Teresa Lenser

Teresa Lenser
  • PhD
  • Researcher at Friedrich Schiller University Jena

About

20
Publications
4,613
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
551
Citations
Current institution
Friedrich Schiller University Jena
Current position
  • Researcher

Publications

Publications (20)
Article
Full-text available
The developmental transition from a fertilized ovule to a dispersed diaspore (seed or fruit) involves complex differentiation processes of the ovule's integuments leading to the diversity in mature seed coat structures in angiosperms. In this study, comparative imaging and transcriptome analysis were combined to investigate the morph‐specific devel...
Article
Full-text available
Auxin (indole-3-acetic acid, IAA) is an important phytohormone involved in root growth and development. Root-interacting beneficial and pathogenic fungi utilize auxin and its target genes to manipulate the performance of their hosts for their own needs. In order to follow and visualize auxin effects in fungi-colonized Arabidopsis roots, we used the...
Data
Visualization of auxin maxima using the reporter construct DR5::EGFP-DR5v2::tdTomato during plant-fungus interaction. Light sheet videos of 17 h-recordings of control without addition of fungal spores.
Data
Visualization of auxin maxima using the reporter construct DR5::EGFP-DR5v2::tdTomato during plant-fungus interaction. Light sheet video of 17 h-recording of co-cultivation with P. indica spore solution.
Data
Visualization of auxin maxima using the reporter construct DR5::EGFP-DR5v2::tdTomato during plant-fungus interaction. Light sheet video of 17 h-recording of co-cultivation with M. hyalina spore solution. Background fluorescence in M. hyalina co-culture is due to autofluorescence of spores.
Data
Visualization of auxin maxima using the reporter construct DR5::EGFP-DR5v2::tdTomato during plant-fungus interaction. Light sheet video of 17 h-recording of co-cultivation with A. brassicicola spore solution.
Data
Visualization of auxin maxima using the reporter construct DR5::EGFP-DR5v2::tdTomato during plant-fungus interaction. Light sheet video of 17 h-recording of co-cultivation with V. dahliae spore solution.
Article
Life in unpredictably changing habitats is a great challenge, especially for sessile organisms like plants. Fruit and seed heteromorphism is one way to cope with such variable environmental conditions. It denotes the production of distinct types of fruits and seeds that often mediate distinct life-history strategies in terms of dispersal, germinati...
Article
Full-text available
Understanding how plants cope with changing habitats is a timely and important topic in plant research. Phenotypic plasticity describes the capability of a genotype to produce different phenotypes when exposed to different environmental conditions. In contrast, the constant production of a set of distinct phenotypes by one genotype mediates bet-hed...
Article
Floral dip is a very common technique to stably transform Arabidopsis thaliana (Clough and Bent, 1998; Martinez-Trujillo et al., 2004; Zhang et al., 2006) and has also been adapted to some other plant species (Curtis and Nam, 2001; Tague, 2001; Bartholmes et al., 2008). Here, we describe this method optimized for transformation of the Brassicaceae...
Article
Full-text available
Fruit dehiscence is an important evolutionary and agronomic trait. For quantifying and comparing the exact fruit dehiscence capability between individual plants, the random impact test has been described (Morgan et al., 1998; Bruce et al., 2002; Arnaud et al., 2010). Here, we describe the random impact test optimized to measure dehiscence capabilit...
Thesis
Full-text available
Identifying and understanding the molecular changes that accompany phenotypic adaptation are central goals in evolutionary biology. This thesis contributes to these goals by presenting two detailed case studies comparing the molecular network leading to fruit dehiscence in three Brassicaceae species that differ in prominent fruit traits and by f...
Article
Domestication has helped to understand evolution. We argue that, vice versa, novel insights into evolutionary principles could provide deeper insights into domestication. Molecular analyses have demonstrated that convergent phenotypic evolution is often based on molecular changes in orthologous genes or pathways. Recent studies have revealed that d...
Article
The mode of fruit opening is an important agronomical and evolutionary trait that has been studied intensively in the major plant model system Arabidopsis thaliana. Because fruit morphology is highly variable between different species and also often the target of artificial selection during breeding, it is interesting to investigate whether a chang...
Article
In the Brassicaceae, indehiscent fruits evolved from dehiscent fruits several times independently. Here we use closely related wild species of the genus Lepidium as a model system to analyse the underlying developmental genetic mechanisms in a candidate gene approach. ALCATRAZ (ALC), INDEHISCENT (IND), SHATTERPROOF1 (SHP1) and SHP2 are known fruit...
Article
Full-text available
Several distinct pathways of RNA silencing operate in plants with roles including the suppression of virus accumulation, control of endogenous gene expression, and direction of DNA and chromatin modifications. Proteins of the Dicer-Like and Argonaute (AGO) families have key roles within these silencing pathways and have distinct biochemical propert...

Network

Cited By