Teru Ogura

Teru Ogura
Kumamoto University | Kumadai · Department of Molecular Cell Biology

PhD

About

181
Publications
11,321
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
9,778
Citations
Additional affiliations
April 1990 - November 1990
The University of Edinburgh
Position
  • Visiting Research Fellow
June 1988 - August 1988
French National Centre for Scientific Research
Position
  • Visiting Scientist
October 1986 - present
Kumamoto University
Position
  • Professor (Full)

Publications

Publications (181)
Article
Full-text available
The mammalian endoplasmic reticulum (ER) harbors more than 20 members of the protein disulfide isomerase (PDI) family that act to maintain proteostasis. Herein, we developed an in vitro system for directly monitoring PDI- or ERp46-catalyzed disulfide bond formation in ribosome-associated nascent chains of human serum albumin. The results indicated...
Article
Hsp104 and its bacterial homolog ClpB form hexameric ring structures and mediate protein disaggregation. The disaggregated polypeptide is thought to thread through the central channel of the ring. However, the dynamic behavior of Hsp104 during disaggregation remains unclear. Here, we reported the stochastic conformational dynamics and a split confo...
Preprint
The mammalian endoplasmic reticulum (ER) harbors more than 20 members of the protein disulfide isomerase (PDI) family that act to maintain proteostasis. Herein, we developed an in vitro system for directly monitoring PDI- or ERp46-catalyzed disulfide bond formation in ribosome-associated nascent chains (RNC) of human serum albumin. The results indi...
Article
Full-text available
In Escherichia coli, the major bacterial Hsp70 system consists of DnaK, three J-domain proteins (JDPs: DnaJ, CbpA, and DjlA), and nucleotide exchange factor GrpE. JDPs determine substrate specificity for the Hsp70 system; however, knowledge on their specific role in bacterial cellular functions is limited. In this study, we demonstrated the role of...
Preprint
In Escherichia coli, the major bacterial Hsp70 system consists of DnaK, three J-domain proteins (JDPs: DnaJ, CbpA, and DjlA), and one nucleotide exchange factor (NEF: GrpE). JDPs determine substrate specificity for the Hsp70 system; however, knowledge on their specific role in bacterial cellular functions is limited. In this study, we demonstrated...
Article
The 26S proteasome is the major degradation machinery for soluble proteins in eukaryotes. Recent evidence reveals the existence of an alternative ATP-powered protein degradation complex, the Cdc48-20S proteasome complex, and we have identified yeast Sod1, a copper-zinc superoxide dismutase, as an endogenous substrate protein. Here, we identified ye...
Article
Dynamic functionality of mitochondria is maintained by continual fusion and fission events. A mitochondrial outer membrane protein Fzo1 plays a pivotal role upon mitochondrial fusion by homo-oligomerization to tether fusing mitochondria. Fzo1 is tightly regulated by ubiquitylations and the ubiquitin-responsible AAA protein Cdc48. Here, we show that...
Article
Full-text available
Single-chain Fv (scFv) antibodies are recombinant proteins in which the variable regions of the heavy chain (VH) and light chain (VL) are connected by a short flexible polypeptide linker. ScFvs have the advantages of easy genetic manipulation and low-cost production using Escherichia coli compared with monoclonal antibodies, and are thus expected t...
Article
Full-text available
Time-resolved direct observations of proteins in action provide essential mechanistic insights into biological processes. Here, we present mechanisms of action of protein disulfide isomerase (PDI)—the most versatile disulfide-introducing enzyme in the endoplasmic reticulum—during the catalysis of oxidative protein folding. Single-molecule analysis...
Article
Full-text available
Abstract Familial amyloid polyneuropathy is a hereditary systemic amyloidosis caused by a mutation in the transthyretin (TTR) gene. Amyloid deposits in tissues of patients contain not only full-length TTR but also C-terminal TTR fragments. However, in vivo models to evaluate the pathogenicity of TTR fragments have not yet been developed. Here, we g...
Article
CDC-48 is a AAA (ATPases associated with diverse cellular activities) chaperone and participates in a wide range of cellular activities. Its functional diversity is determined by differential binding of a variety of cofactors. In this study, we analyzed the physiological role of a CDC-48 cofactor UBXN-6 in Caenorhabditis elegans. The amount of UBXN...
Article
A newly isolated binding protein of peroxisomal targeting signal type 2 (PTS2) receptor Pex7, termed P7BP2, is transported into peroxisomes by binding to the longer isoform of Pex5p, Pex5pL, via Pex7p. The binding to Pex7p and peroxisomal localization of P7BP2 depends on the cleavable PTS2 in the N-terminal region, suggesting that P7BP2 is a new PT...
Article
Mitochondria continuously undergo coordinated fusion and fission during vegetative growth to keep their homogeneity and to remove damaged components. A cytosolic AAA ATPase, Cdc48, is implicated in the mitochondrial fusion event and turnover of a fusion-responsible GTPase in the mitochondrial outer membrane, Fzo1, suggesting a possible linkage of m...
Article
Full-text available
The ATP-powered protein degradation machinery plays essential roles in maintaining protein homeostasis in all organisms. Robust proteolytic activities are typically sequestered within protein complexes to avoid the fatal removal of essential proteins. Because the openings of proteolytic chambers are narrow, substrate proteins must undergo unfolding...
Article
Full-text available
Biofilms are intricate communities of microorganisms embedded in a self-produced matrix of extracellular polymer, which provides microbes survival advantages in stressful environments and can cause chronic infections in humans. Curli are functional amyloids that assemble on the extracellular surface of enteric bacteria such as Escherichia coli duri...
Article
Full-text available
Biofilms are well-organised communities of microbes embedded in a self-produced extracellular matrix (e.g., curli amyloid fibers) and are associated with chronic infections. Therefore, development of anti-biofilm drugs is important to combat with these infections. Previously, we found that flavonol Myricetin inhibits curli-dependent biofilm formati...
Chapter
In the silkworm, Bombyx mori, three cell lines (S.P.C.Bm36, 1 BM-N, 2 and SES-BoMo- 15A have been established. These cell lines were already characterized, but genetic and physiologic data are rare. Furthermore, one of them, S.P.C.Bm36(Bm36) cell line in the currently available form, is not B. mori type. The original cell source of the BM-N(Bm) has...
Article
Full-text available
Yeast Cdc48 is a well-conserved, essential chaperone of ATPases associated with diverse cellular activity (AAA) proteins, which recognizes substrate proteins and modulates their conformations to carry out many cellular processes. However, the fundamental mechanisms underlying the diverse pivotal roles of Cdc48 remain unknown. Almost all AAA protein...
Article
Full-text available
Due to their lower production cost compared with monoclonal antibodies, single-chain variable fragments (scFvs) have potential for use in several applications, such as for diagnosis and treatment of a range of diseases, and as sensor elements. However, the usefulness of scFvs is limited by inhomogeneity through the formation of dimers, trimers, and...
Article
ERdj5, composed of an N-terminal J domain followed by six thioredoxin-like domains, is the largest protein disulfide isomerase family member and functions as an ER-localized disulfide reductase that enhances ER-associated degradation (ERAD). Our previous studies indicated that ERdj5 comprises two regions, the N- and C-terminal clusters, separated b...
Article
Full-text available
Biofilms are complex communities of microbes that attach to biotic or abiotic surfaces causing chronic infectious diseases. Within a biofilm, microbes are embedded in a self-produced soft extracellular matrix (ECM), which protects them from the host immune system and antibiotics. The nanoscale visualisation of delicate biofilms in liquid is challen...
Article
Full-text available
The intrinsically stochastic dynamics of mRNA metabolism have important consequences on gene regulation and non-genetic cell-to-cell variability; however, no generally applicable methods exist for studying such stochastic processes quantitatively. Here, we describe the use of the amyloid-binding probe Thioflavin T (ThT) for monitoring RNA metabolis...
Article
Full-text available
The microtubule (MT) network is highly dynamic and undergoes dramatic reorganizations during the cell cycle. Dimers of α- and β-tubulins rapidly polymerize to and depolymerize from the end of MT fibrils in an intrinsic GTP-dependent manner. MT severing by ATP-driven enzymes such as katanin and spastin contributes significantly to microtubule dynami...
Article
CDC-48 (also called VCP or p97 in mammals and Cdc48p in yeast) is a AAA (ATPases associated with diverse cellular activities) chaperone and participates in a wide range of cellular activities including modulation of protein complexes and protein aggregates. UFD-2 and UFD-3, C-terminal adaptors for CDC-48, reportedly bind to CDC-48 in a mutually exc...
Article
Full-text available
Biofilms are complex communities of microorganisms that attach to surfaces and are embedded in a self-produced extracellular matrix. Since these cells acquire increased tolerance against antimicrobial agents and host immune systems, biofilm-associated infectious diseases tend to become chronic. We show here that the molecular chaperone DnaK is impo...
Article
Electron tomography using a high-voltage electron microscope (HVEM) provides three-dimensional information about cellular components in sections thicker than 1μm, although in bright-field mode image degradation caused by multiple inelastic scattering of transmitted electrons limit the attainable resolution. Scanning transmission electron microscopy...
Article
Cdc48p is a highly conserved cytosolic AAA chaperone that is involved in a wide range of cellular processes. It consists of two ATPase domains (D1 and D2), with regulatory regions at the N- and C-terminals. We have recently shown that Cdc48p regulates mitochondrial morphology, in that a loss of the ATPase activity or positive cooperativity in the D...
Article
Bcs1 is atransmembranechaperone in the mitochondrial inner membrane,and is required for the mitochondrial Respiratory Chain Complex III assembly. It has been shown that the highly-conserved C-terminal region of Bcs1 including the AAA ATPase domain in the matrix side is essential for the chaperone function. Here we describe the importance of the N-t...
Article
p97 (also called VCP and CDC-48) is an AAA+ chaperone, which consists of a substrate/cofactor-binding N domain and two ATPase domains (D1 and D2), and forms a homo-hexameric ring. p97 plays crucial roles in a variety of cellular processes such as the ubiquitin-proteasome pathway, the endoplasmic reticulum-associated protein degradation, autophagy,...
Article
FtsH, a member of the AAA (ATPases associated with a variety of cellular activities) family of proteins, is an ATP-dependent protease of ∼71 kDa anchored to the inner membrane. It plays crucial roles in a variety of cellular processes. It is responsible for the degradation of both membrane and cytoplasmic substrate proteins. Substrate proteins are...
Article
Full-text available
Kif26b, a member of the kinesin superfamily proteins (KIFs), is essential for kidney development. Kif26b expression is restricted to the metanephric mesenchyme, and its transcription is regulated by a zinc finger transcriptional regulator Sall1. However, the mechanism(s) by which Kif26b protein is regulated remain unknown. Here, we demonstrate phos...
Data
Identification of Nedd4 as a Kif26b-interacting protein. The lysates from newborn kidneys were subjected to pull-down assay with recombinant GST-tagged C-terminal region of Kif26b. The precipitates were separated by SDS-PAGE, followed by silver staining. The arrowheads indicate proteins that were identified by mass spectrometry (top, NMHC IIB; bott...
Data
Kif26b is polyubiquitinated via Lys48 on ubiquitin. A. HEK293 cells were transfected with FLAG-Kif26b. At 48 hrs after transfection, cells were treated with MG132 (20 µM) for 8 hrs and lysed with lysis buffer in the presence or absence of 2% SDS. The lysate containing SDS was boiled for 10 min at 95°C, and then diluted 15 times with lysis buffer. I...
Data
Nedd4 is expressed in developing kidney. In situ hybridization showed Nedd4 was expressed in all components of developing kidney such as the metanephric mesenchymes, comma-shaped bodies and the ureteric epithelia. No signal was observed with the sense control probe. Scale bar, 100 µm. (TIF)
Data
Kif26b is phosphorylated by CDKs. A. HEK293 cells were transfected with FLAG-Kif26b expressing plasmid. At 48 hrs after transfection, cells were treated with DMSO, Roscovitine (20 µM) or U0126 (20 µM) for 6 hrs. The lysates were subjected to immunoprecipitation with anti-FLAG beads. The precipitants were analyzed by immunoblotting with the indicate...
Data
Interaction of Kif26b with CDK5 and expression of Kif26b in the developing kidney. A. Kif26b was immunoprecipitated from E14.5 kidney lysates with anti-Kif26b antibody, and precipitates were analyzed by immunoblotting with the indicated antibodies. B. Kidneys from E17.5 CDK5 mutant embryos were lysed with sample buffer and then separated by SDS-PAG...
Article
CDC-48/p97 is a AAA (ATPases associated with diverse cellular activities) chaperone involved in protein conformational changes such as the disassembly of protein complexes. We previously reported that Caenorhabditis elegans CDC-48.1 and CDC-48.2 (CDC-48s) are essential for the progression of meiosis I metaphase. Here, we report that CDC-48s are req...
Article
Fidgetin is a member of the AAA (ATPases associated with diverse cellular activities) chaperones. It is well-known that the specific function of a given AAA protein primarily depends upon its subcellular localization and interacting partners. FIGL-1, a Caenorhabditis elegans homolog of mammalian fidgetin, is localized in the nucleus. Here, we ident...
Article
Cdc48p/p97 is a cytosolic essential AAA chaperone, which regulates multiple cellular reactions in a ubiquitin-dependent manner. We have recently shown that Cdc48p exhibits positively cooperative ATPase activity and loss of the positive cooperativity results in yeast cell death. Here we show that loss of the positive cooperativity of the yeast Cdc48...
Article
p97/VCP/Cdc48 is one of the best-characterized type II AAA (ATPases associated with diverse cellular activities) ATPases. p97 is suggested to be a ubiquitin-selective chaperone and its key function is to disassemble protein complexes. p97 is involved in a wide variety of cellular activities. Recently, novel functions, namely autophagy and mitochond...
Article
Full-text available
p97 is composed of two conserved AAA (ATPases associated with diverse cellular activities) domains, which form a tandem hexameric ring. We characterized the ATP hydrolysis mechanism of CDC-48.1, a p97 homolog of Caenorhabditis elegans. The ATPase activity of the N-terminal AAA domain was very low at physiological temperature, whereas the C-terminal...
Article
Atomic force microscopy (AFM) enables direct visualization of single-protein molecules in liquids at submolecular resolution. High-speed AFM further makes it possible to visualize dynamic biomolecular processes at subsecond resolution. However, dynamic imaging of biomolecular processes imposes various requirements on "wet techniques" and imaging co...
Article
UBX (ubiquitin regulatory X) domain-containing proteins act as cofactors for CDC-48/p97. CDC-48/p97 is essential for various cellular processes including retro-translocation in endoplasmic reticulum-associated degradation, homotypic membrane fusion, nuclear envelope assembly, degradation of ubiquitylated proteins, and cell cycle progression. CDC-48...
Article
FtsH is a peculiar prokaryotic protease with low unfoldase activity. Different reports have proposed that FtsH substrates could be either tagged proteins or proteins of low stability. We show here that FtsH degradation of 31 point mutants of Anabaena apoflavodoxin is inversely proportional to their conformational stabilities, and that the same appl...
Article
Full-text available
Cdc48p/p97 is a highly conserved essential AAA protein that is required for many cellular processes, and is identified as a causative gene for an autosomal dominant human disorder, inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia (IBMPFD). Cdc48p/p97 is composed of an N-terminal domain, followed by two...
Article
Full-text available
AAA+ chaperone ClpX has been suggested to be a modulator of prokaryotic cytoskeletal protein FtsZ, but the details of recognition and remodeling of FtsZ by ClpX are largely unknown. In this study, we have extensively investigated the nature of FtsZ polymers and mechanisms of ClpX-regulated FtsZ polymer dynamics. We found that FtsZ polymerization is...
Article
Full-text available
p97 (CDC-48 in Caenorhabditis elegans) is a ubiquitin-selective AAA (ATPases associated with diverse cellular activities) chaperone and its key function is to disassemble protein complexes. p97 functions in diverse cellular processes including endoplasmic reticulum (ER)-associated degradation, membrane fusion, and meiotic and mitotic progression. H...
Article
Mutations of human spastin, an AAA (ATPases associated with diverse cellular activity) family protein, cause an autosomal dominant form of hereditary spastic paraplegia, which is characterized by weakness, spasticity and loss of the vibratory sense in the lower limbs. Recently, it has been reported that spastin displays microtubule-severing activit...
Article
Polyglutamine (polyQ)-expanded proteins are associated with cytotoxicity in some neurodegenerative disorders such as Huntington's disease. We have reported that the aggregation of the polyQ-expanded protein is partially suppressed by co-expression of either of two homologs of an AAA chaperone p97, CDC-48.1 or CDC-48.2, in Caenorhabditis elegans, bu...
Article
Caenorhabditis elegans possesses two p97/VCP/Cdc48p homologues, named CDC-48.1 (C06A1.1) and CDC-48.2 (C41C4.8), and their expression patterns and levels are differently regulated. To clarify the regulatory mechanisms of differential expression of two p97 proteins of C. elegans, we performed detailed deletion analysis of their promoter regions. We...
Article
AAA (ATPase associated with various cellular activities) proteins remodel substrate proteins and protein complexes upon ATP hydrolysis. Substrate remodelling is diverse, e.g. proteolysis, unfolding, disaggregation and disassembly. In the oligomeric ring of the AAA protein, there is a conserved aromatic residue which lines the central pore. Function...
Article
p97 (also called VCP or Cdc48p) and E3 ubiquitin ligases are the key players in retrotranslocation and ubiquitination of substrates in the endoplasmic reticulum-associated degradation (ERAD) pathways. Although their biochemical properties have been well studied, their cellular functions in development have not been revealed. Here, we investigate ce...
Article
Mutations in human spastin (SPG4) cause an autosomal dominant form of hereditary spastic paraplegia. Sequence analysis revealed that spastin contains the AAA (ATPases associated with diverse cellular activities) domain in the C-terminal region. Recently, it was reported that spastin interacts dynamically with microtubules and displays microtubule-s...