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Abstract

Reinforcement learning (RL) algorithms have been around for decades and employed to solve vari-
ous sequential decision-making problems. These algorithms however have faced great challenges when
dealing with high-dimensional environments. The recent development of deep learning has enabled RL
methods to drive optimal policies for sophisticated and capable agents, which can perform efficiently
in these challenging environments. This paper addresses an important aspect of deep RL related to
situations that require multiple agents to communicate and cooperate to solve complex tasks. A survey
of different approaches to problems related to multi-agent deep RL (MADRL) is presented, including
non-stationarity, partial observability, continuous state and action spaces, multi-agent training schemes,
multi-agent transfer learning. The merits and demerits of the reviewed methods will be analyzed and
discussed, with their corresponding applications explored. It is envisaged that this review provides in-
sights about various MADRL methods and can lead to future development of more robust and highly
useful multi-agent learning methods for solving real-world problems.

Keywords: review, survey, deep learning, deep reinforcement learning, robotics, multi-agent, partial ob-
servability, non-stationary, continuous action space.

1 Introduction

Reinforcement learning was instigated by a trial and error (TE) procedure, conducted by Thorndike in an
experiment on cat’s behaviors in 1898 [I13]. In 1954, Minsky [72] designed the first neural computer named
Stochastic Neural-Analog Reinforcement Calculators (SNARCs), which simulated the rat’s brain to solve
the maze puzzle. SNARCs remarked the uplift of TE learning to a computational period. Almost two
decades later, Klopf [51] integrated the mechanism of temporal-difference (TD) learning from psychology
into the computational model of TE learning. That integration succeeded in making TE learning a feasible
approach to large systems. In 1989, Watkins and Dayan [I16] brought the theory of optimal control [6]
including Bellman equation and Markov decision process together with temporal-difference learning to form
a well-known @Q-learning. Since then, Q-learning has been applied to solve various real-world problems, but
it is unable to solve high-dimensional problems where the number of calculations increases drastically with
number of inputs. This problem, known as the curse of dimensionality, exceeds the computational constraint
of conventional computers. In 2015, Mnih et al. [3] made an important breakthrough by combining deep
learning with RL to partially overcome the curse of dimensionality. Deep RL has become a normative
approach in artificial intelligence, attracting significant attention from the research community since then.
Milestones of the development of RL are presented in Fig. [I} which span from the trial and error method to
deep RL.

RL originates from animal learning in psychology and thus it can mimic human learning ability to select
actions that maximize long-term profit in their interactions with the environment. Therefore, RL can be
used to develop an agent that is comparable to the human performance. For instance, RL has been widely
used in robotics and autonomous systems, e.g. Mahadevan and Connell [70] designed a robot that can
push cubes (1992); Schaal [98] created a humanoid robot that can effectively solve the pole-balancing task
(1997); Benbrahim and Franklin [7] made a biped robot that can learn to walk without any knowledge of the
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Fig. 1: Emergence of deep RL through different essential milestones.

environment (1997); Riedmiller et al. [95] built a soccer robot team (2009); and Muelling et al. [76] trained
a robot to play table tennis (2013).

Modern RL is truly marked by the success of deep RL in 2015 when Mnih et al. [73] made use of a
structure named deep @Q-network (DQN) in creating an agent that outperformed a professional player in a
series of 49 classic Atari games [5]. In 2016, Google’s DeepMind created a self-taught AlphaGo program that
could beat the best professional Go players, including China’s Ke Jie and Korea’s Lee Sadol [I07]. Deep
RL has also been used to solve MuJuCo physic problems [19] and 3D maze games [4]. In 2017, OpenAl
announced a bot that could beat the best professional gamer on the online game Dota 2, which is supposed to
be more complicated than the Go game. These fates provide the necessary impetus to enterprise corporations
such as Google, Tesla, and Uber in their race to make self-driving cars. More importantly, deep RL has
become a promising approach to solving complex real-world problems and has also been a huge contribution
to the field of artificial intelligence.

RL is a research theme that distincts from other related concepts in artificial intelligence. Historically,
there had been a confusion between RL and supervised learning (SL) since the 1960s. It was not until 1981
that Sutton and Barto [I10] shed a light on the discrepancy between the two learning methods. Concisely,
SL is learning from data that define input and corresponding output (often called “labelled” data) by an
external supervisor, whereas RL is learning by interacting with the unknown environment. In the former
case, it maybe infeasible to collect all possible behaviors in the real world to feed the algorithm. However,
in the latter case, an RL agent conducts a TE procedure to gain experiences and improve itself over time.
Furthermore, RL is not an unsupervised learning (UL) method. UL is learning to explore the hidden structure
of data where output information is unknown (“unlabelled” data). In contrast, RL is a goal-directed learning,
i.e., it constructs a learning model that clearly specifies output to maximize the long-term profit. Finally,
deep RL distinguishes with deep learning method. Deep learning uses multi-layer neural networks to learn a
problem in different levels of abstraction [I7]. Deep RL leverages deep learning as an approximator to deal
with high-dimensional data. This fact makes deep RL a promising approach to solving complex real-world
problems.

As real-world problems have become increasingly complicated, there are many situations where a single
deep RL agent is not able to cope with. In such situations, the applications of a multi-agent system (MAS) are
indispensable. In an MAS, agents must compete or cooperate to obtain the best overall results. Examples
of such systems include multi-player online games, cooperative robots in the production factories, traffic
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Fig. 2: A single agent interacting with its environment.

control systems, and autonomous military systems like unmanned aerial vehicles, surveillance, and spacecraft.
Among many applications of deep RL in the literature, there is a large number of studies using deep RL in
MAS, henceforth multi-agent deep RL (MADRL). Extending from a single agent domain to a multi-agent
environment creates several challenges. Previous surveys considered different perspectives, for example,
Busoniu et al. [10] examined the stability and adaptation aspects of agents, Bloembergen et al. [§] analysed
the evolutionary dynamics, Hernandez-Leal et al. [41] considered emergent behaviors, communication and
cooperation learning perspectives, and Silva et al. [I05] reviewed methods for knowledge reuse autonomy in
multi-agent RL (MARL). This paper presents an overview of technical challenges in multi-agent learning as
well as deep RL approaches to these challenges. We cover numerous MADRL perspectives, including non-
stationarity, partial observability, multi-agent training schemes, transfer learning in MAS, and continuous
state and action spaces in multi-agent learning. Applications of MADRL in various fields are also reviewed
and analysed in the current study. In the last section, we present extensive discussions and interesting future
research directions of MADRL.

2 Background: Reinforcement Learning

2.1 Preliminary

RL is a TE learning 1) by interacting directly with the environment 2) to self-teach over time and 3)
eventually achieve designating goal. Specifically, RL defines any decision maker (learner) as an agent and
anything outside the agent as an environment. The interactions between agent and environment are described
via three essential elements: state s, action a, and reward r, as illustrated in Fig. [2| [I10]. The state of the
environment at time-step ¢ is denoted as s;. Thereby, the agent examines s; and performs a corresponding
action a;. The environment then alters its state s; to s¢11 and provides a feedback reward r;; 1 to the agent.
For instance, Fig. [3] illustrates one of the earliest problems in RL literature, a 2D pole-balancing task. In
this problem, a state of the environment at time-step ¢ can be presented by a 4-tuple s, = [z, vc, ap, Wplt,
where z. denotes z-coordinate of the cart in Cartesian coordinate system O, v. presents velocity of the
cart along the track, «,, is the angle created by the pole and axis O,, and w,, indicates the angular velocity
of the pole around center I. The agent can produce two possible actions at each time-step ¢: exert a unit
force (|F| = 1) to the cart along axis O, from left to right a; = F or from right to left a; = —F. The
agent is given a feedback reward r.y; = +1 for every action that can keep the pole upright and ryy; = 0
otherwise. Therefore, the agent’s goal is to keep the pole upright as long as possible and ultimately maximize
the accumulated feedback reward.

Typically, the interactions between agent and environment can be presented by a series of states, actions,
and rewards: sg, ag, 11, S1, G1,...,Tn, Sp. Although n can approach to infinity, we often limit n in practice
by defining a terminal state s, = sp. In this case, a series of states, actions, and rewards from initial state
to terminal state is called an episode. For example, in pole-balancing task, we can define a terminal state as
if |ap| > 10° or |z¢| > Xmaa-

The next step is to formalize the agent’s decision by defining a concept of policy. A policy 7 is a mapping



Fig. 3: A 2D pole-balancing task.

function from any perceived state s to action a taken from that state. A policy is deterministic if the
probability of choosing an action a from s: p(als) = 1 for all state s. In contrast, the policy is stochastic
if there exists a state s so that p(als) < 1. In either case, we can define the policy m as a probability
distribution of candidate actions that will be selected from a certain state as below:

m=U(s) = { p(ails) ’ Ya;, € Ay /\Zp(cms) = 1}, (1)

where A, represents all candidate actions (action space) of policy 7. For clarity, we assume that the action
space is discrete because the continuous case can be straightforwardly inferred by using integral notation.
Furthermore, we presume that the next state s;11 and feedback reward r;;; are entirely determined by
the current state-action pair (s, a;) regardless of the history. Any RL problem satisfies this “memoryless”
condition is known as Markov decision process (MDP). Therefore, the dynamics (model) of an RL problem is
completely specified by giving all transition probabilities p(a;|s). Based on , we can define a deterministic
policy 7g:

1, a;=a(s)Na(s) € AL,

= \I/ =
i als) {0, Ya;, € Ar, A a; # a(s)

where a(s) denotes the designating action taken at state s. Deterministic policy is desirable in practical
application because it has a predictable behavior, which is a crucial factor for designing an effective RL
algorithm. In practice, we can derive a deterministic policy my from a stochastic policy 7 using the following
rule:

1, a; =a; Aj=argmax 7(s,ar)
Ry :m—myg=Ty(s) = ! k ) (2)
O, VaiGA,r/\aiséaj

where 7(s, ax) denotes the probability of taking action ap € A, in state s using policy m and Ay, = A.

Initially, the agent is assigned a random policy 7. It adjusts the policy my to improve itself by interacting
with the environment in a TE learning manner. In this respect, we call that policy 7y is better than policy
7 and denoted as w1 > 7. Therefore, we have a series of policies improved over time as follows:

Mo <M < oo < T < Ty < oo < T

This process, named policy improvement, is repeated until the agent cannot find any policy better than the
optimal policy 7*. By this definition, however, we still do not know exactly how to compare two policies and
decide which one is better. In the next subsection, we will review other metrics that can be used to evaluate
a policy and then we can use these metrics to compare how “good” between different policies.



Fig. 4: A naive approach to finding a better policy 7’ from .

2.2 Bellman equation

Remind that the agent receives a feedback reward r;;1 for every time-step ¢ until it reaches the terminal
state sp. However, the immediate reward 7,41 does not represent the long-term profit, we instead leverage
a generalized return value R; at time-step t:

T—t—1
Ry =rip1 + e+ Vrs+ 477 T lre = Y A, (3)
1=0

where 7y is a discounted factor so that 0 < < 1. The agent becomes farsighted when - approaches to 1 and
vice versa the agent becomes shortsighted when ~ is close to 0. Apparently, we often select ~y closing to 1 in
practice.

The next step is to define a wvalue function that is used to evaluate how “good” of a certain state s
or a certain state-action pair (s,a). Specifically, the value function of state s under policy 7 is calculated
by obtaining expected return value from s [I10]: Vi (s) = E[R¢|s: = s,7|. Likewise, the value function of
state-action pair (s, a) is Qr(s,a) = E[R¢|st = s,ar = a,n|. We can leverage value functions to compare how
“good” between two policies m and 7’ using the following rule [110]:

w < e [Vl < Vo) 5] ¥ Qs < Qus0) V(s (1)

Based on , we can expand V(s) and Qr(s,a) to present the relationship between two consecutive
states s = s; and s’ = s;41 as below [I10]:

Ve(s) = Z (s, a) Zp(s’|s, a) ( W srja + ’YVW(S/)) ; (5)

and

Qu(s:0) = 00615, 0) (Wt V(). (6)

where W,y = E[req1]s: = s,a; = a,5.41 = s']. Solving or @, we can find value function V(s)
or Q(s,a), respectively. Equations and @ are called Bellman equations and widely used in policy
improvement. For example, Fig. [4] describes a naive approach to improve a deterministic policy 7. By using
a TE approach, we can “explore” a different action a; # a; taken at state s; so that Q~(s;,a;) > Q= (s, as).
We include a; as a new action taken at s; in a derived policy 7’ while keeping other pairs of state-action
unchanged. Based on and @, we can infer that m < /. Therefore, it is straightforward to select a
“greedy” action a; so that Qr(s;,a;) attains maximum values. Finally, we can derive an improved policy 7’
from 7 using the following rule:

1, a;=a; Nj=argmax Q,(s,ax
Ry:mn =0(s) = 0 i ( ) (7)
0, Va; € Ar Na; ;éaj



This process is iterated for all pairs of (s;,a;) until we find an optimal solution 7*. The idea indeed can be
generalized to any stochastic policy 7.

Instead of repeating policy improvement process, we can estimate directly the value function of optimal
policy 7* using the following optimality Bellman equation [110]:

Vi (s) = max 315 0) (Wi 49 () 0

and

Q‘n’* (57 CL) = Zp(8/|57 a) ( Ws—>s/|a +7 H}I@X Q‘ﬂ'* (Sla a/)> : (9)
S/
After solving optimality Bellman equations or @[), we can derive an optimal deterministic policy 7* using

Although we can use dynamic programming to approximate the solutions of Bellman equations, it requires
the complete dynamics information of the problem. Therefore, it is infeasible due to the lack of memory and
computational power of conventional computer when the number of states is large. In the next subsection,
we will review two model-free RL methods (require no knowledge of transition probabilities p(a;|s)) to
approximate the value functions.

2.3 RL methods

In this section, we review two well-known learning schemes in RL: Monte-Carlo and temporal-difference
learning. These methods do not require the dynamics information of the environment, i.e., they can deal
with larger state-space problems than trivial dynamic programming approaches.

2.3.1 Monte-Carlo method

Monte-Carlo (MC) method estimates value function by repeatedly generating episodes and recording average
return at each state or each state-action pair. Therefore, the state-value function is calculated as follows:

VWMC(S) = lim E {ri(st) | Sp = s,w],
11— 400

where 7%(s;) denotes observed return at state s; in episode ith. Similarly, we have value function of state-

action pair:

QMC%(s,a) = lim E {ri(st,at) | st =s,as = amr}.
1——+o0

MC method does not require any knowledge of transition probabilities, i.e., MC method is model-free.

However, this approach has made two essential assumptions to ensure the convergence happens: 1) the

number of episodes is large and 2) every state and every action must be visited with a significant number of

times. To make this “exploration” possible, we often use e-greedy strategy in policy improvement instead of

[@:

l—e+ xS @i =aj Aj=argmax Qx(s,a)
Ry:m—n =0(s)= (Al ’ k ) (10)
m, VaiEAﬂ/\ai#aj

where |Ar(s)| denotes number of candidate actions taken in state s and 0 < e < 1. Generally, MC algorithms
are divided into two groups: on-policy and off-policy. In on-policy methods, we use policy 7w for both
evaluation and exploration purpose. Therefore, the policy m must be stochastic or soft. In contrast, off-
policy uses different policy ' # 7 to generate the episodes and hence m can be deterministic. Although
off-policy is desirable due to its simplicity, on-policy method is more stable when working with continuous
state-space problems and when using together with a function approximator (such as neural networks) [114].



Table 1: Characteristics of RL methods

Category Pros Cons
Model-free e Dynamics of environment o Requires “exploration”
is unknown condition
o Deal with larger state-space
environments
On-policy e Stable when using o Policy must be stochastic

with function approximator
e Suitable with continuous
state-space problems
Off-policy e Simplify algorithm design o Unstable when using
e Can tackle with with function approximator

different kinds of problems

e Policy can be deterministic

Bootstrapping o Learn faster in most cases o Not as good as nonbootstrapping
methods on mean square error

2.3.2 Temporal-difference method

Similar to MC, temporal-difference (TD) learning is also learning from experiences (model-free method).
However, unlike MC, TD learning does not wait until the end of episode to make an update. It makes
an update on every step within the episode by leveraging 1-step Bellman equation and hence possibly
providing faster convergence:

U, : Vi(St) — O(Viil(st) + (1 — a) (Tt+1 + 7Vi1(3t+1)>,

where « is step-size parameter and 0 < o < 1. TD learning uses previous estimated values V*~! to update
the current ones V?, which is known as bootstrapping method. Basically, bootstrapping method learns faster
than non-bootstrapping ones in most of the cases [II0]. TD learning is also divided into two categories:
on-policy TD control (Sarsa) and off-policy TD control (Q-learning). In Sarsa, the algorithm estimates
value function of state-action pair based on @:

U, : Qi(Su ay) «— OéQi_l(St, at) + (1 —a) (Tt+1 + Q" (841, at+1)>-

On the other hand, Q-learning uses 1-step optimality Bellman equation @D to perform the update, i.e.,
Q-learning directly approximates value function of optimal policy:

deterministic subpolicy

Us : Q'(sy,a) «— Q" (s, a0) + (1 — @) (Tt+1 + vy max Q" (st41,a]41) > (11)

aiy1

We notice that the operator max in update rule substitutes for a deterministic policy. This strongly
explains why Q-learning is off-policy.

In practice, MC and TD learning often use table memory structure (tabular method) to save value
function of each state or each state-action pair. This makes them inefficient due to lack of memory in solving
complicated problems where number of states is large. Therefore, actor-critic (AC) architecture is designed
to subdue this limitation. Specifically, AC includes two separate memory structures for an agent: actor and
critic. Actor structure is used to select a suitable action according to the observed state and transfer to
critic structure for evaluation. Critic structure uses the following TD error to decide future tendency of the
selected action:

d(ay) = 5(Tt+1 + 'VV(SHI)) — (1 =B8)V(st),
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Fig. 5: Deep Q-network structure.

where 0 < 8 < 1; and if §(a;) > 0, the tendency to select the action a; in the future is high and vice versa.
Furthermore, AC can be on-policy or off-policy depending on the implementation details. Table [l|and Table
summarize characteristics of RL methods and the comparisons between different RL methods, respectively.

Table 2: Comparisons between RL methods

Category Dynamic On-policy Off-policy Sarsa Q-learning AC
programming MC MC

Model-free v v v v v

On-policy v v v

Off-policy v v v

Bootstrapping v v v v

3 Deep RL: Single Agent

3.1 Deep Q-Network

Deep RL is a broad term that indicates the combination between deep learning and RL to deal with high-
dimensional environments [3], [65] [79]. In 2015, Mnih et al. [73] at the first time announced the success of
this combination by creating an autonomous agent that can play competently a series of 49 Atari games.
Concisely, the authors proposed a novel structure named deep Q-network (DQN) that leverages the convo-
lutional neural network (CNN) [56] to directly interpret graphical representation of input state s from the
environment. The output of DQN produces Q-values of all possible actions a € A, taken at state s, where
A, denotes action space [80]. Therefore, DQN can be seen as a policy network 7, parameterized by 3, which
is continually trained so as to approximate optimal policy. Mathematically, DQN uses Bellman equation to
minimize the loss function £(5) as below:

£(9) = |(r-+ymax (s, '19) ~ Q(eval)) | (12)

However, using neural network to approximate value function is proved to be unstable and may result



in divergence due to the bias originated from correlative samples [114]. To make the samples uncorrelated,
Mnih et al. [73] created a target network 7/, parameterized by (', which is updated in every N steps from
estimation network 7. Moreover, generated samples are stored in an experience replay memory. Samples are
then retrieved randomly from the experience replay and fed into the training process, as described in Fig. [f]
Therefore, equation can be rewritten as:

{EDQN(B) =E |(r + ymaxy Q(s',|5') ~ Q(s,al8))’] (13)

B’ <— B for every N steps

Although DQN basically solved a challenging problem in RL, the curse of dimensionality, this is just a
rudimental step in solving completely real-world applications. DQN has numerous drawbacks, which can be
remedied by different schemes, from a simple form to complicated modifications that we will discuss in the
next subsection.

3.2 DAQN variants

The first and simplest form of DQN’s variant is double deep @Q-network (DDQN) proposed by Hasselt [34] [35].
The idea of DDQN is to separate the selection of “greedy” action from action evaluation. In this way, DDQN
expects to reduce the overestimation of Q-values in the training process. In other words, the max operator
in equation ([13)) is decoupled into two different operators, as represented by the following loss function:

Lonas(8) = E | (4 1Q( argmax QU '19)) — Q(s.al) | (19

Empirical experiment results on 57 Atari games show that the normalized performance of DDQN without
tuning is two times greater than DQN and three times greater than DQN when tuning.

Secondly, experience replay in DQN plays an important role to break the correlations between samples,
and at the same time, remind “rare” samples that the policy network may rapidly forget. However, the fact
that selecting randomly samples from experience replay does not completely separate sample data. Specif-
ically, we prefer rare and goal-related samples to appear more frequent than redundancy ones. Therefore,
Schaul et al. [09] proposed a prioritized experience replay that gives priority to a sample ¢ based on its
absolute value of TD error:

pi =16 = |ri + Y max Q(si alf’) — Q(si—1,ai—1|B)] (15)

Prioritized experience replay when combining with DDQN provides stable convergence of policy network and
achieves a performance up to five times greater than DQN in terms of normalized mean score on 57 Atari
games.

DQN’s policy evaluation process is struggle to work in “redundant” situations, i.e., there are more than
two candidate actions that can be selected without getting any negative results. For instance, when driving
a car and there are no obstables ahead, we can follow either the left lane or the right lane. If there is an
obstacle ahead in the left lane, we must be in the right lane to avoid crashing. Therefore, it is more efficient
if we focus only on the road and obstacles ahead. To resolve such situations, Wang et al. [I15] proposed a
novel network architecture named dueling network. In dueling architecture, there are two collateral networks
that coexist: one network, parameterized by 6, estimates state-value function V(s|f) and the other one,
parameterized by €', estimates advantage action function A(s,alf’). The two networks are then aggregated
using the following equation to approximate Q-value function:

Q(s,al0,0') = V(s|6) + (A(s,a|9’) _ |A1,,\ ZA(S,@'G’)) .

Because dueling network represents action-value function, it was combined with DDQN and prioritized
experience replay to boost the performance of the agent up to six times more than standard DQN on the
Atari domain [I15].

Another drawback of DQN is that it uses a history of four frames as an input to policy network. DQN
is therefore inefficient to solve problems where the current state depends on a significant amount of history
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information such as Double Dunk or Frostbite. These games are often called partially observable MDP prob-
lems. The straightforward solution is to replace the fully-connected layer right after the last convolutional
layer of the policy network with a recurrent long short term memory, as described in [36]. This DQN’s
variant named deep recurrent Q-network (DRQN) outperforms standard DQN up to 700 percent in games
Double Dunk and Frostbite. Furthermore, Lample and Chaplot [60] successfully created an agent that beats
an average player on Doom, a 3D FPS (first-person shooter) environment by adding a game feature layer in
DRQN. Another interesting variant of DRQN is deep attention recurrent Q-network (DARQN) [108]. In that
paper, Sorokin et al. add attention mechanism into DRQN so that the network can focus only on important
regions in the game, allowing smaller network’s parameters and hence speeding the training process. As a
result, DARQN achieves a score of 7263 compared with 1284 and 1421 of DQN and DRQN on game Seaquest,
respectively.

4 Deep RL: Multi-Agent

MASSs have attracted great attention because they are able to solve complex tasks through the cooperation
of individual agents. Within a MAS, agents communicate with each other and interact with the environment
(Fig. @ In a multi-agent learning domain, the MDP is generalized to a stochastic game, or a Markov game.
Let denote n as the number of agents, S as a discrete set of environmental states, and A;,i = 1,2,...,n as
a set of actions for each agent. The joint action set for all agents is defined by A = A; X Ay X ... X A,.
The state transition probability function is represented by p : S x A x S — [0, 1] and the reward function
is specified as r : S x A x § — R™. The value function of each agent is dependent on the joint action and
joint policy, which is characterized by V™ : § x A — R™. The following subsections describe challenges and
MADRL solutions as well as their applications to solve real-world problems.

4.1 MADRL: Challenges and Solutions
4.1.1 Non-stationarity

Controlling multiple agents poses several additional challenges as compared to single agent setting such as
the heterogeneity of agents, how to define suitable collective goals or the scalability to large number of agents
that requires design of compact representations, and more importantly the non-stationarity problem. In a
single agent environment, an agent is concerning only the outcome of its own actions. In a multi-agent
domain, an agent observes not only the outcomes of its own action but also the behavior of other agents.
Learning among the agents is complex because all agents potentially interact with each other and learn
concurrently. The interactions among multiple agents constantly reshape the environment and lead to non-
stationarity. In this case, learning among the agents sometimes causes changes in the policy of an agent,
and can affect the optimal policy of other agents. The estimated potential rewards of an action would be

10
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inaccurate and therefore, good policies at a given point in the multi-agent setting could not remain so in
the future. The convergence theory of Q-learning applied in single agent setting is not guaranteed to most
multi-agent problems as the Markov property does not hold anymore in the non-stationary environment [40].
Therefore, collecting and processing information must be performed with certain recurrence while ensuring
that it does not affect the agents’ stability. The exploration-exploitation dilemma could be more involved
under multi-agent settings.

The popular independent Q-learning [I12] or experience replay based DQN [73] was not designed for the
non-stationary environments. Castaneda [12] proposed two variants of DQN, namely deep repeated update
Q-network (DRUQN) and deep loosely coupled Q-network (DLCQN), to deal with the non-stationarity prob-
lem in MAS. The DRUQN is developed based on the repeated update Q-learning (RUQL) model introduced
in [IL 2]. It aims to avoid policy bias by updating the action value inversely proportional to the likelihood
of selecting an action. On the other hand, DLCQN relies on the loosely coupled Q-learning proposed in
[119], which specifies and adjusts an independence degree for each agent using its negative rewards and
observations. Through this independence degree, the agent learns to decide whether it needs to act inde-
pendently or cooperate with other agents in different circumstances. Likewise, Diallo et al. [I§] extended
DQ@QN to a multi-agent concurrent DQN and demonstrated that this method can converge in a non-stationary
environment. Foerster et al. [25] alternatively introduced two methods for stabilising experience replay of
DQN in MADRL. The first method uses the importance sampling approach to naturally decay obsolete data
whilst the second method disambiguates the age of the samples retrieved from the replay memory using a
fingerprint.

Recently, to deal with non-stationarity due to concurrent learning of multiple agents in MAS, Palmer et
al. [86] presented a method namely lenient-DQN (LDQN) that applies leniency with decaying temperature
values to adjust policy updates sampled from the experience replay memory (Fig. [7). That method is
applied to the coordinated multi-agent object transportation problems and its performance is compared
with the hysteretic-DQN (HDQN) [85]. The experimental results demonstrate the superiority of LDQN
against HDQN in terms of convergence to optimal policies in a stochastic reward environment. The notion
of leniency along with a scheduled replay strategy were also incorporated into the weighted double deep Q-
network (WDDQN) in [120] to deal with non-stationarity in MAS. Experiments show the better performance
of WDDQN against double DQN in two multi-agent environments with stochastic rewards and large state
space.

4.1.2 Partial observability

In real-world applications, there are many circumstances where agents only have partial observability of the
environment. In other words, complete information of states pertaining to the environment is not known
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Fig. 8: Architecture of DPIQN and DRPIQN.

to the agents when they interact with the environment. In such situations, the agents observe partial
information about the environment, and need to make the best decision during each time step. This type of
problem can be modelled using the partially observable Markov decision process (POMDP).

In the current literature, a number of deep RL models have been proposed to handle POMDP. Hausknecht
and Stone [36] proposed deep recurrent Q-network (DRQN) based on a long short term memory network.
With the recurrent structure, the DRQN-based agents are able to learn the improved policy in a robust sense
in the partially observable environment. Unlike DQN, DRQN approximates Q(o,a), which is a Q-function
with observation o and action a, by a recurrent neural network. DRQN treats a hidden state of the network
h¢—1 as an internal state. The DRQN therefore is characterized by the Q-function (o, hi—1,a;6;) where 6;
is the parameters of the network at the ith training step. In [24], DRQN is extended to deep distributed
recurrent Q-network (DDRQN) to handle multi-agent POMDP problems. The success of DDRQN is relied
on three notable features, i.e. last-action inputs, inter-agent weight sharing, and disabling experience replay.
The first feature, i.e. last-action inputs, requires the provision of previous action of each agent as input
to its next step. The inter-agent weight sharing means that all agents use weights of only one network,
which is learned during the training process. The disabling experience replay simply excludes the experience
replay feature of DQN. DDRQN therefore learns a Q-function of the form Q(o}*, h™ ;,m, a1, ay*; 6;) where
each agent receives its own index m as input. Weight sharing decreases learning time because it reduces
the number of parameters to be learned. Although each agent has different observation and hidden state,
this approach however assumes that agents have the same set of actions. To address complicated problems,
autonomous agents often have different sets of actions. For example, UAVs manoeuvre in the air whilst
robots operate on the ground. Therefore, action spaces of UAVs and robots are different and thus the
inter-agent weight sharing feature cannot be applied.

Scaling to a system of many agents in partial observable domains is a challenging problem. Gupta et
al. [30] extended the curriculum learning technique to an MAS, which integrates with three classes of deep
RL, including policy gradient, temporal-difference error, and actor-critic methods. The curriculum principle
is to start learning to complete simple tasks first to accumulate knowledge before proceeding to perform
complicated tasks. This is suitable with an MAS environment where fewer agents initially collaborate before
extending to accommodate more and more agents to complete increasingly difficult tasks. Experimental
results show the vitality of the curriculum learning method in scaling deep RL algorithms to complex multi-
agent problems.

Hong et al. [42] introduced a deep policy inference @Q-network (DPIQN) to model multi-agent systems
and its enhanced version deep recurrent policy inference Q-network (DRPIQN) to cope with partial ob-
servability. Both DPIQN and DRPIQN are learned by adapting network’s attention to policy features and
their own Q-values at various stages of the training process (Fig. . Experiments show the better overall
performance of both DPIQN and DRPIQN over the baseline DQN and DRQN [36]. Also in the context of
partial observability, but extended to multi-task, multi-agent problems, Omidshafiei et al. [85] proposed a
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method called multi-task multi-agent RL (MT-MARL) that integrates hysteretic learners [71], DRQNs [36],
distillation [96], and concurrent experience replay trajectories (CERTS), which are a decentralized extension
of experience replay strategy proposed in [(3]. The agents are not explicitly provided with task identity
(thus partial observability) whilst they cooperatively learn to complete a set of decentralized POMDP tasks
with sparse rewards. This method however has a disadvantage that cannot perform in an environment with
heterogeneous agents.

Apart from partial observability, there are circumstances that agents must deal with extremely noisy
observations, which are weakly correlated with the true state of the environment. Kilinc and Montana
[48] introduced a method denoted as MADDPG-M that combines DDPG and a communication medium
to address these circumstances. Agents need to decide whether their observations are informative to share
with other agents and the communication policies are learned concurrently with the main policies through
experience. Recently, Foerster et al. [26] proposed Bayesian action decoder (BAD) algorithm for learning
multiple agents with cooperative partial observable settings. A new concept, namely public belief MDP,
is introduced based on BAD that employs an approximate Bayesian update to attain a public belief with
publicly observable features in the environment. BAD relies on a factorised and approximate belief state to
discover conventions to enable agents to learn optimal policies efficiently. This is closely relevant to theory
of mind that humans normally use to interpret others’ actions. Experimental results on a proof-of-principle
two-step matrix game and the cooperative partial-information card game Hanabi demonstrate the efficiency
and superiority of the proposed method against traditional policy gradient algorithms.

4.1.3 MAS training schemes

The direct extension of single agent deep RL to multi-agent environment is to learn each agent independently
by considering other agents as part of the environment as the independent Q-learning algorithm proposed
in [ITI]. This method is vulnerable to overfitting [6I] and computationally expensive, and therefore the
number of agents involved is limited. An alternative and popular approach is the centralized learning and
decentralized execution where a group of agents can be trained simultaneously by applying a centralized
method via an open communication channel [55]. Decentralized policies where each agent can take actions
based on its local observations have an advantage under partial observability and in limited communications
during execution. Centralized learning of decentralized policies has become a standard paradigm in multi-
agent settings because the learning process may happen in a simulator and a laboratory where there are no
communication constraints, and extra state information is available [55] 27].

Gupta et al. [30] examined three different training schemes for a MAS, which consists of centralized
learning, concurrent learning and parameter sharing. Centralized policy attempts to obtain a joint action
from joint observations of all agents whilst the concurrent learning trains agents simultaneously using the
joint reward signal. In the latter, each agent learns its own policy independently based on private observation.
Alternatively, the parameter sharing scheme allows agents to be trained simultaneously using the experiences
of all agents although each agent can obtain unique observations. With the ability to execute decentralized
policies, parameter sharing can be used to extend a single agent deep RL algorithm to accommodate a
system of many agents. Particularly, the combination of parameter sharing and TRPO, namely PS-TRPO,
has been proposed in [30], and briefly summarized in Algorithm [1 The PS-TRPO has demonstrated great
performance when dealing with high-dimensional observations and continuous action spaces under partial
observability.

Foerster et al. [23] introduced reinforced inter-agent learning (RIAL) and differentiable inter-agent learn-
ing (DIAL) methods based on the centralized learning approach to improve agent learning communication.
In RIAL, deep Q-learning has a recurrent structure to address the partial observability issue, in which inde-
pendent Q-learning offers individual agents to learn their own network parameters. DIAL pushes gradients
from one agent to another through a channel, allowing end-to-end backpropagation across agents. Likewise,
Sukhbaatar et al. [I09] developed communication neural net (CommNet) allowing dynamic agents to learn
continuous communication alongside their policy for fully cooperative tasks. Unlike CommNet, He et al. [3§]
proposed a method namely deep reinforcement opponent network (DRON) that encodes observation of the
opponent agent into DQN to jointly learn a policy and behaviors of opponents without domain knowledge.

Kong et al. [563] 54] incorporated both decentralized and centralized perspectives into the hierarchical
master-slave architecture to form a model named master-slave multi-agent RL (MS-MARL) to solve the
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Algorithm 1 PS-TRPO

1: Initialize parameters of policy network ©g, and trust region size A

2: for i +—0,1,... do

3: Generate trajectories for all agents as 7 ~ 7y, using the policy with shared parameters.

4 For each agent m, compute the advantage values Aﬂei (o™, m,a™) with m is the agent index.

5: Search 7, , that maximizes L(0) = Eonp,, a0, {%Agk(mm, a)}
» (@lo,

subject to Dy (o, 70,,,) < A where Dy, is the KL divergence between distributions of
two policies, and py are the discounted frequencies of state visitation caused by mg.

6: end for

communication problem in MAS. The master agent receives and collectively processes messages from slave
agents and then generates unique instructive messages to each slave agent. Slave agents use their own
information and instructive messages from the master agent to take actions. This model significantly reduces
the communication burden within a MAS compared to the peer-peer architecture, especially when the system
has many agents.
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Fig. 9: Centralized learning and decentralized execution based MADDPG where policies of agents are
learned by the centralized critic with augmented information from other agents’ observations and actions.

Lowe et al. [68] proposed multi-agent deep deterministic policy gradient (MADDPG) method based on
the actor-critic policy gradient algorithms. MADDPG features the centralized learning and decentralized
execution paradigm in which the critic uses extra information to ease training process whilst actors take
actions based on their own local observations. Fig. [J illustrates the multi-agent decentralized actor and
centralized critic components of MADDPG where only actors are used during the execution phase.

Recently, Foerster et al. [27] introduced another multi-agent actor-critic method, namely counterfactual
multi-agent (COMA), which was also relied on the centralized learning and decentralized execution scheme.
Unlike MADDPG [68], COMA can handle the multi-agent credit assignment problem [33] where agents are
difficult to work out their contribution to the team’s success from global rewards generated by joint actions
in cooperative settings. COMA however has a disadvantage that focuses only on discrete action space whilst
MADDPG is able to learn continuous policies effectively.

4.1.4 Continuous action spaces

Most deep RL models can only be applied to discrete spaces [66]. For example, DQN [73] is limited only to
problems with discrete and low-dimensional action spaces, although it can handle high-dimensional obser-
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vation spaces. DQN aims to find action that has maximum action-value, and therefore requires an iterative
optimization process at every step in the continuous action (state) spaces. Discretising the action space is a
possible solution to adapt deep RL methods to continuous domains. However, this creates many problems,
notably is the curse of dimensionality: the exponential increase of action numbers against the number of
degrees of freedom.

Schulman et al. [T0T] proposed trust region policy optimization (TRPO) method, which can be extended
to continuous states and actions, for optimizing stochastic control policies in the domain of robotic loco-
motion and image-based game playing. Lillicrap et al. [66] introduced an off-policy algorithm, namely
deep deterministic policy gradient (DDPQG), which utilizes the actor-critic architecture [62] [74] to handle the
continuous action spaces. Based on the deterministic policy gradient (DPG) [106], DDPG deterministically
maps states to specific actions using a parameterized actor function while keeping DQN learning on the
critic side. This approach however requires a large number of training episodes to find solutions, as found
common in model-free reinforcement methods. Heess et al. [39] extended DDPG to recurrent DPG (RDPG)
to handle problems with continuous action spaces under partial observability, where the true state is not
available to the agents when making decisions. Recently, Gupta et al. [30] introduced the PS-TRPO method
for multi-agent learning (see Algorithm. This method is based on the foundation of TRPO so that it can
deal with continuous action spaces effectively.

4.1.5 Transfer Learning for MADRL

Training the Q-network or generally a deep RL model of a single agent is often very computationally ex-
pensive. This problem is significantly severe for a system of multiple agents. To improve the performance
and reduce computational costs during training process of multiple deep RL models, several studies have
promoted transfer learning for deep RL.

Rusu et al. [96,[07] proposed policy distillation method and progressive neural networks to promote trans-
fer learning in the context of deep RL. These methods however are computationally complex and expensive
[49]. Yin and Pan [117] likewise introduced another policy distillation architecture to apply knowledge trans-
fer for deep RL. That method reduces training time and outperforms DQNs but its exploration strategy is
still not efficient. Parisotto et al. [87] proposed the actor-mimic method for multi-task and transfer learning
that improves learning speed of a deep policy network. The network can obtain an expert performance on
many games simultaneously, although its model is not so complex. That method however requires a sufficient
level of similarity between source and target tasks and is vulnerable to negative transfer.

Egorov [20] reformulated a multi-agent environment into an image like representation and utilized CNNs
to estimate Q-values for each agent in question. That approach can address the scalability problem in MAS
when the transfer learning method can be used to speed up the training process. A policy network trained
on a different but related environment is used for learning process of other agents to reduce computational
expenses. Experiments carried out on the pursuit-evasion problem [14] show the effectiveness of the transfer
learning approach in the multi-agent domain.

Table [3| presents a summary of reviewed papers that address different multi-agent learning challenges.
It can be seen that many extensions of DQN have been proposed in the literature whilst policy-based or
actor-critic methods have not adequately been explored in multi-agent environments.

Table 3: Multi-agent learning challenges and their solving methods

Challenges Value-based Actor-critic Policy-based
Partial _ob- | DRQN [30]; DDRQN [24]; RIAL and DIAL [23]; | PS-DDPG and DPS-A3C | DPIQN and DRPIQN
servability Action-specific DRQN [12I]; MT-MARL [85]; PS- | [30]; MADDPG-M [48] [42]; PS-TRPO  [30];
DQN [30]; RL as a Rehearsal (RLaR) [55] Bayesian action decoder
(BAD) [26]
Non- DRUQN and DLCQN [12]; Multi-agent concurrent | MADDPG [68]; PS-A3C | PS-TRPO [30]
stationarity DQN [18]; Recurrent DQN-based multi-agent impor- | [30]

tance sampling and fingerprints [25]; Hysteretic-DQN
[85]; Lenient-DQN [86]; WDDQN [120]

Continuous Recurrent DPG  [39]; | TRPO [101]; PS-TRPO
action spaces DDPG [66] 1301

Multi-agent Multi-agent extension of DQN [111]; RIAL and DIAL | MADDPG [68]; COMA

training [23]; CommNet [109]; DRON [38]; MS-MARL [53 54]; | [27]

schemes Linearly fuzzified joint Q-function for MAS [69]

Transfer Policy distillation [96]; Multi-task policy distillation | Progressive networks [97] Actor-Mimic [87]
learning  in | [II7]; Multi-agent DQN [20]

MAS
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4.2 MADRL Applications

Since the success of deep RL marked by the DQN proposed in [73], many algorithms have been proposed
to integrate deep learning to multi-agent learning. These algorithms can solve complex problems in various
fields. This section provides a survey of these applications with a focus on the integration of deep learning
and MARL. Table [f] summarizes the features and limitations of approaches to these applications.

Prasad and Dusparic [02] introduced a MADRL model to deal with energy sharing problem in a zero-
energy community that comprises a collection of zero energy buildings, which have the total energy use over
a year smaller than or equal to the renewables generation within each building. A deep RL agent is used to
characterize each building to learn appropriate actions in sharing energy with other buildings. The global
reward is modelled by the negative of the community energy status as reward = —(3_7"_, ¢(h;) — g(h:)),
where c¢(h;) and g(h;) are the energy consumed and energy generated by the ith building. The community
monitoring service is introduced to manage the group membership activities such as joining and leaving
the group or maintaining a list of active agents. Experiments show the superiority of the proposed model
compared to the random action selection strategy in terms of net zero energy balance as a community. A
limitation of the proposed approach lies in the episodic learning manner so that agent’s behaviors cannot be
observed in an online fashion. Further drawbacks include that the current experiments were not performed
on a large scale, i.e. ten houses at maximum, and energy price scheme is not considered.
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Fig. 10: Federated control with hierarchical MADRL method.

A combination of hierarchical RL and MADRL methods was developed to coordinate and control multiple
agents in problems where agents’ privacy is prioritized [58]. Such distributed scheduling problems could be
a multi-task dialogue where an automated assistant needs to help a user to plan for several independent
tasks, for example, purchase a train ticket to the city, book a movie ticket, and make a dinner reservation
in a restaurant. Each of these tasks is handled by a decentralized controller whilst the assistant is a meta-
controller which benefits from temporal abstractions to lessen the communication complexity, and thus able
to find a globally consistent solution for the user (Fig. [L0). On the other hand, Leibo et al. [62] introduced
a sequential social dilemma (SSD) model based on general-sum Markov games under partial observability to
address the evolution of cooperation in MAS. Being able to capture sequential structure of real-world social
dilemmas, SSD is an extension of matriz game social dilemma (MGSD) that has been applied to various
phenomena in social science and biology [16] [, [19]. The general-sum modelling requires solving algorithms
to either track different potential equilibria for each agent or be able to find cyclic strategy consisting of
multiple policies learned by using different state space sweeps [122, R9]. DQN is utilized to characterize self-
interested independent learning agents to find equilibria of the SSD, which cannot be solved by the standard
evolution and learning methods used for MGSD [50]. Perolat et al. [90] also demonstrated the application of
MADRL in social science phenomenon, i.e. the common-pool resource (CPR) appropriation. The proposed
method comprises a spatially and temporally dynamic CPR environment [46] and an MAS of independent
self-interested DQNs. Through the RL trial and error process, the CPR appropriation problem is solved by
self-organization that adjusts the incentives felt by independent individual agents over time.

Huttenrauch et al. [45] formulated swarm systems as a special case of the decentralized POMDP [84] and
used an actor-critic deep RL approach to control a group of cooperative agents. The Q-function is learned
using a global state information, which can be the view of a camera capturing the scene in swarm robotics
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Table 4: A summary of typical MADRL applications in different fields

Applications | Basic DLR Features Limitations
Federated Hierarchical- | eDivide the control problem into disjoint subtasks and eDoes not address the non-stationarity
control [58] DQN (h- | leverage temporal abstractions. problem.

DQN) [57]

eUse meta-controller to guide decentralized con-
trollers.

eAble to solve distributed scheduling problems such as
multi-task dialogue, urban traffic control.

eNumber of agents is currently limited at
six.

eMeta-controller’s optimal policy becomes
complicated and inefficient when the num-
ber of agents increases.

Large-scale

Actor-critic

eReallocate vehicles ahead of time to balance the

eCan only deal with discrete actions and

fleet man- and DQN transport demands and supplies. each agent has a small (simplified) action
agement eGeographic context and collaborative context are in- space.
tegrated to coordinate agents. eAssume that agents in the same region at
eTwo proposed algorithms, contextual multi-agent | the same time interval (i.e. same spatial-
actor-critic and contextual deep Q-learning, can | temporal state) are homogeneous.
achieve explicit coordination among thousands of
agents.
Swarm sys- DQN and eAgents can only observe local environment (partial eCan only work with homogeneous agents.
tems |45 DDPG observability) but not the global state. eUnable to converge to meaningful policies
eUse guided approach for multi-agent learning where in huge dimensionality and partial observed
actors make decisions based on locally sensed informa- | problem.
tion whilst critic has central access to global state.
Traffic DDDQN eLearning multiple agents is performed using IDQN eThe proposed deep RL approach learns in-
lights con- | and IDQN where each agent is modelled by DDDQN. effectively in high traffic conditions.
trol [11] eFirst approach to address heterogeneous multi-agent eThe fingerprint does not improve the per-
learning in urban traffic control. formance of experience replay although the
eFingerprint technique is used to stabilize the experi- latter is required for efficient learning.
ence replay memory to handle non-stationarity.
Task and | CommNet ePropose distributed task allocation where agents can | eMay not be able to deal with heteroge-
resources request help from cooperating neighbors. neous agents.
allocation eThree types of agents are defined: manager, partici- eComputational deficiencies regarding the
pant and mediator. decentralization and reallocation character-
eCommunication protocol is learned simultaneously | istics.
with agents’ policies through CommNet. eExperiments only on small state action
spaces.
Energy DQN eEach building is characterized by a DRL agent to | eAgents’ behaviors cannot be observed in
sharing op- learn appropriate actions independently. an online fashion.
timization eAgents’ actions include: consume and store excess eLimited number of houses, currently ten
energy, request neighbor or supply grid for additional houses at maximum were experimented.
energy, grant or deny requests. eEnergy price is not considered.
eAgents collaborate via shared or global rewards to
achieve a common goal, i.e. zero-energy status.
Keepaway DQN eLow-dimensional state space, described by only 13 eNumber of agents is limited, currently set-
soccer variables. ting with 3 keepers vs. 2 takers.
eHeterogeneous MAS, each agent has different experi- | eHeterogeneous learning speed is signifi-
ence replay memory and different network policy. cantly lower than homogeneous case.
Action mar- DQN e Agents can trade their atomic actions in exchange for eAgents cannot find prices for actions by
kets environmental reward. themselves because they are given at design
eReduce greedy behavior and thus negative effects of | time.
individual reward maximization. eStrongly assume that agents cannot cheat
eThe proposed approach significantly increases the | on each other by making offers which they
overall reward compared to methods without action do not hold afterwards.
trading.
Sequential DQN eIntroduce an SSD model to extend MGSD to capture eAssume agent’s learning is independent
social sequential structure of real-world social dilemmas. and regard the others as part of the envi-
dilemma eDescribe SSDs as general-sum Markov games with ronment.
(SSD) partial observations. eAgents do not recursively reason about
eMulti-agent DQN is used to find equilibria of SSD one another’s learning.
problems.
Common- DQN elntroduce a new CPR appropriation model using an | eSingle agent DQN is extended to multi-
pool re- MAS containing spatially and temporally environment | agent environment where the Markov as-
source dynamics. sumption is no longer hold.
(CPR) ap- eUse the descriptive agenda [104] to describe the be- | eAgents do not do anything of rational ne-
propriation haviors emerging when agents learn in the presence of | gotiation, e.g. bargaining, building consen-
other learning agents. sus, or making appeals.
eSimulate multiple independent agents with each
learned by DQN.
examples. The group can perform complicated tasks such as search and rescue or distributed assembly

although individual agent has limited sensory capability. That model has a drawback as it assumes agents
to be homogenous. Calvo and Dusparic [IT] proposed the use of IDQN to address the heterogeneity problem
in multi-agent environment of urban traffic light control. Each agent is learned by the dueling double deep
@-network (DDDQN), which integrates dueling networks, double DQN and prioritized experience replay.
Heterogenous agents are trained independently and simultaneously, considering other agents as part of

the environment.
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The non-stationarity of the multi-agent environment is dealt with by a technique of




fingerprinting that disambiguates the age of training samples and stabilizes the replay memory.

A special application of DQN to the heterogeneous MAS where the state space is low-dimensional was
presented in [59]. Experiments are performed on a multi-agent Keepaway soccer problem whose state com-
prises only 13 variables. To handle heterogeneity, each DQN agent is set up with different experience replay
memory and different neural network. Agents cannot communicate with each other but only can observe
others’ behaviors. While DQNs can enhance results in terms of game score in the heterogeneous team learn-
ing settings in low-dimensional environments, their learning process is significantly slower than those in the
homogeneous cases.

Establishing communication channels among agents during learning is an important step in designing and
constructing MADRL algorithms. Nguyen et al. [82] characterized the communication channel via human
knowledge represented by images and allow deep RL agents to communicate using these shared images. The
asynchronous advantage actor-critic (A3C) algorithm [74] is used to learn optimal policy for each agent, which
can be extended to multiple heterogeneous agents. On the other hand, Noureddine et al. [83] introduced
a method, namely task allocation process using cooperative deep RL, to allow multiple agents to interact
with each other and allocate resources and tasks effectively. Agents can request help from their cooperative
neighbors in a loosely coupled distributed multi-agent environment. The CommNet model [109] is used
to facilitate communications among agents, which are characterized by DRQN [36]. Experimental results
demonstrate the great capability of that method in handling complicated task allocation problem. One of
the drawbacks of that algorithm however is its limited ability in managing heterogeneous agents. In addition,
its decentralization and reallocation characteristics also pose disadvantages in terms of computational time
and communication overhead.
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Fig. 11: The contextual multi-agent actor-critic architecture proposed in [67] where decentralized execution
is coordinated using the centralized value network’s outputs as illustrated in the left part whilst the right
part shows how context is embedded to the policy network.

Lin et al. [67] addressed the large-scale fleet management using MADRL by proposing two algorithms,
namely contextual deep @Q-learning and contextual multi-agent actor-critic. These algorithms aim to balance
the difference between demand and supply by reallocating transportation resources that help to reduce
traffic congestion and increase transportation efficiency. The contextual multi-agent actor-critic model is
illustrated in Fig. where a parameter-shared policy network is used to coordinate the agents, which
represent available vehicles or equivalently the idle drivers.

Recently, Schmid et al. [I00] introduced an interesting approach to an MAS where agents can trade their
actions in exchange for other resources, e.g. environmental rewards. The action trading was inspired by the
fundamental theorem of welfare economics that competitive markets adjust towards the Pareto efficiency.
Specifically, agents need to extend their action spaces and learn two policies simultaneously: one for the
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original stochastic reward and another for trading environmental reward. The behavior market realized from
the action trading helps mitigate greedy behavior (like the tit-for-tat game theoretic strategy proposed in
[63]), enable agents to incentivize other agents and reduce the negative effects of individual reward maxi-
mization. Simulation results on the iterated matrix game and the Coin game show the effectiveness of the
action trading method as it increases the social welfare, measured in terms of overall rewards of all agents.

5 Conclusions and Research Directions

This paper presents an overview of different challenges in multi-agent learning and solutions to these chal-
lenges using deep RL methods. We group the surveyed papers into five categories, including non-stationarity,
partial observability, multi-agent training schemes, multi-agent transfer learning, and continuous state and
action spaces. We have highlighted advantages and disadvantages of the approaches to address the chal-
lenges. Applications of MADRL methods in different fields are also reviewed thoroughly. We have found that
the integration of deep learning into traditional MARL methods has been able to solve many complicated
problems, such as urban traffic light control, energy sharing problem in a zero-energy community, large-scale
fleet management, task and resources allocation, swarm robotics, and social science phenomena. The results
indicate that deep RL-based methods provide a viable approach to handling complicated tasks in the MAS
domain.

Learning from demonstration including imitation learning and inverse RL has demonstrated effectiveness
in single agent deep RL [91]. On one hand, imitation learning tries to map between states to actions as a
supervised approach. It directly generalizes the expert strategy to unvisited states so that it is close to a
multi-class classification problem in cases of finite action set. On the other hand, inverse RL agent needs to
infer a reward function from the expert demonstrations. Inverse RL assumes that the expert policy is optimal
regarding the unknown reward function [3T), 32]. These methods however have not yet been explored fully
in multi-agent environments. Both imitation learning and inverse RL have great potential for applications
in MAS. It is expected that they can reduce the learning time and improve the effectiveness of MAS. A
very straightforward challenge arose from these applications is the requirement of multiple experts who are
able to demonstrate the tasks collaboratively. Furthermore, the communication and reasoning capabilities of
experts are difficult to be characterized and modelled by autonomous agents in the MAS domain. These pose
important research questions towards extensions of imitation learning and inverse RL to MADRL methods.
In addition, for complicated tasks or behaviors which are difficult for humans to demonstrate, there is a need
of alternative methods that allow human preferences to be integrated into deep RL [13] [81] [82].

Deep RL has considerably facilitated autonomy, which allows to deploy many applications in robotics or
autonomous vehicles. The most common drawback of deep RL models however is the ability to interact with
human through human-machine teaming technologies. In complex and adversarial environments, there is a
critical need for human intellect teamed with technology because humans alone cannot sustain the volume,
and machines alone cannot issue creative responses when new situations are introduced. Recent advances
of human-on-the-loop architecture [78] can be fused with MADRL to integrate humans and autonomous
agents to deal with complex problems. In the conventional human-in-the-loop setting, agents perform their
assigned tasks autonomously for a period, then stop and wait for human commands before continuing in this
rate-limited fashion. In human-on-the-loop, agents execute their tasks autonomously until completion, with
a human in a monitoring or supervisory role reserving the ability to intervene in operations carried out by
agents. A human-on-the-loop-based architecture can be fully autonomous if human supervisors allow task
completion by agents entirely on their own [78].

Model-free deep RL has been able to solve many complicated problems both in single agent and multi-
agent domains. This category of methods however requires a huge number of samples and long learning time
to achieve a good performance. Model-based methods have demonstrated effectiveness in terms of sample
efficiency, transferability and generality in various problems using single as well as multi-agent models.
Although the deep learning extensions of the model-based methods have been studied recently in single agent
domain, e.g. [64], 29] 22] [77] 103, [15], these extensions have not been investigated widely in the multi-agent
domain. This creates a research gap that could be developed to a research direction in model-based MADRL.
In addition, dealing with high-dimensional observations using model-based approaches or combining elements
of model-based planning and model-free policy is another active, exciting but under-explored research area.
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Scaling to large systems, especially dealing with many heterogeneous agents, has been a primary challenge
in RL research domain since its first days. As the world dynamics become more and more complex, this
challenge has always been required to resolve. Since agents have common behaviors such as actions, domain
knowledge, and goals (homogeneous agents), the scalability can be achievable by (partially) centralized
training and decentralized execution [94] 28]. In the heterogeneous setting with many agents, the key
challenge is how to provide the most optimal solution and maximize the task completion success based on self-
learning with effective coordinative and cooperative strategies among the agents. This is more problematic
in hostile environments where communications among agents are limited and in scenarios that involve more
heterogeneous agents as the credit assignment problem become increasingly difficult. A research direction
to address these difficulties is well worth an investigation.

Regarding applications of multi-agent learning, there have been many studies using traditional MARL
methods to solve various problems such as controlling a group of autonomous vehicles or drones [43], robot
soccer [102], controlling traffic signals [75], coordinating collaborative bots in factories and warehouse [47],
controlling electrical power networks [93] or optimizing distributed sensor networks [37], automated trading
[88], machine bidding in competitive e-commerce and financial markets [9], resource management [44], trans-
portation [2I], and phenomena of social sciences [62]. Since the emergence of DQN [73], efforts to extend
traditional RL to deep RL in the multi-agent domain have been found in the literature but they are still
very limited (see Table [4] for applications available in the current literature). Many applications of MARL
can now be solved effectively by MADRL based on its high-dimension handling capability. Therefore, there
is a need of further empirical research to apply MADRL methods to effectively solve complex real-world
problems such as the aforementioned applications.

References

[1] Abdallah, S., and Kaisers, M. (2013, May). Addressing the policy-bias of Q-learning by repeating
updates. In Proceedings of the 12th International Conference on Autonomous Agents and Multiagent
Systems (pp. 1045-1052).

[2] Abdallah, S., and Kaisers, M. (2016). Addressing environment non-stationarity by repeating Q-learning
updates. The Journal of Machine Learning Research, 17(1), 1582-1612.

[3] Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017). Deep reinforcement
learning: a brief survey. IEEE Signal Processing Magazine, 34(6), 26-38.

[4] Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M., Kttler, H., ... and Schrittwieser, J.
(2016). DeepMind lab. arXiv preprint |arXiv:1612.03801.

[5] Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade learning environment:
an evaluation platform for general agents. Journal of Artificial Intelligence Research, 47, 253-279.

[6] Bellman, R. (1952). On the theory of dynamic programming. Proceedings of the National Academy of
Sciences, 38(8), 716-719.

[7] Benbrahim, H., and Franklin, J. A. (1997). Biped dynamic walking using reinforcement learning.
Robotics and Autonomous Systems, 22(3-4), 283-302.

[8] Bloembergen, D., Tuyls, K., Hennes, D., and Kaisers, M. (2015). Evolutionary dynamics of multi-agent
learning: a survey. Journal of Artificial Intelligence Research, 53, 659-697.

[9] Brandouy, O., Mathieu, P., and Veryzhenko, I. (2011, January). On the design of agent-based artificial
stock markets. In International Conference on Agents and Artificial Intelligence (pp. 350-364).

[10] Busoniu, L., Babuska, R., and De Schutter, B. (2008). A comprehensive survey of multiagent rein-
forcement learning. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and
Reviews, 38 (2), 156-172.

20


http://arxiv.org/abs/1612.03801

[11]

[12]

[13]

[17]

[18]

[24]

[25]

Calvo, J. J. A., and Dusparic, I. (2018). Heterogeneous multi-agent deep reinforcement learning for
traffic lights control. The 26th Irish Conference on Artificial Intelligence and Cognitive Science (pp.
1-12), Dublin, Ireland.

Castaneda, A. O. (2016). Deep Reinforcement Learning Variants of Multi-Agent Learning Algorithms
(Master’s Thesis, School of Informatics, University of Edinburgh).

Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., and Amodei, D. (2017). Deep reinforcement
learning from human preferences. In Advances in Neural Information Processing Systems (pp. 4299-
4307).

Chung, T. H., Hollinger, G. A., and Isler, V. (2011). Search and pursuit-evasion in mobile robotics.
Autonomous Robots, 31(4), 299.

Corneil, D., Gerstner, W., and Brea, J. (2018). Efficient model-based deep reinforcement learning with
variational state tabulation. arXiv preprint arXiv:1802.04325.

de Cote, E. M., Lazaric, A., and Restelli, M. (2006, May). Learning to cooperate in multi-agent so-
cial dilemmas. In Proceedings of the 5th International Joint Conference on Automomous Agents and

Multiagent Systems (pp. 783-785). ACM.

Deng, L., and Yu, D. (2014). Deep learning: methods and applications. Foundations and Trends in
Signal Processing, 7(34), 197-387.

Diallo, E. A. O., Sugiyama, A., and Sugawara, T. (2017, December). Learning to coordinate with deep
reinforcement learning in doubles Pong game. In Machine Learning and Applications (ICMLA), 2017
16th IEEFE International Conference on (pp. 14-19). IEEE.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016, June). Benchmarking deep
reinforcement learning for continuous control. In International Conference on Machine Learning (pp.
1329-1338).

Egorov, M. (2016). Multi-agent deep reinforcement learning. Stanford University.

Fernandez-Gauna, B., Etxeberria-Agiriano, I., and Grana, M. (2015). Learning multirobot hose trans-
portation and deployment by distributed round-robin Q-learning. PloS One, 10(7), e0127129.

Finn, C., and Levine, S. (2017, May). Deep visual foresight for planning robot motion. In Robotics and
Automation (ICRA), 2017 IEEE International Conference on (pp. 2786-2793). IEEE.

Foerster, J., Assael, Y. M., de Freitas, N., and Whiteson, S. (2016). Learning to communicate with
deep multi-agent reinforcement learning. In Advances in Neural Information Processing Systems (pp.
2137-2145).

Foerster, J. N.; Assael, Y. M., de Freitas, N., and Whiteson, S. (2016). Learning to communicate to
solve riddles with deep distributed recurrent Q-networks. arXiv preprint arXiv:1602.02672.

Foerster, J., Nardelli, N., Farquhar, G., Afouras, T., Torr, P. H., Kohli, P., and Whiteson, S. (2017, July).
Stabilising experience replay for deep multi-agent reinforcement learning. In International Conference
on Machine Learning (pp. 1146-1155).

Foerster, J. N., Song, F., Hughes, E., Burch, N., Dunning, I., Whiteson, S., ... and Bowling, M. (2018).
Bayesian action decoder for deep multi-agent reinforcement learning. arXiv preprint|arXiw:1811.01458.

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and Whiteson, S. (2018). Counterfactual multi-
agent policy gradients. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence
(pp. 2974-2982).

Foerster, J., Chen, R. Y., Al-Shedivat, M., Whiteson, S., Abbeel, P., and Mordatch, I. (2018, July).
Learning with opponent-learning awareness. In Proceedings of the 17th International Conference on
Autonomous Agents and Multiagent Systems (pp. 122-130).

21


http://arxiv.org/abs/1802.04325
http://arxiv.org/abs/1602.02672
http://arxiv.org/abs/1811.01458

[29]

[30]

[38]

[39]

[40]

[45]

[46]

Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. (2016, June). Continuous deep Q-learning with
model-based acceleration. In International Conference on Machine Learning (pp. 2829-2838).

Gupta, J. K., Egorov, M., and Kochenderfer, M. (2017, May). Cooperative multi-agent control us-
ing deep reinforcement learning. In International Conference on Autonomous Agents and Multiagent
Systems (pp. 66-83).

Hadfield-Menell, D., Russell, S. J., Abbeel, P., and Dragan, A. (2016). Cooperative inverse reinforcement
learning. In Advances in Neural Information Processing Systems (pp. 3909-3917).

Hadfield-Menell, D., Milli, S., Abbeel, P., Russell, S. J., and Dragan, A. (2017). Inverse reward design.
In Advances in Neural Information Processing Systems (pp. 6765-6774).

Harati, A., Ahmadabadi, M. N., and Araabi, B. N. (2007). Knowledge-based multiagent credit assign-
ment: a study on task type and critic information. IEEE Systems Journal, 1(1), 55-67.

Hasselt, H. V. (2010). Double Q-learning. In Advances in Neural Information Processing Systems (pp.
2613-2621).

Hasselt, H. V., Guez, A., and Silver, D. (2016, February). Deep reinforcement learning with double
Q-Learning. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (pp. 2094-2100).
AAAT Press.

Hausknecht, M., and Stone, P. (2015). Deep recurrent Q-learning for partially observable MDPs. CoRR,
abs/1507.06527, 7(1).

He, J., Peng, J., Jiang, F., Qin, G., and Liu, W. (2015). A distributed Q learning spectrum decision
scheme for cognitive radio sensor network. International Journal of Distributed Sensor Networks, 11(5),
301317.

He, H., Boyd-Graber, J., Kwok, K., and Daum III, H. (2016, June). Opponent modeling in deep
reinforcement learning. In International Conference on Machine Learning (pp. 1804-1813).

Heess, N., Hunt, J. J., Lillicrap, T. P., and Silver, D. (2015). Memory-based control with recurrent
neural networks. arXiv preprint arXiw:1512.04455.

Hernandez-Leal, P., Kaisers, M., Baarslag, T., and de Cote, E. M. (2017). A survey of learning in
multiagent environments: dealing with non-stationarity. arXiv preprint |arXiw:1707.09185.

Hernandez-Leal, P., Kartal, B., and Taylor, M. E. (2018). Is multiagent deep reinforcement learning the
answer or the question? a brief survey. arXiv preprint arXiv:1810.05587.

Hong, Z. W., Su, S. Y., Shann, T. Y., Chang, Y. H., and Lee, C. Y. (2018, July). A deep policy inference
Q-network for multi-agent systems. In Proceedings of the 17th International Conference on Autonomous
Agents and Multiagent Systems (pp. 1388-1396).

Hung, S. M., and Givigi, S. N. (2017). A Q-learning approach to flocking with UAVs in a stochastic
environment. IEEE Transactions on Cybernetics, 47(1), 186-197.

Hussin, M., Hamid, N. A. W. A., and Kasmiran, K. A. (2015). Improving reliability in resource man-
agement through adaptive reinforcement learning for distributed systems. Journal of Parallel and Dis-
tributed Computing, 75, 93-100.

Huttenrauch, M., Sosic, A., and Neumann, G. (2017). Guided deep reinforcement learning for swarm
systems. arXiv preprint arXiw:1709.06011.

Janssen, M. A., Holahan, R., Lee, A., and Ostrom, E. (2010). Lab experiments for the study of social-
ecological systems. Science, 328(5978), 613-617.

22


http://arxiv.org/abs/1512.04455
http://arxiv.org/abs/1707.09183
http://arxiv.org/abs/1810.05587
http://arxiv.org/abs/1709.06011

[47]

[50]

[51]

[52]

Kattepur, A., Rath, H. K., Simha, A., and Mukherjee, A. (2018, April). Distributed optimization in
multi-agent robotics for industry 4.0 warehouses. In Proceedings of the 33rd Annual ACM Symposium
on Applied Computing (pp. 808-815). ACM.

Kiline, O., and Montana, G. (2018). Multi-agent deep reinforcement learning with extremely noisy
observations. arXiv preprint arXiv:1812.00922.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., ... and Hassabis,
D. (2017). Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy
of Sciences, 114(13), 3521-3526.

Kleiman-Weiner, M., Ho, M. K., Austerweil, J. L., Littman, M. L., and Tenenbaum, J. B. (2016,
January). Coordinate to cooperate or compete: abstract goals and joint intentions in social interaction.
In Proceedings of the 38th Annual Conference of the Cognitive Science Society (pp. 1679-1684).

Klopf, A. (1972). Brain function and adaptive systems: a heterostatic theory. Air Force Cambridge
Research Laboratories Special Report.

Konda, V. R., and Tsitsiklis, J. N. (2000). Actor-critic algorithms. In Advances in Neural Information
Processing Systems (pp. 1008-1014).

Kong, X., Xin, B., Liu, F., and Wang, Y. (2017). Effective master-slave communication on a multi-
agent deep reinforcement learning system. Hierarchical Reinforcement Learning Workshop at the 31st
Conference on NIPS, Long Beach, CA, USA.

Kong, X., Xin, B., Liu, F., and Wang, Y. (2017). Revisiting the master-slave architecture in multi-agent
deep reinforcement learning. arXiv preprint arXiv:1712.07305.

Kraemer, L., and Banerjee, B. (2016). Multi-agent reinforcement learning as a rehearsal for decentralized
planning. Neurocomputing, 190, 82-94.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems (pp. 1097-1105).

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenenbaum, J. (2016). Hierarchical deep reinforcement
learning: integrating temporal abstraction and intrinsic motivation. In Advances in Neural Information

Processing Systems (pp. 3675-3683).

Kumar, S., Shah, P., Hakkani-Tur, D., and Heck, L. (2017). Federated control with hierarchical multi-
agent deep reinforcement learning. arXiv preprint arXiv:1712.08266.

Kurek, M., and Jakowski, W. (2016, September). Heterogeneous team deep Q-learning in low-
dimensional multi-agent environments. In Computational Intelligence and Games (CIG), 2016 IEEE
Conference on (pp. 1-8). IEEE.

Lample, G., and Chaplot, D. S. (2017, February). Playing FPS games with deep reinforcement learning,.
In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (pp. 2140-2146).

Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Perolat, J., Silver, D., and Graepel, T. (2017).
A unified game-theoretic approach to multiagent reinforcement learning. In Advances in Neural Infor-
mation Processing Systems (pp. 4193-4206).

Leibo, J. Z., Zambaldi, V., Lanctot, M., Marecki, J., and Graepel, T. (2017, May). Multi-agent rein-
forcement learning in sequential social dilemmas. In Proceedings of the 16th International Conference
on Autonomous Agents and Multiagent Systems (pp. 464-473).

Lerer, A., and Peysakhovich, A. (2017). Maintaining cooperation in complex social dilemmas using deep
reinforcement learning. arXiv preprint arXiv:1707.01068.

23


http://arxiv.org/abs/1812.00922
http://arxiv.org/abs/1712.07305
http://arxiv.org/abs/1712.08266
http://arxiv.org/abs/1707.01068

[64]

[65]
[66]

[67]

[68]

[78]

[79]

[80]

[81]

[82]

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1), 1334-1373.

Li, Y. (2017). Deep reinforcement learning: An overview. arXiv preprint |arXiv:1701.07274.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., ... and Wierstra, D. (2015).
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.

Lin, K., Zhao, R., Xu, Z., and Zhou, J. (2018). Efficient large-scale fleet management via multi-agent
deep reinforcement learning. arXiv preprint arXiv:1802.06444.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O. P., and Mordatch, I. (2017). Multi-agent actor-critic
for mixed cooperative-competitive environments. In Advances in Neural Information Processing Systems
(pp. 6379-6390).

Luviano-Cruz, D., Garcia-Luna, F., Perez-Dominguez, L., and Gadi, S. (2018). Multi-agent reinforce-
ment learning using linear fuzzy model applied to cooperative mobile robots. Symmetry, 10(10), 461.

Mahadevan, S., and Connell, J. (1992). Automatic programming of behavior-based robots using rein-
forcement learning. Artificial Intelligence, 55(2-3), 311-365.

Matignon, L., Laurent, G., and Le Fort-Piat, N. (2007, October). Hysteretic Q-Learning: an algorithm
for decentralized reinforcement learning in cooperative multi-agent teams. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (pp. 64-69).

Minsky, M. L. (1954). Theory of neural-analog reinforcement systems and its application to the brain
model problem. Princeton University.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... and Petersen, S.
(2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., ... and Kavukcuoglu, K. (2016,
June). Asynchronous methods for deep reinforcement learning. In International Conference on Machine
Learning (pp. 1928-1937).

Mousavi, S. S., Schukat, M., and Howley, E. (2017). Traffic light control using deep policy-gradient and
value-function-based reinforcement learning. IET Intelligent Transport Systems, 11(7), 417-423.

Mulling, K., Kober, J., Kroemer, O., and Peters, J. (2013). Learning to select and generalize striking
movements in robot table tennis. The International Journal of Robotics Research, 32(3), 263-279.

Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S. (2018, May). Neural network dynamics for
model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE International Con-
ference on Robotics and Automation (ICRA) (pp. 7559-7566). IEEE.

Nahavandi, S. (2017). Trusted autonomy between humans and robots: toward human-on-the-loop in
robotics and autonomous systems. IEEE Systems, Man, and Cybernetics Magazine, 3(1), 10-17.

Nguyen, N. D., Nguyen, T., and Nahavandi, S. (2017). System design perspective for human-level agents
using deep reinforcement learning: a survey. IEEE Access, 5, 27091-27102.

Nguyen, T. (2018). A multi-objective deep reinforcement learning framework. arXiv preprint
arXw:1803.02965.

Nguyen, N. D., Nahavandi, S., and Nguyen, T. (2018). A human mixed strategy approach to deep
reinforcement learning. In 2018 IEEE International Conference on Systems, Man, and Cybernetics,
(pp. 4023-4028).

Nguyen, T., Nguyen, N. D., and Nahavandi, S. (2018). Multi-agent deep reinforcement learning with
human strategies. arXiv preprint arXiw:1806.04562.

24


http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1802.06444
http://arxiv.org/abs/1803.02965
http://arxiv.org/abs/1806.04562

[83]

[36]

[87]

[88]

[90]

[91]

[92]

[94]

[95]

[96]

[97]

[98]

[99]

Noureddine, D., Gharbi, A. and Ahmed, S. (2017). Multi-agent deep reinforcement learning for task
allocation in dynamic environment. In Proceedings of the 12th International Conference on Software
Technologies (ICSOFT), pp. 17-26.

Oliehoek, F. A. (2012). Decentralized POMDPs. In Reinforcement Learning (pp. 471-503). Springer,
Berlin, Heidelberg.

Omidshafiei, S., Pazis, J., Amato, C., How, J. P., and Vian, J. (2017, July). Deep decentralized multi-
task multi-agent reinforcement learning under partial observability. In International Conference on
Machine Learning (pp. 2681-2690).

Palmer, G., Tuyls, K., Bloembergen, D., and Savani, R. (2018, July). Lenient multi-agent deep rein-
forcement learning. In International Conference on Autonomous Agents and Multiagent Systems (pp.
443-451).

Parisotto, E., Ba, J. L., and Salakhutdinov, R. (2015). Actor-mimic: deep multitask and transfer
reinforcement learning. arXiv preprint arXiv:1511.06342.

Pendharkar, P. C., and Cusatis, P. (2018). Trading financial indices with reinforcement learning agents.
Expert Systems with Applications, 103, 1-13.

Perolat, J., Piot, B., Scherrer, B., and Pietquin, O. (2016, May). On the Use of Non-Stationary Strategies
for Solving Two-Player Zero-Sum Markov Games. In The 19th International Conference on Artificial
Intelligence and Statistics (pp. 893-901).

Perolat, J., Leibo, J. Z., Zambaldi, V., Beattie, C., Tuyls, K., and Graepel, T. (2017). A multi-agent re-
inforcement learning model of common-pool resource appropriation. In Advances in Neural Information
Processing Systems (pp. 3643-3652).

Piot, B., Geist, M., and Pietquin, O. (2017). Bridging the gap between imitation learning and inverse
reinforcement learning. IEEE Transactions on Neural Networks and Learning Systems, 28(8), 1814-1826.

Prasad, A., and Dusparic, I. (2018). Multi-agent deep reinforcement learning for zero energy communi-
ties. arXiv preprint arXiw:1810.03679.

Rahman, M. S., Mahmud, M. A., Pota, H. R., Hossain, M. J., and Orchi, T. F. (2015). Distributed
multi-agent-based protection scheme for transient stability enhancement in power systems. International
Journal of Emerging Electric Power Systems, 16(2), 117-129.

Rashid, T., Samvelyan, M., de Witt, C. S., Farquhar, G., Foerster, J., and Whiteson, S. (2018). QMIX:
monotonic value function factorisation for deep multi-agent reinforcement learning. arXiv preprint
arXw:1803.11485.

Riedmiller, M., Gabel, T., Hafner, R., and Lange, S. (2009). Reinforcement learning for robot soccer.
Autonomous Robots, 27(1), 55-73.

Rusu, A. A., Colmenarejo, S. G., Gulcehre, C., Desjardins, G., Kirkpatrick, J., Pascanu, R., ... and
Hadsell, R. (2015). Policy distillation. arXiv preprint arXiv:1511.06295.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirkpatrick, J., Kavukcuoglu, K., ... and
Hadsell, R. (2016). Progressive neural networks. arXiv preprint |arXiv:1606.04671.

Schaal, S. (1997). Learning from demonstration. In Advances in Neural Information Processing Systems
(pp. 1040-1046).

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2015). Prioritized experience replay. arXiv preprint
arXw:1511.05952.

[100] Schmid, K., Belzner, L., Gabor, T., and Phan, T. (2018, October). Action markets in deep multi-agent

reinforcement learning. In International Conference on Artificial Neural Networks (pp. 240-249).

25


http://arxiv.org/abs/1511.06342
http://arxiv.org/abs/1810.03679
http://arxiv.org/abs/1803.11485
http://arxiv.org/abs/1511.06295
http://arxiv.org/abs/1606.04671
http://arxiv.org/abs/1511.05952

[101] Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015, June). Trust region policy
optimization. In International Conference on Machine Learning (pp. 1889-1897).

[102] Schwab, D., Zhu, Y., and Veloso, M. (2018, July). Zero shot transfer learning for robot soccer. In
Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (pp.
2070-2072).

[103] Serban, I. V., Sankar, C., Pieper, M., Pineau, J., and Bengio, Y. (2018). The bottleneck simulator: a
model-based deep reinforcement learning approach. arXiv preprint arXw:1807.047235.

[104] Shoham, Y., Powers, R., and Grenager, T. (2007). If multi-agent learning is the answer, what is the
question?. Artificial Intelligence, 171(7), 365-377.

[105] Silva, F.L., Taylor, M.E., and Costa, A.H.R. (2018). Autonomously reusing knowledge in multiagent
reinforcement learning. In The 27th International Joint Conference on Artificial Intelligence, pp. 5487-
5493.

[106] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014, January). Deter-
ministic policy gradient algorithms. In International Conference on Machine Learning (pp. 387-395).

[107] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... and Dieleman,
S. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587),
484-4809.

[108] Sorokin, I., Seleznev, A., Pavlov, M., Fedorov, A., and Ignateva, A. (2015). Deep attention recurrent
Q-network. arXiv preprint |arXiv:1512.01693.

[109] Sukhbaatar, S., Szlam, A., and Fergus, R. (2016). Learning multiagent communication with backprop-
agation. In Advances in Neural Information Processing Systems (pp. 2244-2252).

[110] Sutton, R. S., and Barto, A. G. (1998). Reinforcement learning: An introduction. MIT press.

[111] Tampuu, A., Matiisen, T., Kodelja, D., Kuzovkin, I., Korjus, K., Aru, J., and Vicente, R. (2017).
Multiagent cooperation and competition with deep reinforcement learning. PloS One, 12(4), e0172395.

[112] Tan, M. (1993). Multi-agent reinforcement learning: independent vs. cooperative agents. In Proceedings
of the Tenth International Conference on Machine Learning (pp. 330-337).

[113] Thorndike, E. L. (1898). Animal intelligence: an experimental study of the associate processes in
animals. American Psychologist, 53(10), 1125-1127.

[114] Tsitsiklis, J. N., and Van Roy, B. (1997). Analysis of temporal-diffference learning with function
approximation. In Advances in Neural Information Processing Systems (pp. 1075-1081).

[115] Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., and Freitas, N. (2016, June). Dueling
network architectures for deep reinforcement learning. In International Conference on Machine Learning
(pp- 1995-2003).

[116] Watkins, C. J., and Dayan, P. (1992). Q-learning. Machine Learning, 8(3-4), 279-292.

[117] Yin, H., and Pan, S. J. (2017, January). Knowledge transfer for deep reinforcement learning with hier-
archical experience replay. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence
(pp. 1640-1646).

[118] Yu, C., Zhang, M., Ren, F., and Tan, G. (2015). Multiagent learning of coordination in loosely coupled
multiagent systems. IEEE Transactions on Cybernetics, 45(12), 2853-2867.

[119] Yu, C., Zhang, M., Ren, F., and Tan, G. (2015). Emotional multiagent reinforcement learning in spatial
social dilemmas. IEEE Transactions on Neural Networks and Learning Systems, 26(12), 3083-3096.

26


http://arxiv.org/abs/1807.04723
http://arxiv.org/abs/1512.01693

[120] Zheng, Y., Meng, Z., Hao, J., and Zhang, Z. (2018, August). Weighted double deep multiagent rein-

forcement learning in stochastic cooperative environments. In Pacific Rim International Conference on
Artificial Intelligence (pp. 421-429).

[121] Zhu, P., Li, X., and Poupart, P. (2017). On improving deep reinforcement learning for POMDPs. arXiv
preprint arXw:1704.07978.

[122] Zinkevich, M., Greenwald, A., and Littman, M. L. (2006). Cyclic equilibria in Markov games. In
Advances in Neural Information Processing Systems (pp. 1641-1648).

27


http://arxiv.org/abs/1704.07978

	1 Introduction
	2 Background: Reinforcement Learning
	2.1 Preliminary
	2.2 Bellman equation
	2.3 RL methods
	2.3.1 Monte-Carlo method
	2.3.2 Temporal-difference method


	3 Deep RL: Single Agent
	3.1 Deep Q-Network
	3.2 DQN variants

	4 Deep RL: Multi-Agent
	4.1 MADRL: Challenges and Solutions
	4.1.1 Non-stationarity
	4.1.2 Partial observability
	4.1.3 MAS training schemes
	4.1.4 Continuous action spaces
	4.1.5 Transfer Learning for MADRL

	4.2 MADRL Applications

	5 Conclusions and Research Directions

