositional language of �B, and let D = A`CPC�A  e be aderivation in CPC over the language of �A. If A = fp^qg, then the sentence pis a �R-interpolant for D. Under the same assumptions, if A = f(p^q)_rg, thensentence p_r is an�R-interpolant forD, and ifA = fp^(q _r) then the sentencep is a �R-interpolant for D. All these interpolants are uniform: they depend onthe logical structure of the assertion and on the language of the derivation;they are independent of the logical structure of the consequence  . Hence, fpgaxiomatises the fpg-module of hfp; qg; fp ^ qgi. Also fpg axiomatises the fp; rg-module of hfp; q; rg; fp ^ (q _ r)gi, and, �nally, fp _ rg axiomatises the fp; rg-module of hfp; q; rg; f(p ^ q) _ rgi. In fact, the classical propositional calculusCPC possesses UCRI (thus UCI) and therefore every module a propositionalspeci�cation is directly speci�able.Let �A be a �rst order alphabet which includes a function symbol f andlet e:�R!�A �R, with e denoting the inclusion of the subalphabet �R of �Aexcluding f . Let A be characterised by the sentence 8(x) (I (x)! O(x; f(x))),(which may present the input-output behaviour of a functional program) in the�rst order language of �A). The sentence #A = 8(x)9(z) (I (x)! O (x; z)) is an�R-interpolant of A`CFOC�A  e, where f does not appear in  , regardless of thelogical structure of the consequence  . In this sense, h�R; #Ai is a presentationof the �R-module of the speci�cation h�A; f8(x) (I (x)! O(x; f(x)))gi. Again,the interpolant is uniform: it does not depend on the logical structure of theconsequence. In general, one can show [13] (extending [54]) that in �rst order(classical/intuitionistic) logic all derivations of the form '[x; f(x)]` , where fdoes not appear in  , have a uniform interpolant 4.There are derivations, though, in �rst order logic where the form of the in-terpolant depends on the logical structure of both the assertions and the conse-quence. Let �A also include another function symbol g which is not in the subsig-nature�R, andA consisting of the sentence 8(x; y) (I(x; y)! O (x; f(x); y; g (y))).Then the interpolant depend on both the assertion and the consequence. Thisis partially due to the fact that one may obtain syntactically di�erent and logi-cally non-equivalent sentences when abstracting the operators f and g from the(conjunction of) the assertions (eg. 8(x)9(z)8(y)9(w)I(x; y) ! O(x; z; y; w) and8(y)9(w)8(x)9(z)I(x; y) ! O(x; z; y; w)), one of which may be used for derivingthe consequence  depending on  's logical structure. Also, no combination ofsuch sentences, in a �rst order syntax, is able to capture the fact that each of4 In fact, f(x) may denote syntactically identical occurrences of either a function or apredicate. See [10] and [13] for details.



z; w depends only on one of x; y and is independent of the other. A (highly non-deterministic) algorithm for generating (non-uniform) �rst order interpolants fora derivation D using Unskolemization and Resolution is presented in [6].Another example of �rst order derivations where the form of the interpolantdepends on the logical structure of both the assertions and the consequence isobtained by considering the �nite axiomatisation of a Dense Linear Order in alanguage �A incorporating an order symbol < (and, of course, logical equality):anti-reexivity 8(x) :(x < x)transitivity 8(x; y; z) x < y ^ y < z ! x < ztotality 8(x; y) x < y _ y < x _ x = ybottom element 8(x) :(x < 0)density 8(x; y)9(w) x < y ! (x < z ^ z < w)As already mentioned in this paper, it is impossible to obtain a �nite descriptionof (the consequences of) linear density in the language of equality. Therefore,�rst order derivations of equational sentences from the (conjunction of) the aboveaxioms depend on both the assertions and the consequence. As explained in [13],similar counterexamples hold for in�nitary logic (L!1!) and monadic secondorder logic. Counterexamples for equational logic can be produced based on [28]and [1] (read also [31]). Calculi that possess a uniform version of interpolationinclude classical propositional logic, (Heyting's) intuitionistic propositional logic[35], L�ob's logic (GL) [39], Gregorczyk's logic (S4Grz) [55], polymodal (Hennessy-Milner) logic and �-calculus [8], and classical and intuitionistic second orderpredicate logics with predicate variables of all arities.4 Modules and Uniform schemataAccording to Webster's Dictionary (1913), a schema is \an outline or imageuniversally applicable to a general conception, under which it is likely to be pre-sented to the mind". This perception of schematic representation originates inKantian philosophy and has been exploited in \The Critique of Pure Reason"[24] (see also [36] ). According to a Dictionary of Mathematics, a schema inmathematical logic is \a method of representing a possibly in�nite number ofw�s, of some object language by using metalinguistic expressions that take objectlanguage as substitution instances...". But a schema is not a pure metalinguisticexpression, in the sense that symbols of a \base" object alphabet may appearas �xed constituents of it. A schema may be conceived as a linguistic meta-formindexed by the (category of) languages that include the language of a \base"signature �R, such that �R is constituted by the (\object") symbols that appear�xed in the schema. symbols appear �xed in it. In that sense, a schema is bothdenotationally and operationally di�erent from an arbitrary set of commonlystructured �-sentences as we will elaborate on in the sequel. Consider as anexample the familiar �rst order induction schema:(FOInd) For every predicate ' [in all languages extending �N= hf0; succg; f=gi]'(0) ^ (8(x)'(x)! ' (s (x)))! 8(x)'(x)



The fundamental \operational" di�erence between the supposition of the aboveschema (FOInd) and its �N instance IndN = f'(0) ^ (8(x)'(x)! ' (s (x))) !8(x)'(x)' 2 Frm(�N)g is that the schema re-populates the set of assertions foreach language expansion, whereas Ind (on �N does not.An example, �rst mooted in Enderton's book [17] (and analysed from dif-ferent perspectives in [49] and [13]), may assist in a further clari�cation of theabove. The following set of sentences is a �nite axiomatisation of a complete(maximally consistent) and e�ectively decidable theory Nat on the �rst orderlanguage of �Nat = hf0; succg; f<gi which has N (the natural numbers) as onemodel:discrete linear order: 8<:8x8y (x < y ! :y < x)8x8y (x < y _ x = y _ y < x)8x8y ((x < y ^ y < z)! x < z)9=;immediate successor: 8x8y (x < succ(y)! :y < x)initial element: 8x (:succ(x) = 0)(abstracted) predecessor: 8(y)9(x) (y 6= 0! y = succ(x))These axioms specify a discrete linear order with immediate successor and aninitial element in a language �Nat which is not expressive enough to inter-pret Peano arithmetic, and therefore neither the completeness nor the (e�ec-tive) decidability of the presented theory contradict G�odel's incompletenesstheorems [21]. Also note that there is no assumption of induction over �Nat.Though, all inductive statements in the language of �Nat, ie. IndNat = f'(0) ^(8(x)'(x) ! ' (s (x)))! 8(x)'(x) : ' 2 gram(�Nat)g are derivable, as the the-ory Nat is complete and has N as a model. Hence, the (meta-)property describedby (FOInd) is approximated by Nat. But it is not totally possessed. If �Nat is ex-tended to�NatPlus by appending a binary operator + to�Nat, induction instancesinvolving the operator +, like ('(0) (^8(x)'(x) ! ' (s (x)))! 8(x)'(x) ) [' 77!(8(y)y < succ(x) + y ) ] are neither provided nor derivable in NatPlus. As a re-sult, when Nat is (conservatively) extended to NatPlus by appending the follow-ing inductive de�nition of an addition operator +, (Plus0)8(y) (0 + y = y) and(Plus1) 8(x)8(y) (succ(x) + y = succ(x+ y)), one unable to derive 8(x)8(y) y <succ(x) + y as a theorem, as one might expect. (See [13] for details and [49] forsome other related comments.) Concluding, schemata are meta-statements ex-pressing properties that hold globally (for all expansions of the base language).As such, they cannot be identi�ed with a(ny) particular set of sentences in thelanguage of some speci�c alphabet.A schema USch is called uniform i� its instantiations conserve (logical) con-sequence along language expansions. That is, if S and T are theories generatedby instantiating USch on �S and �T respectively, and �S is a subsignature of�T, then T is a conservative over S, ie., the S is the �S-module of T. The abovestated FOInd, the equality schema and the classical Hilbert-style axiomatisationsare examples, from �rst order logic, of familiar uniform schemata.With the notion of a uniform schema at hand, we are able to note a fun-damental aspect of the interrelation schemata and modules: Uniform schemataassist in encapsulating and reasoning with general properties of data that can



be hidden, based on the accessible information. By assuming (resp. validating)a uniform schema over a module R, one imposes the supposition (resp. veri�es)that a property holds in all di�erent contexts that enclose R as a module.In order to clarify the above by means of a concrete example, we have re-examined the strong distributive law as it was presented in [9]. An EntailmentSystem E possesses the strong distributive law for module sums in E i� for ev-ery pair of speci�cations A = h�A;Ai, B = h�B;Bi, and every common sub-signature �R of �A and �B, the theory [A+ B]R of the restriction of the sumA+ B to gram(�R) coincides with the sum [A]R + [B]R of the corresponding�R-restrictions (ie., the restriction operator distributes over the sum: the �R-moduleof the sum equals the sum of the �R-modules). As explained in [9], the strongdistributive law does not hold for most calculi used in fundamental approaches tosoftware engineering: The theory of the �R-module of the sum h�A+B;A+Bimay be richer (ie., properly include) the theory of the sum [A]R + [B]R of thecorresponding modules, due to sharing/side-e�ect interaction of the "hidden"data, as is demonstrated by the following example: Let A be hf0; 1; 2g; f0 = 1gi, B be hf0; 1; 2g; f0 = 2gi and let �R=f1,2g. The theory A+ B is presented byhf0; 1; 2g; f0 = 1; 0 = 2gi and therefore [A+ B]R possesses the sentence 1 = 2 astheorem, whereas [A]R and [B]R are both presented by hf1; 2g;?i, and thereforethe theory [A]R + [B]R is also presented by hf1; 2g;?i which does not possess1 = 2 as a theorem. Clearly, [A+ B]R includes [A]R + [B]R as expected.Let us note now, how reasoning by means of uniform schemata can assist inalleviating the absence of direct knowledge of a possible interaction between \hid-den" data: First of all, it cannot (actually it should not) eliminate the \problem".No method of conservatively extending an Entailment System E can attributeto E itself the strong distributivity the E lacks. In fact, attributing E strongdistributivity may not be even desirable, since it disallows interaction betweenhidden \data" which is something natural and, depending on the application,may be essential. Reasoning with uniform schemata o�ers critical assistance inpredicting or detecting the possible consequences of sharing or interaction ofpotentially \hidden" data. The critical uniform schema in the above mentionedexample is given by \for all (constant) terms t in all languages that include �R= f0,1g, if t = 1 and t = 2 then 1 = 2", which is valid for Entailment Systemswith (logical) equality, and it is able to detect sharing/interactions of a similarnature to those that cause the absence of strong distributivity. The latter isobtained by the ability to incorporate (meta)linguistic abstractions of the oper-ators that may appear in an arbitrary context that embodies the given module.And, in that sense, it is presentable by means of the accessible information only.The importance of uniformity resides in this case in guaranteeing that the ac-cessible data describe modules of all the contexts under consideration. Had theuniformity requirement on the schema been abandoned, one would account allcontexts that extend the accessible data, rather than those that embody thesedata as a module.



5 The Development Workspace approachThe development of a general method to expand orthogonally the logical conse-quence of a speci�cation formalism so that a uniform presentation of the criticalinterpolants and a precise encapsulation of the essential logical structure of uni-form schemata become available has been outlined in [14], described in [11] andanalysed in [13]. This expansion is presented by means of a Subentailment System[30] called a Development Workspace [13], and seems suitable as (i) a (theoret-ical) framework where precise formal encapsulations of the desired modularityproperties can be studied, (ii) an abstract construction providing insights andinspiration for extending concrete calculi and satisfaction systems, and (iii) aclassi�er for detecting the adequacy of extensions which attempt to \�x" modu-larity problems of concrete calculi and satisfaction systems. A precise descriptionof the structure of a Development Workspace cannot be presented herein, for theavailable space is limited and since the purpose of this paper is to illustratethe potential usefulness of this method (rather than presenting the method indetail). The reader whose interest in this approach is motivated is encouragedto consult the cited references for further details. For the purposes of this sec-tion, we put emphasis on the underlying grammatical expansion and some ofthe salient characteristics of the interrelation between the logical consequence atthe source (\speci�cation") and the extension (\development") level. The basicidea behind the construction of a Development Workspace hESpec;J i on a spec-i�cation formalism ESpec, is just to internalise { in a uniform and well-foundedway { some fundamental meta-logical statements that associate derivability withlinguistic transformations.A Development Workspace hESpec;J i embodies an expansion J :ESpec!EDevof ESpec to EDev so that the grammar of EDev di�ers from ESpec only with respectto the logical operators: The main feature of the expansion is the augmentationof the speci�cation syntax with new \development" variables {n that abstractn-ary atoms and with new operators 8 and 9 to bind these variables. Onepossible interpretation of the new operators is as term/predicate quanti�ers thatare relativised on the (codomain of) language expansions. In this sense, an �R-sentence 8{n', of EDev , where 8 , 9 do not occur in ' is interpreted as\for all signatures �A that include �R and all n-ary operations � ingramESpec(�A), '[{n 77! �]"and, 9{n' is analogously interpreted as\for some signature �A that includes �R and some n-ary operation � ingramESpec(�A), '[{n 77! �]"The speci�cation Grammar G[ESpec] is expanded to the development Gram-mar G[EDev ] as follows:(a) the category of extra-logical alphabets (signatures) remains intact;(b) an unlimited collections of new n-ary \development" variables ({ni ) areadded , for each arity n, and used as grammatical abstractions (\place-holders") of ESpec-expressions;



(c) two new logical operations 8 , 9 to bind the new variables are added;(d) a lambda abstraction operator � to bind free \speci�cation" variables isadded: For every formula  [x1:::xn] in gramEDev (�) with x1:::xn free \speci-�cation" variables, and such that neither 8 nor 9 appear in  , the expression�x1:::xn: is an n-ary \development" term in gramEDev (�);(e) free occurrences of n-ary development variables can be substituted by n-ary development terms by a \bound" substitution that reduces the redex:{2(t1; t2)[{2 77!�x1;x2:'[x1;x2]] � (' [x1; x2]) [x1 77! t1; x2 77! t2] � '(t1; t2);(f) all formulae of gramEDev (�) are generated by (a)-(e) above.In terms of logical consequence, the salient characteristics of a \DevelopmentWorkspace" which are important for module representation and schematic rea-soning include the following:For every signature �, `EDev is conservative over `ESpec , ie., for every � �gramESpec(�) and every ' 2 gramESpec(�), �`ESpec� ' i� �`EDev� '.If ' is a sentence in gramESpec(�A) and & is an n-ary operation of �A, thenthe EDev-derivation '`EDev�A 9{n'[& 77! {n] is valid.EDev provides a uniform presentation of interpolants in derivations betweenESpec- sentences, and all these uniform interpolants are instances of the samesyntactical pattern: A uniform interpolant for a ESpec-derivation '`ESpec�A  inparticular, is the EDev-sentence 9 {n11 ::: 9 {nkk '[&1 77! {n11 ; :::; &k 77! {nkk ] wheref&1; :::; &kg are the set of �A symbols that appear in the assertion ', and do notappear in the consequence  . The usually hard process of deriving interpolants isthus trivialised. Furthermore, if ESpec possesses CRI (resp. CI) then EDev possessesUCRI (resp. UCI) overall.On the other hand, if 8{n'[{n] is a sentence in gramEDev (�R), the signature�A includes �R and & is an n-ary operation (of the same type as {n) then theEDev-derivation 8 {n'`EDev�A '[{n 77! �& ] is valid. Finally, if �`ESpec�R '[{n 77! �& ]is a derivation over �R, and for each language �A that includes �R and alln-ary operations & 0 (of the same type as &) in �A, �`ESpec�A '[{n 77! �& 0] then�`EDev�A 8{n'[{n].Note that the generalisation of the above to a �nite set of assertions A on�A, requires (�nite) conjunction { or equivalent { in the ESpecsyntax. But thisraises no barrier; the addition of (�nite) conjunction is always conservative. So,if ESpec does not possess logical conjunction then a conjunction operator mayneed to be added before the expansion sketched above is applied.One of the main contributions of a Development Workspace is that EDevprovides uniform interpolants for derivations between ESpec-sentences:For every pushout diagram D in Sign (with �R a sub-signature of �A) and every ESpec-sentence  on �Athere is an EDev-sentence # such that: �A �CD�R �Be i0 e0i(i)  `EDev�A #e, and(ii) for each ESpec-sentence ' on �B, if  i0`ESpec�C 'e0 then #i`EDev�B '.



In addition, # = 9{n11 :: 9{nmm  [p1 77! {n11 :::pm 77! {nnm ], where fp1; ::; png is thedi�erence between �A and e(�R).Moreover, an ESpec-conservative extensione:h�R;Ri!h�A;Ai are preserved under pushoutalong an ESpec-interpretation i:h�R;Ri!h�B;Bi,exactly when B`E�BIi(A;B;D). h�A;Ai h�C;Ai0[Be0iDh�R;Ri h�B;Bie ii0 e0Consequently, if A = h�A;Ai is an ESpec-speci�cation, �R is a subsignature of�A, and 'A is the conjunction of all the sentences in A (for recall that speci�-cations are �nite theory presentations), then the EDev-sentence9{n11 ::: 9{nkk 'A[&1 77! {n11 ; :::; &k 77! {nkk ]where f&1; :::; &kg are the set of �A symbols that appear in the assertion 'A anddo not belong in �R, is an EDev-axiomatisation of the (ESpec-) �R-module of A.In addition, any ESpec-speci�cation R = h�R;Ri is classi�able as a �R-moduleof A if R`EDev�R 9 {n11 ::: 9 {nkk 'A[&1 77! {n11 ; :::; &k 77! {nkk ] Hence, by abstract-ing the \hidden" operators within a development workspace, one can obtaina tractable �R-axiomatisation of the �R-module for any ESpec-speci�cation A.This axiomatisation can then be used in module design in precisely the sameway as an ESpec-axiomatisation of the module would have been used, if it wasavailable. It is just that the proof obligations that assist in controlling the designprocesses are stated via `EDev rather than `ESpec .Let us examine how the examples of section 3.2 are manipulated within aDevelopment Workspace:If ESpec is (classical) propositional logic, then the EDev-presentation of theuniform interpolant, via abstraction of q, for p ^ q is 9 {0(p ^ {0), which isreducible to p, (p ^ q) _ r is 9 {0(p ^ {0) _ r), which is reducible to p _ r, andp ^ (q _ r) is 9{0(p ^ ({0 _ r)), which is reducible to p.If ESpec is (classical) �rst order logic with equality then the EDev-presentationof the uniform interpolant, via abstraction of f , for 8(x) (I (x)! O(x; f(x))), is9{1(8x)(I(x) ! O(x;{1(x)) ), which is reducible to (8x)(9z)(I(x) ! O(x; z)).Whereas, the EDev-uniform interpolant for 8(x; y) (I(x; y)! O (x; f(x); y; g (y))),via abstraction of f and g, is 9{1i 9{1j (8x)(8y)(I(x)! O(x;{1i (x); y;{1j (x)) ),which is not reducible to any �rst order sentence.Similarly, for the dense linear order speci�cation one needs to abstract thestrict order symbol by an 9 bound 2-ary predicate variable, from the conjunctionof the axiomsUniform schemata, on the other hand, are encapsulated by means of 8 -bound \development" variables: A �R-assertion 8 {n11 ::: 8 {nkk ', where 8 and9 do not occur in ', forces an ESpec-instance '[{n11 77! &1; :::;{nkk 77! &k] for any&1:::&k (of the same type as {n11 :::{nkk ) in each �A that includes �R. Moreover,a �R sentence  of ESpec is an EDev-consequence of 8{n11 : : : 8{nkk ', whenever'[{n11 77! &1; :::;{nkk 77! &k] `ESpec�A  for arbitrary �A that includes �R andarbitrary &1:::&k in �A (of the same type with {n11 :::{nkk ). Hence, for every �Athat includes �R, we have



8{n11 ::: 8{nkk ' `EDev�A  i� in �R we have 8{n11 ::: 8{nkk '`EDev�R  ie., the encapsulated schema is uniform.Revisiting, the main example of section 4, if ESpec is (classical) predicatelogic, then the following EDev-sentence is a precise encapsulation of the �rstorder induction (uniform) schema:8{1 �{1(0) ^ �8x {1(x)! {1(succ(x))�! 8x {1(x)�Although syntactically similar, this is not logically equivalent to, say, second or-der induction. In particular it is strictly weaker than (standard) second order in-duction. In fact, some aspects of the EDev-consequence over (classical) predicatelogic that have been analysed in [13] reveal that EDev is strictly stronger than thein�nitary L!1! logic{which is a traditional extension of �rst order logic{and itis strictly weaker than second order predicate logic{which is another traditionalextension of �rst order logic. This is reected by the fact that the direction ofthe following implications is not invertible:(U) `2� 82XnA[Xn] ) `dev� 8{nA[{n] ) `L!1!� VV (A [{n 77! �i])i2F(n)(E) `L!1!� WW (A [{n 77! �i])i2F(n) ) `dev� 9{nA[{n] ) `2�92XnA[Xn]6 ConclusionWe revisited the emergence of a strong connection between module representa-tion and interpolation,and highlighted an analogous connection between modulemanipulation and uniform schemata. Furthermore, the presence of uniform in-terpolants provide direct and tractable axiomatisations of modules within theaccessible language and gives rise to certain proof obligations that assist in es-tablishing the adequacy of the module representation and in verifying the cor-rectness of the \is module of" relation. Analogously, the ability to encapsulateand directly manipulate uniform schemata supports reasoning with properties ofthe possibly hidden data via syntactical abstractions. It gives rise to proof obliga-tions that assist in predicting or detecting enrichment via sharing or interactionof \hidden" information, based on the accessible part only. We also remarkedthat many logics computing lack the desirable interpolation properties, and treat(uniform) schematic reasoning as exogenous. To compensate for these inadequa-cies, we seek for methods to expand a speci�cation formalism orthogonally, sothat an adequately strong version of the critical interpolation properties and alogical encapsulation of (uniform) schemata are obtained.A potential breakthrough emerges from the framework of a DevelopmentWork-space described in [13]. The latter is a Subentailment System hESpec;J isuch that J :ESpec ! EDev expands the ESpec-syntax with additional logical oper-ators, leaves the extra-logical symbols intact, and extends `ESpec conservatively.The expansion is orthogonal and, not only does EDev provides uniform inter-polants in derivations between ESpec-sentences, but also, all these crucial inter-polants are instances (in EDev) of a common syntactic form. The availability
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