
Terry RhodesUniversity of California, Los Angeles | UCLA · Department of Physics and Astronomy
Terry Rhodes
Doctor of Philosophy
About
447
Publications
19,630
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
11,826
Citations
Introduction
Skills and Expertise
Publications
Publications (447)
Enhanced Dα H-mode (EDA H-mode), an ELM-free H-mode regime, and the concomitant quasi-coherent mode (QCM) are explored in neutral beam heated, lower single null plasmas with near zero external torque injection. This regime exhibits good energy confinement (H98y2 ∼ 1) with βN ∼ 2, high density, regime access at low input power, and no ELMs. New time...
The fixed-frequency and frequency-modulated continuous-wave (FM-CW) reflectometers on LTX-β (Lithium Tokamak eXperiment-β) have been configured to use the same transmission lines and antenna arrays for coincident views of the core and edge plasma. The fixed-frequency channels (13.1–20.5 and 20–40 GHz, tunable between discharges) provide time-resolv...
A new frequency-stepped Doppler backscattering (DBS) system has been integrated with a real-time steerable electron cyclotron heating launcher to probe local background turbulence (f<10 MHz) and high-frequency (20-550 MHz) density fluctuations in the DIII-D tokamak. The launcher enables 2D steering (horizontal and vertical) over wide angular ranges...
We present the design and laboratory tests for a new Q-band frequency tunable Doppler backscattering (DBS) system suitable for probing poloidal wavenumber kñ = 6–8 cm⁻¹ density fluctuations and their flow velocities in the pedestal and scape-off layer (SOL) of the DIII-D tokamak. This system will provide new measurements in the increasingly importa...
To validate nonlinear gyrokinetic simulations of electron temperature turbulence, the experimental correlation electron cyclotron emission (CECE) measurements are to be compared using a synthetic CECE diagnostic, which generates modeled CECE measurement quantities by implementing realistic measurement parameters (e.g., spatial and wavenumber resolu...
A set of new millimeter-wave diagnostics will deliver unique measurement capabilities for National Spherical Torus Experiment-Upgrade to address a variety of plasma instabilities believed to be important in determining thermal and particle transport, such as micro-tearing, global Alfvén eigenmodes, kinetic ballooning, trapped electron, and electron...
Validated and accurate edge profiles (temperature, density, etc.) are vitally important to the Mega Ampere Spherical Tokamak Upgrade (MAST-U) divertor and confinement effort. Density profile reflectometry has the potential to significantly add to the measurement capabilities currently available on MAST-U (e.g., Thomson scattering and Langmuir probe...
In H-mode tokamak plasmas, the plasma is sometimes ejected beyond the edge transport barrier. These events are known as edge localized modes (ELMs). ELMs cause a loss of energy and damage the vessel walls. Understanding the physics of ELMs, and by extension, how to detect and mitigate them, is an important challenge. In this paper, we focus on two...
Multimachine empirical scaling predicts an extremely narrow heat exhaust layer in future high magnetic field tokamaks, producing high power densities that require mitigation. In the experiments presented, the width of this exhaust layer is nearly doubled using actuators to increase turbulent transport in the plasma edge. This is achieved in low col...
In H-mode tokamak plasmas, the plasma is sometimes ejected beyond the edge transport barrier. These events are known as edge localized modes (ELMs). ELMs cause a loss of energy and damage the vessel walls. Understanding the physics of ELMs and by extension, how to detect and mitigate them, is an important challenge. In this paper, we focus on two d...
The path of tokamak fusion and International thermonuclear experimental reactor (ITER) is maintaining high-performance plasma to produce sufficient fusion power. This effort is hindered by the transient energy burst arising from the instabilities at the boundary of plasmas. Conventional 3D magnetic perturbations used to suppress these instabilities...
Experimental conditions obtained on the DIII-D tokamak in the ITER Similar Shape (ISS) have been compared extensively with nonlinear gyrokinetic simulation using the CGYRO code [Candy et al., J. Comput. Phys. 324, 73–93 (2016)] with comparisons spanning ion and electron heat fluxes, electron and impurity particle transport, and turbulent fluctuatio...
A dimensionless collisionality scan has been performed in H-mode plasmas on DIII-D tokamak, with detailed measurements of intermediate-to-high wavenumber turbulence using Doppler backscattering systems. It is found that the shorter wavelength turbulence develops into spatially asymmetric turbulent structures with a long-radial-range correlation (LR...
A novel quadrature Doppler Backscattering (DBS) system has been developed and optimized for the E-band (60-90 GHz) frequency range using either O-mode or X-mode polarization in DIII-D plasmas. In general, DBS measures the amplitude of density fluctuations and their velocity in the lab frame. The system can simultaneously monitor both low-frequency...
A novel quadrature Doppler Backscattering (DBS) system has been developed and optimized for the E-band (60-90GHz) frequency range using either O-mode or X-mode polarization in DIII-D plasmas. In general, DBS measures the amplitude of density fluctuations and their velocity in the lab frame. The system can simultaneously monitor both low-frequency t...
Experiments on the DIII-D tokamak have identified a novel regime in which applied resonant magnetic perturbations (RMPs) increase the particle confinement and overall performance. This Letter details a robust range of counter-current rotation over which RMPs cause this density pump-in effect for high confinement (H mode) plasmas. The pump in is sho...
Recent dedicated DIII-D experiments in low-torque, ITER-similar-shape (ISS) hydrogen plasmas (at a plasma current I p ∼ 1.5 MA and ITER-similar edge safety factor q 95 ∼ 3.6) show that the L-H transition power threshold P LH can be reduced substantially (∼30%) with L-mode helium admixtures n He / n e ⩽ 25%. In the ensuing H-mode, helium ion fractio...
The radial correlation length ( L r ) is one of the essential quantities to measure in order to more fully characterize and understand turbulence and anomalous transport in magnetic fusion plasmas. The analysis method for calculating L r of electron temperature (T e ) turbulence from correlation electron cyclotron emission (correlation ECE or CECE)...
A new Doppler backscattering (DBS) system has been installed and tested on the MAST-U spherical tokamak. It utilizes eight simultaneous fixed frequency probe beams (32.5, 35, 37.5, 40, 42.5, 45, 47.5, and 50 GHz). These frequencies provide a range of radial positions from the edge plasma to the core depending on plasma conditions. The system utiliz...
We use the beam model of Doppler backscattering (DBS), which was previously derived from beam tracing and the reciprocity theorem, to shed light on mismatch attenuation. This attenuation of the backscattered signal occurs when the wavevector of the probe beam’s electric field is not in the plane perpendicular to the magnetic field. Correcting for t...
The high density fluctuation poloidal wavenumber, k θ ( k θ > 8 cm ⁻¹ , k θ ρ s > 5, ρ s is the ion gyro radius using the ion sound velocity), measurement capability of a new Doppler backscattering (DBS) system at the DIII-D tokamak has been experimentally evaluated. In DBS, wavenumber ( k) matching becomes more important at higher wavenumbers, owi...
We report on the enhanced core electron density fluctuation with long radial correlation length when the mean flow collapses in high-collisionality \emph{H}-mode plasmas on DIII-D tokamak. This long-radial-range-correlation (LRRC) fluctuation has a radially elongated, streamer-like mode structure ($k_{r}\rho_{s}=0.1-0.3$ and $k_{\theta}\rho_{s}=1-4...
A thermal ion driven bursting instability with rapid frequency chirping, considered as an Alfvénic ion temperature gradient mode, has been observed in plasmas having reactor-relevant temperature in the DIII-D tokamak. The modes are excited over a wide spatial range from macroscopic device size to microturbulence size and the perturbation energy pro...
A combined Doppler backscattering/cross-polarization scattering (DBS/CPS) system is being deployed on MAST-U for simultaneous measurements of local density turbulence, turbulence flows, and magnetic turbulence. In this design, CPS shares the probing beam with the DBS and uses a separate parallel-viewing receiver system. In this study, we utilize a...
A combined Doppler backscattering/cross-polarization scattering (DBS/CPS) system is being deployed on MAST-U, for simultaneous measurements of local density turbulence, turbulence flows, and magnetic turbulence. In this design, CPS shares the probing beam with the DBS and uses a separate parallel-viewing receiver system. In this study, we utilize a...
Microwave heat pulse propagation experiments have demonstrated a correlation between millimeter-scale turbulence and deposition profile broadening of electron cyclotron (EC) waves on the DIII-D tokamak. In a set of discharges in DIII-D, a variation in edge density fluctuations on the mm-scale is associated with 40%-150% broader deposition profiles,...
Turbulent electron temperature fluctuation measurement using a correlation electron cyclotron emission (CECE) radiometer has become an important diagnostic for studying energy transport in fusion plasmas, and its use is widespread in tokamaks (DIII-D, ASDEX Upgrade, Alcator C-Mod, Tore Supra, EAST, TCV, HL-2A, etc.). The CECE diagnostic typically p...
New capabilities of fast-sweep frequency-modulated profile reflectometry are explored to measure electron density ne perturbation magnitudes and radial profiles due to plasma coherent modes in DIII-D. The first approach is based on the frequency analysis of phase perturbations associated with high frequency (∼MHz) Alfvén eigenmodes (AEs). The measu...
Final design studies in preparation for manufacturing have been performed for functional components of the vacuum portion of the ITER Low-Field Side Reflectometer (LFSR). These components consist of an antenna array, electron cyclotron heating (ECH) protection mirrors, phase calibration mirrors, and vacuum windows. Evaluation of these components wa...
We report the observation of a quasi-coherent density fluctuation (QCF) by the Doppler backscattering system in the scrape-off layer (SOL) region of the DIII-D tokamak. This QCF is observed in high-power, high-performance hybrid plasmas with near double-null divertor (DND) shape during the electron cyclotron heating period. This mode is correlated...
Quiescent high performance plasmas (often termed QH-mode) are attractive due to the replacement of potentially damaging energy and particle releases known as edge localized modes by relatively benign edge harmonic oscillations (EHOs). These EHOs are believed to be driven unstable by edge current and/or edge toroidal rotational shear and contribute...
Cold pulses are introduced in Ohmic DIII-D tokamak plasmas via injection of impurities with a laser blow-off system, revealing for the first time in this machine a quick increase in core electron temperature shortly after the edge cold-pulse injection at low collisionality. The experimental results are consistent with predict-first simulations of h...
Direct measurements of deuterium main-ion toroidal rotation spanning the linear ohmic to saturated ohmic confinement (LOC-SOC) regime and with additional electron cyclotron heating (ECH) are presented and compared with the more commonly measured impurity (carbon) ion rotation in DIII-D. Main ions carry the bulk of the plasma toroidal momentum, and...
Plasma discharges with a negative triangularity (δ=−0.4) shape have been created in the DIII-D tokamak with a significant normalized beta (βN=2.7) and confinement characteristic of the high confinement mode (H98y2=1.2) despite the absence of an edge pressure pedestal and no edge localized modes (ELMs). These inner-wall-limited plasmas have a simila...
The research program for LTX-β, the upgrade to the Lithium Tokamak Experiment, combines lithium walls to produce gradient-free temperature profiles and stabilize ion and electron temperature gradient-driven modes, with approaches to stabilization of łn-driven modes, such as the trapped electron mode (TEM). Candidate stabilization mechanisms for the...
In this paper, we address the challenging question of measuring turbulence levels on the high magnetic field side (HFS) of tokamak plasmas. Although turbulence measurements on the HFS can provide a stringent constraint for the turbulence model validation, to date only low magnetic field side (LFS) measured turbulence has been used in validation stu...
Simulations and laboratory tests are used to design and optimize a quasi-optical system for cross-polarization scattering (CPS) measurements of magnetic turbulence on the DIII-D tokamak. The CPS technique uses a process where magnetic turbulence scatters electromagnetic radiation into the perpendicular polarization enabling a local measurement of t...
Real-time phase calibration of the ITER profile reflectometer is essential due to the long plasma duration and expected waveguide path length changes during a discharge. Progress has been recently made in addressing this issue by employing a phase calibration technique on DIII-D that monitors calibration variations that occur during each plasma dis...
Cross-polarization scattering (CPS) provides localized magnetic fluctuation (
B
̃
) measurements in fusion plasmas based on the process where
B
̃
scatters electromagnetic radiation into the orthogonal polarization. The CPS system on DIII-D utilizes the probe beam of a Doppler backscattering (DBS) diagnostic combined with a cross-view CPS re...
The λ ≈ 1 mm (f = 288 GHz) interferometer for the Lithium Tokamak Experiment-β (LTX-β) will use a chirped-frequency source and a centerstack-mounted retro-reflector mirror to provide electron line density measurements along a single radial chord at the midplane. The interferometer is unique in the use of a single source (narrow-band chirped-frequen...
For the first time, we report increased edge electron temperature and density turbulence levels (T̃e and ñe) in Edge Localized Mode free Quiescent H-mode (ELM-free QH-mode) plasmas as compared to the ELMing time period. ELMs can severely damage plasma facing components in fusion plasma devices due to their large transient energy transport, making E...
Small 3D perturbations to the magnetic field in DIII-D (δB/B∼2×10−4) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DII...
A new, long-lived limit cycle oscillation (LCO) regime has been observed in the edge of near zero torque high performance DIII-D tokamak plasma discharges. These LCOs are localized and composed of density turbulence, gradient drives, and E × B velocity shear damping (E and B are the local radial electric and total magnetic fields). Density turbulen...
Recent measurements of turbulent density (ñ) and electron-temperature (T̃e) fluctuations have reported turbulence modifications by Neoclassical Tearing Mode (NTM) islands: turbulence decreases (increases) inside (outside) the island region when the island width (W) exceeds a threshold (WT), in qualitative agreement with gyrokinetic simulations. As...
The first observation of increased electron temperature turbulence during edge localized mode (ELM) suppression by resonant magnetic perturbations (RMPs) is presented. These are long wavelength fluctuations (kθρs ≤ 0.2, where kθ = poloidal wavenumber and ρs = ion sound gyroradius) observed during H-mode plasmas on the DIII-D. This increase occurs o...
The National Spherical Torus Experiment (NSTX) has undergone a major upgrade, and the NSTX Upgrade (NSTX-U) Project was completed in the summer of 2015. NSTX-U first plasma was subsequently achieved, diagnostic and control systems have been commissioned, the H-mode accessed, magnetic error fields identified and mitigated, and the first physics rese...
Low-wavenumber density fluctuations exhibit unique characteristics during the current ramp-up phase of ITER-like discharges that can partially explain the challenges of correctly modeling transport behavior and predicting global plasma parameters during this period. A strong interaction takes place between the evolving transport, safety factor (q)...
Experimental signature of long-wavelength turbulence accelerating the recovery of Neoclassical Tearing Mode (NTM) magnetic islands after they have been transiently reduced in size due to interaction with Edge Localized Modes(ELMs) is reported for the first time. This work shows that perturbations associated with ELMs result in peaking of the electr...
We present the first localized measurements of long and intermediate wavelength turbulent density fluctuations (ñ) and long wavelength turbulent electron temperaturefluctuations (T̃e) modified by m/n=2/1 Neoclassical Tearing Mode (NTM) islands (m and n are the poloidal and toroidalmode numbers, respectively). These long and intermediate wavelengths...
Negative magnetic shear has been demonstrated in DIII-D and JT-60U to mitigate the confinement degradation typically observed with increasing the electron to ion temperature ratio (T e/T i). In recent experiments in DIII-D negative central magnetic shear (NCS) discharges, the thermal transport in the internal transport barrier formed around the rad...
The frequency-modulated continuous-wave reflectometer on LTX (Lithium Tokamak Experiment) and the data analysis methods used for determining electron density profiles are described. The diagnostic uses a frequency range of 13.1-33.5 GHz, for covering a density range of 0.21-1.4×1013 cm⁻³ (in O-mode polarization) with a time resolution down to 8 μs....
Neoclassical tearing modes have deleterious effects on plasma confinement and, if they grow large enough, they can lead to discharge termination. Therefore, they impose a major barrier in the development of operating scenarios of present-day tokamaks. Gyrokinetics offers a path toward studying multi-scale interactions with turbulence and the effect...
A stationary, quiescent H-mode (QH-mode) regime with a wide pedestal and improved confinement at low rotation has been discovered on DIII-D with reactor relevant edge parameters and no ELMs. As the injected neutral beam torque is ramped down and the edge E × B rotation shear reduces, the transition from standard QH to the wide pedestal QH-mode occu...
We present new measurements of internal magnetic fluctuations obtained with a novel eight channel cross polarization scattering (CPS) system installed on the DIII-D tokamak. Measurements of internal, localized magnetic fluctuations provide a window on an important physics quantity that we heretofore have had little information on. Importantly, thes...
A new eight-channel correlation electron cyclotron emission diagnostic has recently been installed on the DIII-D tokamak to study both turbulent and coherent electron temperature fluctuations under various plasma conditions and locations. This unique system is designed to cover a broad range of operation space on DIII-D (1.6-2.1 T, detection freque...
A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate...
An upgraded cross-polarization scattering (CPS) system for the simultaneous measurement of internal magnetic fluctuations and density fluctuations ñ is presented. The system has eight radial quadrature channels acquired simultaneously with an eight-channel Doppler backscattering system (measures density fluctuations ñ and flows). 3-D ray tracing ca...
New evidence indicates that there is significant 3D variation in density fluctuations near the boundary of weakly 3D tokamak plasmas when resonant magnetic perturbations are applied to suppress transient edge instabilities. The increase in fluctuations is concomitant with an increase in the measured density gradient, suggesting that this toroidally...
This paper describes joint ITPA studies of the I-mode regime, which features an edge thermal barrier together with L-mode-like particle and impurity transport and no edge localized modes (ELMs). The regime has been demonstrated on the Alcator C-Mod, ASDEX Upgrade and DIII-D tokamaks, over a wide range of device parameters and pedestal conditions. D...
We report the first observation of localized modulation of turbulent density fluctuations n˜ (via beam emission spectroscopy) by neoclassical tearing modes (NTMs) in the core of the DIII-D tokamak. NTMs are important as they often lead to severe degradation of plasma confinement and disruptions in high-confinement fusion experiments. Magnetic islan...
Recent experiments in DIII-D [J. L. Luxon et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode(ELM) instabilities and wit...
Neoclassical tearing modes (NTMs) often lead to the decrease of plasma performance and can lead to disruptions, which makes them a major impediment in the development of operating scenarios in present toroidal fusion devices. Recent gyrokinetic simulations predict a decrease of plasma turbulence and cross-field transport at the O-point of the islan...
A series of DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] low torque quiescent H-mode experiments show that density gradient driven trapped electron mode (DGTEM) turbulence dominates the inner core of H-modeplasmas during strong electron cyclotron heating(ECH). Adding 3.4 MW ECH doubles Te/Ti from 0.5 to 1.0, which halves the linear DGTEM criti...
Over the last decade, plasma turbulence simulations based on gyrokinetic theory have reached an amazing degree of physical comprehensiveness and realism. In contrast to early gyrokinetic studies, which were restricted to qualitative statements, state-of-the-art investigations may now be compared quantitatively, therefore enabling validation and det...
In this paper we show how changes in toroidal rotation, by controlling the injected torque, affect particle transport and confinement. The toroidal rotation is altered using the co- and counter neutral beam injection (NBI) in low collisionality H-mode plasmas on DIII-D (Luxon 2002 Nucl. Fusion 42 614) with dominant electron cyclotron heating (ECH)....
In this paper we show that resonant magnetic perturbations (RMPs) affect the L- to H-mode power threshold. We find that during the L-mode phase, RMPs cause the particle pinch to reverse from traditionally inward to outward. As a result, the density at the plasma edge increases, while the density in the plasma core is reduced. Linear stability calcu...
In this paper we show that changing from an ion temperature gradient (ITG) to a trapped electron mode (TEM) dominant turbulence regime (based on linear gyrokinetic simulations) results experimentally in a strong density pump-out (defined as a reduction in line-averaged density) in low collisionality, low power H-mode plasmas. We vary the turbulence...
The I-mode regime, routinely observed on the Alcator C-Mod tokamak, is characterized by an edge energy transport barrier without an accompanying particle barrier and with broadband instabilities, known as weakly coherent modes (WCM), believed to regulate particle transport at the edge.
Recent experiments on the DIII-D tokamak exhibit I-mode charact...
Direct measurements of the pedestal recovery during an edge-localized mode cycle provide evidence that quasi-coherent fluctuations (QCFs) play a role in the inter-ELM pedestal dynamics. Using fast Thomson scattering measurements, the pedestal density and temperature evolutions are probed on sub-millisecond time scales to show a fast recovery of the...
Rapid bifurcations in the plasma response to slowly varying n=2 magnetic fields are observed as the plasma transitions into and out of edge-localized mode (ELM) suppression. The rapid transition to ELM suppression is characterized by an increase in the toroidal rotation and a reduction in the electron pressure gradient at the top of the pedestal th...
Previous nonlinear gyrokinetic simulations of specific DIII-D L-mode cases have been found to significantly underpredict the ion heat
transport and associated density and temperature fluctuation levels by up to almost one of order of magnitude in the outer-core domain, i.e., roughly in the last third of the minor radius. Since then, this so-called...
Previous studies of DIII-D L-mode
plasmas have shown that a transport shortfall exists in that our current models of turbulent transport can significantly underestimate the energy transport in the near edge region. In this paper, the Trapped Gyro-Landau-Fluid (TGLF) drift wave transport
model is used to simulate the near edge transport in a DIII-D...
A new frequency-modulated profile reflectometer system, featuring a monostatic antenna geometry (using one microwave antenna for both launch and receive), has been installed on the DIII-D tokamak, providing a first experimental test of this measurement approach for profile reflectometry. Significant features of the new system are briefly described...
The design and performance of a new cross-polarization scattering (CPS) system for the localized measurement of internal magnetic fluctuations is presented. CPS is a process whereby magnetic fluctuations scatter incident electromagnetic radiation into a perpendicular polarization which is subsequently detected. A new CPS design that incorporates a...