Teddy Lazebnik

Teddy Lazebnik
Ariel University · Department of Mathematics

Phd
I study the usage of mathematical and computational methods in bio-clinical and socio-economic settings

About

111
Publications
9,400
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
639
Citations
Introduction
Biomathematical Modeling - bioclinical personalized ML-based treatments, ODE/PDE-based biological models, and infectious diseases dynamics. Computer Simulation - multi agent simulations with decision-making for complex dynamics. Meta Machine Learning - automatic feature selection, stability metrics, multi-agent collective learning. Using Math For Others - solving real-world research questions in many fields using mathematics and computer science.
Additional affiliations
September 2021 - September 2023
University College London
Position
  • PostDoc Position
Description
  • Working on the OMEGA project - using machine learning and bio-genomic models to generate artificial genetic samples.

Publications

Publications (111)
Article
Full-text available
Affective states are reflected in the facial expressions of all mammals. Facial behaviors linked to pain have attracted most of the attention so far in non-human animals, leading to the development of numerous instruments for evaluating pain through facial expressions for various animal species. Nevertheless, manual facial expression analysis is su...
Article
Full-text available
There is growing interest in the facial signals of domestic cats. Domestication may have shifted feline social dynamics towards a greater emphasis on facial signals that promote affiliative bonding. Most studies have focused on cat facial signals during human interactions or in response to pain. Research on intraspecific facial communication in cat...
Article
Full-text available
Coffee leaf rust is a prevalent botanical disease that causes a worldwide reduction in coffee supply and its quality, leading to immense economic losses. While several pandemic intervention policies (PIPs) for tackling this rust pandemic are commercially available, they seem to provide only partial epidemiological relief for farmers. In this work,...
Preprint
Full-text available
Scholarly communication is vital to scientific advancement, enabling the exchange of ideas and knowledge. When selecting publication venues, scholars consider various factors, such as journal relevance, reputation, outreach, and editorial standards and practices. However, some of these factors are inconspicuous or inconsistent across venues and ind...
Article
Full-text available
Sexually transmitted diseases (STDs) are a group of pathogens infecting new hosts through sexual interactions. Due to its social and economic burden, multiple models have been proposed to study the spreading of pathogens. In parallel, in the ever-evolving landscape of digital social interactions, the pervasive utilization of dating apps has become...
Preprint
Full-text available
Wildfires pose a significant natural disaster risk to populations and contribute to accelerated climate change. As wildfires are also affected by climate change, extreme wildfires are becoming increasingly frequent. Although they occur less frequently globally than those sparked by human activities, lightning-ignited wildfires play a substantial ro...
Article
Full-text available
Temporal graphs have become an essential tool for analyzing complex dynamic systems with multiple agents. Detecting anomalies in temporal graphs is crucial for various applications, including identifying emerging trends, monitoring network security, understanding social dynamics, tracking disease outbreaks, and understanding financial dynamics. In...
Preprint
Full-text available
The analysis of tabular datasets is highly prevalent both in scientific research and real-world applications of Machine Learning (ML). Unlike many other ML tasks, Deep Learning (DL) models often do not outperform traditional methods in this area. Previous comparative benchmarks have shown that DL performance is frequently equivalent or even inferio...
Article
Full-text available
Navigation of male moths towards females during the mating search offers a unique perspective on the exploration–exploitation (EE) model in decision-making. This study uses the EE model to explain male moth pheromone-driven flight paths. Wind tunnel measurements and three-dimensional tracking using infrared cameras have been leveraged to gain insig...
Article
Full-text available
Large Language Models (LLMs), exemplified by ChatGPT, have significantly reshaped text generation, particularly in the realm of writing assistance. While ethical considerations underscore the importance of transparently acknowledging LLM use, especially in scientific communication, genuine acknowledgment remains infrequent. A potential avenue to en...
Preprint
Full-text available
Detecting and understanding out-of-distribution (OOD) samples is crucial in machine learning (ML) to ensure reliable model performance. Current OOD studies, in general, and in the context of ML, in particular, primarily focus on extrapolatory OOD (outside), neglecting potential cases of interpolatory OOD (inside). This study introduces a novel pers...
Article
Full-text available
In the realm of machine and deep learning (DL) regression tasks, the role of effective feature engineering (FE) is pivotal in enhancing model performance. Traditional approaches of FE often rely on domain expertise to manually design features for machine learning (ML) models. In the context of DL models, the FE is embedded in the neural network’s a...
Article
Online academic profiles are used by scholars to reflect a desired image to their online audience. In Google Scholar, scholars can select a subset of co-authors for presentation in a central location on their profile using a social feature called the “co-authroship panel”. In this work, we examine whether scientometrics and reciprocality can explai...
Article
Full-text available
Background Lung cancer is a global leading cause of cancer-related deaths, and metastasis profoundly influences treatment outcomes. The limitations of conventional imaging in detecting small metastases highlight the crucial need for advanced diagnostic approaches. Methods This study developed a bioclinical model using three-dimensional CT scans to...
Preprint
Full-text available
Recent pandemics have highlighted vulnerabilities in our global economic systems, especially supply chains. Possible future pandemic raises a dilemma for businesses owners between short-term profitability and long-term supply chain resilience planning. In this study, we propose a novel agent-based simulation model integrating extended Susceptible-I...
Article
Full-text available
Data encoding is a common and central operation in most data analysis tasks. The performance of other models downstream in the computational process highly depends on the quality of data encoding. One of the most powerful ways to encode data is using the neural network AutoEncoder (AE) architecture. However, the developers of AE cannot easily influ...
Article
Full-text available
Accurately estimating the size of unregistered economies is crucial for informed policymaking and economic analysis. However, many studies seem to overfit partial data as these use simple linear regression models. Recent studies adopted a more advanced approach, using non-linear models obtained using machine learning techniques. In this study, we t...
Article
Full-text available
In this paper, we propose a novel, highly accurate numerical algorithm for matrix exponentials (MEs). The algorithm is based on approximating Putzer’s algorithm by analytically solving the ordinary differential equation (ODE)-based coefficients and approximating them. We show that the algorithm outperforms other ME algorithms for stiff matrices for...
Article
Full-text available
Botanical pandemics cause enormous economic damage and food shortages around the globe. However, since botanical pandemics are here to stay in the short-medium term, domesticated field owners can strategically seed their fields to optimize each session’s economic profit. In this work, we propose a novel epidemiological-economic mathematical model t...
Article
Full-text available
Feature selection (FS) stability is an important topic of recent interest. Finding stable features is important for creating reliable, non-overfitted feature sets, which in turn can be used to generate machine learning models with better accuracy and explanations and are less prone to adversarial attacks. There are currently several definitions of...
Article
Full-text available
Shelters are stressful environments for domestic dogs which are known to negatively impact their welfare. The introduction of outside stimuli for dogs in this environment can improve their welfare and life conditions. However, our current understanding of the influence of different stimuli on shelter dogs’ welfare is limited and the data is still i...
Article
The motion of particles through density-stratified interfaces is a common phenomenon in environmental and engineering applications. However, the mechanics of particle-stratification interactions in various combinations of particle and fluid properties are not well understood. This study presents a novel machine-learning (ML) approach to experimenta...
Article
Full-text available
Feature Ensembles are a robust and effective method for finding the feature set that yields the best predictive accuracy for learning agents. However, current feature ensemble algorithms do not consider explainability as a key factor in their construction. To address this limitation, we present an algorithm that optimizes for the explainability and...
Article
Full-text available
There is a critical need to develop and validate non-invasive animal-based indicators of affective states in livestock species, in order to integrate them into on-farm assessment protocols, potentially via the use of precision livestock farming (PLF) tools. One such promising approach is the use of vocal indicators. The acoustic structure of vocali...
Preprint
Decision tree (DT) is one of the most popular and efficient techniques in data mining. Specifically, in the clinical domain, DTs have been wildly used thanks to relatively easy interpretation and efficient computation time. However, some DT models may produce a large tree size structure which is difficult to understand and often leads to misclassif...
Preprint
Full-text available
Facial landmarks, widely studied in human affective computing, are beginning to gain interest in the animal domain. Specifically, landmark-based geometric morphometric methods have been used to objectively assess facial expressions in cats, focusing on pain recognition and the impact of breed-specific morphology on facial signaling. These methods e...
Preprint
Full-text available
Affective states are reflected in the facial expressions of all mammals. Facial behaviors linked to pain have attracted most of the attention so far in non-human animals, leading to the development of numerous instruments for evaluating pain through facial expressions for various animal species. Nevertheless, manual facial expression analysis is su...
Article
Full-text available
Behavioral traits in dogs are assessed for a wide range of purposes such as determining selection for breeding, chance of being adopted or prediction of working aptitude. Most methods for assessing behavioral traits are questionnaire or observation-based, requiring significant amounts of time, effort and expertise. In addition, these methods might...
Article
Full-text available
The present study aimed to employ machine learning algorithms based on sensor behavior data for (1) early-onset detection of digital dermatitis (DD) and (2) DD prediction in dairy cows. Our machine learning model, which was based on the Tree-Based Pipeline Optimization Tool (TPOT) automatic machine learning method, for DD detection on day 0 of the...
Article
Full-text available
The early and accurate diagnosis of brachycephalic obstructive airway syndrome (BOAS) in dogs is pivotal for effective treatment and enhanced canine well-being. Owners often do underestimate the severity of BOAS in their dogs. In addition, traditional diagnostic methods, which include pharyngolaryngeal auscultation, are often compromised by subject...
Article
Full-text available
The reproducibility of academic research has long been a persistent issue, contradicting one of the fundamental principles of science. Recently, there has been an increasing number of false claims found in academic manuscripts, casting doubt on the validity of reported results. In this paper, we utilize an adapted version of Benford’s law, a statis...
Article
Full-text available
Conducting a project with multiple participants is a complex task that involves multiple social, economic, and psychological interactions. Conducting academic research in general and the process of writing an academic manuscript, in particular, is notorious for being challenging to successfully navigate due to the current form of collaboration dyna...
Preprint
Full-text available
The early and accurate diagnosis of brachycephalic obstructive airway syndrome (BOAS) in dogs is pivotal for effective treatment and enhanced canine well-being. Owners often do underestimate the severity of BOAS in their dogs. In addition, traditional diagnostic methods, which include pharyngolaryngeal auscultation, are often compromised by subject...
Preprint
Full-text available
Online academic profiles are used by scholars to reflect a desired image to their online audience. In Google Scholar, scholars can select a subset of co-authors for presentation in a central location on their profile using a social feature called the Co-authroship panel. In this work, we examine whether scientometrics and reciprocality can explain...
Preprint
Full-text available
The assessment of behavioral traits in dogs is a well-studied challenge due to its many practical applications such as selection for breeding, prediction of working aptitude, chances of being adopted, etc. Most methods for assessing behavioral traits are questionnaire or observation-based, which require a significant amount of time, effort and expe...
Preprint
Full-text available
There is a critical need to develop and validate non-invasive animal-based indicators of affective states in livestock species, in order to integrate them into on-farm assessment protocols, potentially via the use of precision livestock farming (PLF) tools. One such promising approach is the use of vocal indicators. The acoustic structure of vocali...
Article
Full-text available
Data-driven economic tasks have gained significant attention in economics, allowing researchers and policymakers to make better decisions and design efficient policies. Recently, with the advancement of machine learning (ML) and other artificial intelligence (AI) methods, researchers can now solve complex economic tasks with previously unseen perfo...
Article
Full-text available
Trust has proven to a predictor of organizational outcomes. In some cases, such as law enforcement, achieving organizational goals requires workers to be willing to risk their lives. Is there a link between street-level bureaucrats’ (SLBs) willingness to endanger their own lives for the public and their trust in their peers, managers, and the insti...
Preprint
Full-text available
Temporal graphs have become an essential tool for analyzing complex dynamic systems with multiple agents. Detecting anomalies in temporal graphs is crucial for various applications, including identifying emerging trends, monitoring network security, understanding social dynamics, tracking disease outbreaks, and understanding financial dynamics. In...
Preprint
Full-text available
The reproducibility of academic research has long been a persistent issue, contradicting one of the fundamental principles of science. What is even more concerning is the increasing number of false claims found in academic manuscripts recently, casting doubt on the validity of reported results. In this paper, we utilize an adaptive version of Benfo...
Article
Full-text available
Small and large scale pandemics are a natural phenomenon repeatably appearing throughout history, causing ecological and biological shifts in ecosystems and a wide range of their habitats. These pandemics usually start with a single strain but shortly become multi-strain due to a mutation process of the pathogen causing the epidemic. In this study,...
Article
Genome data are crucial in modern medicine, offering significant potential for diagnosis and treatment. Thanks to technological advancements, many millions of healthy and diseased genomes have already been sequenced; however, obtaining the most suitable data for a specific study, and specifically for validation studies, remains challenging with res...
Article
Full-text available
Much has been written about the COVID-19 pandemic’s epidemiological, psychological, and sociological consequences. Yet, the question about the role of the lockdown policy from psychological and sociological points of view has not been sufficiently addressed. Using epidemiological, psychological, and sociological daily data, we examined the causal r...
Article
Full-text available
Collective motion (CM) takes many forms in nature; schools of fish, flocks of birds, and swarms of locusts to name a few. Commonly, during CM the individuals of the group avoid collisions. These CM and collision avoidance (CA) behaviors are based on input from the environment such as smell, air pressure, and vision, all of which are processed by th...
Preprint
Full-text available
Individuals' satisfaction with their nuclear and extended family plays a critical role in individuals everyday life. Thus, a better understanding of the features that determine one's satisfaction with her family can open the door to the design of better sociological policies. To this end, this study examines the relationship between the family tree...
Article
A decision tree (DT) is one of the most popular and efficient techniques in data mining. Specifically, in the clinical domain, DTs have been widely used thanks to their relatively easy explainable nature, efficient computation time, and relatively accurate predictions. However, some DT constriction algorithms may produce a large tree size structure...
Preprint
Full-text available
Small and large scale pandemics are a natural phenomenon repeatably appearing throughout history, causing ecological and biological shifts in ecosystems and a wide range of their habitats. These pandemics usually start with a single strain but shortly become multi-strain due to a mutation process of the pathogen causing the epidemic. In this study,...
Preprint
Full-text available
Genome data are crucial in modern medicine, offering significant potential for diagnosis and treatment. Thanks to technological advancements, many millions of healthy and diseased genomes have already been sequenced; however, obtaining the most suitable data for a specific study, and specifically for validation studies, remains challenging with res...
Preprint
Full-text available
A manuscript's writing style is central in determining its readership, influence, and impact. Past research has shown that, in many cases, scholars present a unique writing style that is manifested in their manuscripts. In this work, we report a comprehensive investigation into how scholars' writing styles evolve throughout their careers focusing o...
Article
Coffee rust is one of the main diseases that affect coffee plantations worldwide, causing large-scale ecological and economic damage. While multiple methods have been proposed to tackle this challenge, using snails as biological agents have shown to be the most consistent and promising approach. However, snails are an invasive species, and overusin...
Article
This work introduces the first model of immunotherapy treatment, namely the BacillusCalmette–Guerin (BCG) vaccine, for Type 1 Diabetes (T1D). The model takes into consideration the interaction network between multiple immune cell types and compartments. A set of ordinary differential equations (ODEs) is introduced to capture the connectivity betwee...
Preprint
Full-text available
Coffee tree leaf rust is a prevalent botanical disease that causes a worldwide reduction in coffee supply and its quality, leading to immense economic losses. While several pandemic intervention policies (PIPs) for tackling this pandemic are commercially available, they seem to provide only partial epidemiological relief for farmers. In this work,...
Article
Full-text available
The ability of governments to accurately forecast tax revenues is essential for the successful implementation of fiscal programs. However, forecasting state government tax revenues using only aggregate economic variables is subject to Lucas’s critique, which is left not fully answered as classical methods do not consider the complex feedback dynami...
Article
Full-text available
There are two main approaches to tackle the challenge of finding the best filter or embedded feature selection (FS) algorithm: searching for the one best FS algorithm and creating an ensemble of all available FS algorithms. However, in practice, these two processes usually occur as part of a larger machine learning pipeline and not separately. We p...
Preprint
Full-text available
Data encoding is a common and central operation in most data analysis tasks. The performance of other models, downstream in the computational process, highly depends on the quality of data encoding. One of the most powerful ways to encode data is using the neural network AutoEncoder (AE) architecture. However, the developers of AE are not able to e...
Article
Full-text available
Cancer is one of the most common families of diseases today with millions of new patients every year around the world. Bladder cancer (BC) is one of the most prevalent types of cancer affecting both genders, and it is not known to be associated with a specific group in the population. The current treatment standard for BC follows a standard weekly...
Article
Automated machine learning (AutoML) frameworks have become important tools in the data scientist's arsenal, as they dramatically reduce the manual work devoted to the construction of ML pipelines. Such frameworks intelligently search among millions of possible ML pipelines - typically containing feature engineering, model selection, and hyper param...
Article
Full-text available
Even though the literature on unregistered economic activity is growing at an increasing rate, we commonly encounter simple ordinary least squares methods and panel regressions, largely ignoring the recent rapid developments in machine learning methods. This study provides a new approach to more accurately estimate the size of the non-observed econ...
Preprint
Full-text available
The motion of particles through density-stratified interfaces is a common phenomenon in environmental and engineering applications. However, the mechanics of particle-stratification interactions in various combinations of particle and fluid properties are not well understood. This study presents a novel machine-learning (ML) approach to experimenta...
Article
An epidemiological-economic crisis presents countries with two significant challenges, in addition to the health challenge - a growing deficit due to fiscal policy measures, and a shortage of essential workers needed to manage the crisis successfully. In this study, we propose an outline for economic readiness in case of a future crisis in general,...
Article
During a global epidemiological crisis, lockdowns and border closures substantially disrupt international supply chains, underscoring the importance of choosing an intervention policy that accounts for the unique structure of input-output linkages among domestic industries. This study develops a pioneering mathematical model to quantify the role of...
Article
Full-text available
Discovering a meaningful symbolic expression that explains experimental data is a fundamental challenge in many scientific fields. We present a novel, open-source computational framework called Scientist-Machine Equation Detector (SciMED), which integrates scientific discipline wisdom in a scientist-in-the-loop approach, with state-of-the-art symbo...
Article
Full-text available
Airborne pandemics have caused millions of deaths worldwide, large-scale economic losses, and catastrophic sociological shifts in human history. Researchers have developed multiple mathematical models and computational frameworks to investigate and predict pandemic spread on various levels and scales such as countries, cities, large social events,...
Preprint
Full-text available
Context: Botanical pandemics cause enormous economic damage and food shortage around the globe. However, since botanical pandemics are here to stay in the short-medium term, domesticated field owners can strategically seed their fields to optimize each session's economic profit. Objective: Given the pathogen's epidemiological properties, we aim to...
Article
Full-text available
The beginning of a pandemic is a crucial stage for policymakers. Proper management at this stage can reduce overall health and economical damage. However, knowledge about the pandemic is insufficient. Thus, the use of complex and sophisticated models is challenging. In this study, we propose analytical and stochastic heat spread-based boundaries fo...
Article
Full-text available
Pandemics are a source of extensive mortality, economic impairment, and dramatic social fluctuation. Once a pandemic occurs, policymakers are faced with the highly challenging task of controlling it over time and space. In this article, a novel pandemic intervention policy that relies on the strategic deployment of inspection units (IUs) is propose...
Article
Mankind has struggled with pathogens throughout history. In this context, the contribution of vaccines to the continued economic and social prosperity of humanity is enormous, but it is constantly threatened by the development of vaccine-resistant strains of the pathogen. In this study, we investigate the usage of genomic sequencing tests to detect...
Article
Full-text available
Social media networks highly influence on a broad range of global social life, especially in the context of a pandemic. We developed a mathematical model with a computational tool, called EMIT (Epidemic and Media Impact Tool), to detect and control pandemic waves, using mainly topics of relevance on social media networks and pandemic spread. Using...
Article
Full-text available
A single paragraph of about 200 words maximum. For research articles, abstracts should give a pertinent overview of the work. We strongly encourage authors to use the following style of structured abstracts, but without headings: (1) Background: place the question addressed in a broad context and highlight the purpose of the study; (2) Methods: des...
Article
Full-text available
Purpose Rare disease diagnosis is challenging in medical image-based artificial intelligence due to a natural class imbalance in datasets, leading to biased prediction models. Inherited retinal diseases (IRDs) are a research domain that particularly faces this issue. This study investigates the applicability of synthetic data in improving AI-enable...
Conference Paper
Full-text available
Automated machine learning (AutoML) frameworks are gaining popularity among data scientists as they dramatically reduce the manual work devoted to the construction of ML pipelines while obtaining similar and sometimes even better results than manually-built models. Such frameworks intelligently search among millions of possible ML pipeline configur...