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1. INTRODUCTION

Laguerre-Gaussian (LG) beams were introduced as
higher-order light modes in cylindrically symmetric opti-
cal cavities [1] and have been highlighted since Allen
et al. [2] found that they carry angular momenta. So far,
azimuthally higher- and radially lowest-order LG beams
have been extensively studied [3—6] while radially higher-
order LG beams have not attracted much attention
[7-14]. However, radially higher-order LG beams, some-
times referred to as multiringed LG beams, are also inter-
esting targets due to their properties that resemble
Bessel beams and are expected to provide suitable tools
for the manipulation of cold atoms [13,15]. Therefore it is
meaningful to establish a systematical method for gener-
ating LG beams of both azimuthally and radially higher
orders.

To establish a universal, flexible, and widely applicable
scheme for generating higher-order LG beams, a holo-
graphic method using a spatial light phase modulator
(SLM) is the most appropriate one because it also enables
dynamical control of LG beam generation [5,16-19]. In a
previous paper [20], Ohtake et al. reported the holo-
graphic generation of both azimuthally and radially
higher-order LG beams using a liquid-crystal-on-silicon
(LCOS) type SLM [21], which realizes programmable
phase modulation with superior phase fidelity and diffrac-
tion efficiency. Multiringed LG beams can be holographi-
cally generated with phase patterns involving radial
phase discontinuities; however, this is technically diffi-
cult, especially when the generating azimuthal and radial
mode indices become larger. In this case, the holographic
phase patterns involve more phase discontinuities to
cause nonideal diffraction of light [22]. Moreover, phase
distortion, which is inevitably included in the phase
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modulation characteristics of a liquid-crystal-on-silicon
spatial light modulator (LCOS-SLM), deteriorates the
quality of the holographically generated LG beams and
decreases the trapping force in applications of atom
manipulation [23]. Nevertheless, we achieved universal
high-quality generation of higher-order LG beams using
LCOS-SLM with compensation for phase distortion
[20,21,23-26].

However, the effects of input beam patterns in holo-
graphic LG beam generation have not been highlighted so
far. Ohtake et al. [20] reported on the universal genera-
tion of both azimuthally and radially higher-order LG
beams using a top-hat input beam, while Gaussian input
beams have been familiarly applied to LG beam genera-
tion through holographic conversion of the input beam
[27]. In this paper, we further investigate the high-quality
holographic generation of higher-order LG beams involv-
ing the effects of input beam patterns. In the present ex-
periments, we adopted holographic phase patterns with
partially added blazed phase grating patterns that were
restricted to the central circular regions. This treatment
enables a more precise boundary definition of the output
beams and removal of the unmodulated components of
the output beams, both of which help improve the output
beam quality and facilitate quantitative experiments. As
a semiquantitative benchmark of the output beam qual-
ity, we calculated the correlation coefficients between ob-
served beam patterns and corresponding theoretical mode
patterns. Experimental and theoretical comparisons were
made between the output LG beams generated from the
Gaussian and top-hat input beams to clarify that the top-
hat input beam generates radially higher-order LG beams
of higher quality than the Gaussian input beam.

This paper is organized as follows. In Section 2, we
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describe the experimental aspects of the present study
involving the characteristics of LCOS-SLM, the construc-
tion of the optical setup, and the holographic phase set-
tings. Theoretical descriptions, experimental results, and
discussions are presented in Section 3. Finally, this paper
is closed with a summary and a conclusion in Section 4.

2. EXPERIMENTAL SETUP

In this paper, LG beams are holographically generated
using a phase-only type LCOS-SLM [Hamamatsu X10468
series, whose active area consists of 792X 600 pixels
(pixel size, 20 um X 20 um)]. This LCOS-SLM device is a
reflective light phase modulation device equipped with a
monolithic silicon circuit for electrically controlling the
orientation of parallel-aligned nematic liquid crystal (LC)
molecules. As a result, the LCOS-SLM device achieves
easy and flexible use while special care is required in
practical operations, particularly when precise phase
setting is required. In the following, we describe the
construction of experimental setups including a phase
compensation method effective for generating high-
quality LG beams [23].

A. Phase Modulation Device

1. Phase Modulation Characteristics

Figure 1 shows a schematic displaying the structure of
the LCOS-SLM device. An LC layer is sandwiched be-
tween a pair of alignment layers and attached to an opti-
cally flat glass substrate (thickness, 3 mm) via a transpar-
ent electrode layer. A silicon backplane, equipped with an
active matrix circuit directly connected to the pixelated
metal electrodes, is mounted onto the other side of the LL.C
layer to control the orientation of the LC molecules at
each pixel. In the following, we refer to the pixel placed at
the horizontally xth and vertically yth position as simply
the (x,y) pixel.

Note that the silicon backplane can be mechanically
distorted during the fabrication process because the sili-
con substrate is not sufficiently thick to maintain flatness
against the mechanical tension. Hence the LC layer,
which lies between the flat glass substrate and the dis-
torted silicon backplane, is distributed nonuniformly over
the device surface to cause position-dependent phase
modulation characteristics that are classified into two
types: The position-dependent response of the phase
modulation value to the control voltage and the position-
dependent phase offset at zero control voltage. Here, from
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the fact that the amount of phase modulation is propor-
tional to the optical path length through which an inci-
dent light passes, the response of the phase modulation
value to the control voltage can be decomposed to a prod-
uct of the electric response of the LC material [n(V) with
V as the control voltage] and the thickness of the LC layer
at (x,y) pixel (d,,). Thus the total position-dependent in-
homogeneous phase modulation (¢, ,) can be expressed as
follows:

by (V)= A (V) + 6, (0) =n(V)d,, + 455, (1)

where the modulation term A, (V)= ¢, (V)= b, ,(0) de-
pends on both the pixel position and the control voltage,
while ¢, ,(0)= f:“; is a constant offset term given at each
pixel position; A¢, (V) and ¢, ,(0) are independently dis-
torted, and separate measurements are required to clarify
both terms.

2. Compensation Procedure for Inhomogeneous Phase
Modulation

To realize precise phase modulation with LCOS-SLM, the
inhomogeneous phase modulation characteristics de-
scribed in Eq. (1) must be compensated for. In the follow-
ing, we briefly summarize the phase compensation
scheme, which plays a principal role in holographic mode
generation using LCOS-SLM. A more detailed explana-
tion involving information of the device operation can be
found in [21].

The first step of the phase compensation scheme is the
measurement of the actual amount of the phase modula-
tion with respect to the change of the control voltage. In
general, phase distribution can be measured using a
Michelson interferometer (MIF) setup with replacing one
of the mirrors to LCOS-SLM. However, this approach de-
rives total phase modulation, i.e., ¢,,(V). To separately
measure A¢, ,(V), we can apply a polarization interferom-
eter (PIF) setup because LCOS-SLM only modulates the
phase of the linearly polarized component in the align-
ment direction of the LC molecules.

Applying the above measurement method for the phase
modulation characteristics, phase compensation is per-
formed as follows.

Step 1. Measure A, ,(V) at each pixel of LCOS-SLM by
PIF with varying V.

Step 2. Make look up tables (LUTs) between the actual
phase modulation values and the control voltages to es-
tablish their correspondence. We use a common LUT for a
block of pixels that contains 6 X6 neighboring pixels,
which present similar characteristics.

Step 3. Display a wuniform phase image on the
LCOS-SLM device with the help of the LUTs obtained in
Step 2 and measure the output wavefront with MIF. The
obtained phase distribution corresponds to ¢, ,(0).

Step 4. Calculate the control voltages for canceling
¢y ,(0), which give the offset values of the control volt-
ages.

Practically, the control voltage is discretized into 256
steps, where values 0 and 255 correspond to the phase
values of 0 and 27, respectively. Moreover, the phase mea-
surement in Step 1 requires a light from a xenon lamp



1644 J. Opt. Soc. Am. A/Vol. 25, No. 7/July 2008

Fig. 2. Focal patterns of the top-hat incident beam reflected on
the LCOS-SLM device (a) without and (b) with the phase
compensation.

through an interference filter to avoid a speckle noise. By
adding the offset pattern obtained in Step 4, we can cor-
rectly display the desired phase patterns on LCOS-SLM.

3. Effects of Phase Compensation
Following the procedure in Subsection 2.A.2, we can real-
ize a nearly ideal light phase modulation with
LCOS-SLM. Figure 2 displays the focal patterns of a top-
hat beam through the LCOS-SLM with and without
phase compensation. Here, even though the LCOS-SLM
is set to act as a flat mirror, the output beam is blurred
due to phase distortion without the compensation as seen
in Fig. 2(a). On the other hand, Fig. 2(b) shows that the
compensation prominently improves the phase distortion
so that the focal pattern is close to the ideal Airy disk.
We note that the above phase compensation procedure
compensates for the phase distortion attached to the light
on LCOS-SLM. However, another phase distortion can be
introduced by the misalignment of optical elements in the
experimental setup. In Subsection 2.B, we present in
detail the practical setup for generating and observing
high-quality LG beams.

B. Optical Setup

1. Construction of Optical Systems

Practically, an input light pattern influences the output
mode purity in the holographic generation of LG beams.
So far, Gaussian input beams have generally been applied
to obtain LG beams [5-7,11,28]. However, there are no
quantitative studies on the effects of incident light pat-
terns to the output mode purity in the generation of both
azimuthally and radially higher-order LG beams. In this
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Fig. 3. Schematic of experimental setups. (a) Setup for a
Gaussian input beam and (b) setup for a top-hat input beam. BS,
SF, and CL indicate beam splitter, spatial filter, and collimation
lens, respectively.
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Fig. 4. Observed mode patterns of the LG} beam. (a) Without
any compensations, (b) with a compensation only for phase dis-
tortion of the LCOS-SLM, and (c) with careful adjustment of the
tilt of the lens.

paper, we compare the output mode patterns for Gaussian
and top-hat input lights to investigate the effects of input
light patterns.

Figure 3 shows a schematic of the experimental setups.
An input light, either Gaussian or top-hat, is projected
onto the LCOS-SLM, where the light is attached to a
phase distribution of a required LG mode. The output
light, which propagates in a slightly different direction to
the unmodulated zeroth-order output light due to the
blazed phase pattern, is extracted by the beam splitter
(BS) placed in front of the LCOS-SLM, modified through
the combination of a convex lens (f=400 mm) and an ob-
jective lens (4 X), and detected with an image sensor (we
used a CCD camera as the image sensor in this paper).
Choosing either the optical setups of Fig. 3(a) or 3(b), we
can perform experiments with top-hat and Gaussian
input lights, respectively. Here, the aperture in Fig. 3
restricts the irradiation range to avoid diffraction from
the edges of the LCOS-SLM device. In this paper, we ap-
ply an alternate approach to strictly define the boundary
of the incident and output lights (see Subsection 2.B.2).

In addition to the precision of the holographic phase
pattern, aberration in the optical system obstructs the
precise evaluation of the output LG beam quality [23].
Figure 4 demonstrates the effects of the phase compensa-
tion and aberration on the holographic generation of the
LGj beam under the existence of the lens tilt. The output
LG% beam, which is far from an ideal mode pattern
without phase compensation and aberration correction
[Fig. 4(a)], is improved by phase compensation [Fig. 4(b)],
but the mode pattern includes the effect of the lens tilt to
present a figure that resembles the patterns shown in
[14]. The aberration due to the lens tilt is removed in
Fig. 4(c) by careful optical adjustment.

2. Phase Settings

To determine the phase patterns for generating LG
beams, the phase structures of the desired LG beams are
required. We start from an electric field amplitude u of
the LGZ beam based on the paraxial and scalar wave ap-
prox1mat10ns Supposing that the LGZ beam propagates
in the z direction and is focused at z= 0 up is expressed as
the following with respect to cylindrical coordinates

(r,,2) [2]:

! 1/2 ‘5 7]
p ] (\ 3] exp(—§2)

2
w(r, $,2) = (= 1)"[ T

X L¥|(2§2)exp(— ilp)exp(—i&%z/zp)
X expli(2p + |I| + 1)tan~1(z/zR)], (2)
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where Ll(x) denotes a generalized Laguerre polynomial
(strictly, this should be referred to as a Sonine polyno-
mial). In Eq. (2), zz and wz{=[2(22+zfe)/(sz)]1/2} indicate
a Rayleigh length and beam radius at z, respectively, with
k as a wavenumber of the incident light. Additionally, a
scaled radial variable ¢=r/w, is also introduced in the
above expression for simplicity.

A cross-sectional phase structure of the LG/ beam is de-
termined by the azimuthal phase terms exp(-il¢) and
L¥|(2§2). Lgl(x) alternately changes its sign as x passes
over p different zero points of the Laguerre polynomial;
hence the phase structure has 7 phase discontinuities at
every node in the radial direction. In combination with
the helical phase structure determined by the term
exp(-il¢), the total phase pattern for converting the
plane-wave input lights to the LG;, beam is given as

o(r,d) = - L+ wo(- LL(2r¥w})) (3)

with 6(x) as a unit step function. When displayed on
LCOS-SLM, the phase value is wrapped in the interval
between 0 and 2.

Figure 5 demonstrates the phase patterns for generat-
ing LGg and LGg. Practically, output lights from LCOS-
SLM include unmodulated components. These unmodu-
lated components, which deteriorate the output beam
quality, are separated from the desired output beam by
adding a blazed phase grating pattern to such phase pat-
terns as in Fig. 5. Moreover, the blazed phase pattern is
restricted to the circular area at the center of the phase
pattern. This treatment plays the role of realizing a pro-
grammable aperture, which can define the boundary of
the output light patterns more precisely than the me-
chanical aperture. Figure 6 exhibits the phase patterns
for generating the LGg and LGg beams that were actually
used in the experiments.

As described above, the blazed phase pattern diffracts
an output beam into a different direction to a zeroth-order
beam that propagates in the normal direction to the SLM
surface. Resultantly, the output beams are scaled down in
the diffraction direction (horizontal direction for the
phase patterns as in Fig. 6) when observed from the first-
order diffraction direction. However, the angle between
the zeroth- and first-order diffraction directions is at most
0.226 rad in our experiments, and the output beams are
scaled down by less than ~0.0016%, which produces no
observable effects.
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Fig. 5. Examples of phase pattern for generating (a) LGg and (b)
LGS beams.
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Fig. 6. Phase patterns obtained by adding blazed phase grating
patterns to those shown in Fig. 5 for (a) LG3 and (b) LG.

3. RESULTS AND DISCUSSIONS
A. Theoretical Description

1. Analysis of Mode Pattern

In this paper, an observed light pattern is analyzed in
comparison to a corresponding theoretical LG mode
pattern Ié(r,q&,z), where both observed and theoretical
patterns are treated as two-dimensional,

2 p! I
2<p+|l|>'< 7)

2 2\ 72
Xexp(—z;g)[L;l(ZE)} . (4)

We notice from Eq. (4) that IfU is independent of ¢ and that
its cross section presents a similar figure at every z posi-
tion. The theoretical mode pattern should be expressed in
the two-dimensional Cartesian coordinates on the image
plane for fitting the observed pattern to the theoretical
one because the output beams are observed with a CCD
camera to provide data as two-dimensional arrays. More-
over, experimentally obtained beam patterns usually in-
clude background noises. Thus we adopt the following
model function for the fitting analysis of the observed
beam pattern:

L(r,,2) = u(r,$,2)* =

b B,,C By+C 2 _» 2
Y5 > yWz) = + YT 2—
p(xy 0,Co,w;) 0 0 22: T B}

wZ
2 +y2 ' 2+y2\ ]2
X exp| — 2 o7 Ly 2 o ,
z z
(5)

where By, and C, are the offset due to the background
noise and scaling factor corresponding to the total output
light power, respectively. In Eq. (5), the center position of
the observed beam pattern is omitted for notational sim-
plicity, but explicit dependency on the center position can
be retrieved by applying the substitution of x— (x-0,)
and y — (y-0,) with O, and O, as the x and y directional
positions of the beam center.

In practical analysis, we first calculate the centroid of
the observed mode pattern and extract partial data at
280 X 280 pixels around the centroids to avoid analyzing
meaningless data. The fitting analysis is performed be-
tween the extracted pattern and the two-dimensional
model function [Eq. (5)] with choosing (Cy,w,,0,,0,) as
fitting parameters while B, is fixed to an average value of
the data removed from the original pattern. With the val-
ues of the fitting parameters that minimize the sum of the
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squared residuals between the model and the observed
pattern, we calculate the correlation coefficient between
them to semiquantitatively estimate the mode purity.
We note that the analyses are performed for two-
dimensional beam patterns while previous papers pre-
sented quantitative discussions based on one-dimensional
analyses for cross-sectional mode profiles [11,13,28]. The
two-dimensional analysis adopted in this paper enables
direct comparisons between the theoretical models and
the observed patterns without the artificial treatment of
the data, although much computational cost is required.
Additionally, a two-dimensional analysis can correctly
evaluate the deformation of the output beam patterns as
a deterioration of beam quality even when they become
asymmetric under the presence of the lens tilt.

2. Mode Purity

We can estimate the output mode purity that can be
achieved with the present generation scheme by analyz-
ing the electric field amplitude of light on the LCOS-SLM
surface. In the following, we derive an explicit expression
of mode purity to show that maximum mode purity is
achieved by adjusting the sizes of phase patterns relative
to incident light size.

Complex amplitude cf; of the LGZ; content in the output
light is calculated as an inner product of the analytic sig-
nal of the output light and that of the LG}; mode [11,28].
In this paper, we only consider the output beam of the
first-order diffraction for simplicity and omit the reflec-
tion function due to the blazed phase pattern from the fol-
lowing expressions.

We start from the assumption that an incident light
has a flat wavefront at the LCOS-SLM surface, i.e., the
LCOS-SLM surface corresponds to z=0. The analytic
signal of the output beam on the LCOS-SLM surface is
proportional to A(r)‘l’ﬁ,(r,d)) with amplitude factor A(r)
and phase factor \I’é(r, ¢) defined as

ORy-1) top-hat
2
A(r)= r
") exp(— —2) O(Ry-r) Gaussian ’ ©)
w;

(w; denotes the radius where the light power becomes
1/e? of that at the center for a Gaussian input beam) and

V! (r, ¢) = exp[- io(r, $)] = exp(~ il H[20LL (2r*w})) - 1],
(7)

respectively. Here Eq. (7) is derived with the help of
Eq. (3) and exp[i76(-x)]=26(x) — 1. Since the blazed phase
pattern is limited to the circular regime of radius R,
(see Fig. 6, Ry=290 pixels in our experiments), Eq. (6)
contains step functions to restrict the amplitude distribu-
tions.

When LCOS-SLM displays the phase pattern for
generating the LG; beam, c” is expressed as

2 0
ch=A, f de f rdr A(n) W, (r, pul(r,¢,00,  (8)
0 0

where “ denotes the complex conjugate and A, is a nor-
malization factor for A(r) defined as
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2 o -1/2
Ay= f d¢f rdrA(r)2i|
| Jo 0

(1
V7R,

top-hat

- 1 2 1/2
Gaussian
{ \/7—7-wi |: 1 - exp(- 2R%/w?) :|

9)

Performing the ¢ integration in Eq. (8), we find that cl; be-
comes nonzero only when 2=I[. Thus, Eq. (8) is reduced to
the following form:

q! 2(-1)9RyA,
ct(a)= —
! (g +1Z)! Vm232a

2a2
X J de 2Ll or2ewlo) - 1]
0

exp(— ¢/2) top-hat

X R31\¢ o
exp| —| 1+ —— 3 Gaussian

w;a

(10)

where a=Ry/w, with w, as a beam radius of the output
beam on the SLM surface and {=2r%/w?. In the case of
p=q, Eq. (10) is further simplified using
Ly (0)[26(Ly () - 1]=L} ().

The output mode content 7 of the desired mode is given
by 77=|c;|2 as a function of a. Figures 7 and 8 show the
changes of 7 with varying a for Gaussian and top-hat in-
put beams, respectively. To study the behavior of 7 for dif-
ferent p and [, » was calculated for different p with the
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Fig. 7. Theoretical output mode purities as functions of a for
Gaussian-beam input under the condition of Ry=1.46 w,. (a) In
the case of fixed [/ ([=1), dotted, dashed, and solid curves are
mode purities for p=1, 3, and 5, respectively. (b) In the case of
fixed p (p=1), dotted, dashed, and solid curves are mode purities
for [=1, 3, and 5, respectively.
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Fig. 8. Theoretical output mode purities as functions of a for
top-hat beam input. (a) In the case of fixed [ (I=1), dotted,
dashed, and solid curves are mode purities for p=1, 3, and 5, re-
spectively. (b) In the case of fixed p (p=1), dotted, dashed, and
solid curves are mode purities for /=1, 3, and 5, respectively.

same [ (=1) and for different ! with the same p (=1). We
notice in Figs. 7 and 8 that 7 exhibits a maximum 7., at
a particular a,,, depending on p and / and that a,,, in-
creases as the mode indices (p,/) become larger. According
to this fact, we can maximize the output LG mode purity
by choosing wo=290/a,.x pixel when displaying the
phase pattern [Eq. (3)] on LCOS-SLM. However, 7,5 mo-
notonously decreases as the radial and/or azimuthal order
of the target LG mode becomes higher (note that we chose
R(,=290 pixels in Subsection 3.A.2). The effects of the in-
put light pattern are observed as follows: 7 is not so sen-
sitive to the change of a, but the decrease of 7y, for
higher modes is significant for Gaussian input light while
7 is sensitive to the change of a, but the decrease of 7.,
for higher modes is slight in the case of top-hat input
light. This tendency is also seen for even larger p and /.
Therefore, we expect that a top-hat input light has an ad-
vantage over a Gaussian input light in generating LG
beams of both radially and azimuthally higher orders.

As seen in Eq. (10), the choice of w; also influences the
output mode purity in the case of the Gaussian input
beam. However, the choice of extremely large or small w;
should be avoided because the input Gaussian beam ap-
proaches the top-hat pattern to lose the Gaussian charac-
teristics for large w;, whereas the phase structure for
maximizing the mode purity becomes extremely fine for
small w;. In this paper, we chose w;=198 pixels on the
LCOS-SLM surface, a value that realizes an input pat-
tern sufficiently different from the top-hat pattern and
keeps the required holographic phase pattern practically
available.

Note that cfu is conserved during the propagation of the
output beam for each mode content and that » at the ob-
serving plane is identical to that at the LCOS-SLM sur-
face. Thus the above discussion is valid to analyze the
mode purities of the observed mode patterns.
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Fig. 9. Interference patterns of generated beams and the plane
reference waves for (a) LG} and (b) LG generated from a top-hat
input beam.

B. Experimental Results

1. Phase Structures of Observed Beams

Prior to the investigation of beam patterns, we confirmed
the phase structures of the generated beams through ob-
serving the interference patterns of output beams and the
plane reference wave with a Mach-Zehnder interferom-
eter. Figure 9 displays typical interference patterns of the
output beams generated using a top-hat input beam
through the holographic phase patterns of LGj and LG
modes, respectively. In Fig. 9, we can observe forklike
phase branches corresponding to azimuthal mode index |/|
of the observed beams as well as radial phase discontinui-
ties corresponding to radial mode index p, which reflect
the phase properties of LG beams. Similar interference
patterns were also observed for other output beams and
those generated from a Gaussian input beam, suggesting
that all output beams in this paper are indeed of LG
beams from the phase structures and the observed beam
patterns shown in Subsections 3.B.2 and 3.B.3.

2. Gaussian Input Beam

In this section, we show the experimental results with a
Gaussian input beam obtained using the experimental
setup in Fig. 3(a). Figure 10 shows the observed beam
patterns of the multiringed LGﬁ, (p,l=1,2,3) beams. The
drawing region is 280 X 280 pixels around the centroid of
each beam pattern, the region in which the fitting analy-
sis was performed. The symmetrical shapes of the ob-
served beam patterns confirm that aberration of the opti-
cal system is sufficiently removed to study the output
beam quality.

|E1? (Arb. units)

Fig. 10. Observed beam patterns of LGﬁ) (p,l=1,2,3) beams
generated from Gaussian input beams.
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|EI? (Arb. units)

Fig. 11. Cross sections of observed mode patterns (closed
circles) with corresponding fitted profiles (solid curves) for LGﬁJ
modes of p,[=1,2,3. Results are aligned corresponding to
Fig. 10.

Figure 11 displays cross sections of the observed beam
patterns (closed circles) and fitted profiles (solid curves)
corresponding to the beam patterns in Fig. 10. Here we
again stress that fitting calculations are performed for
two-dimensional profiles and that Fig. 11 only exhibits
part of the total information for demonstrative purposes.

Figure 12 demonstrates the observed beam patterns of
further higher-order multiringed LG beams, e.g., LGEI,,
LG3, LGZ, and LG] beams. Cross-sectional profiles and fit-
ted curves are shown in Fig. 13. We notice in Fig. 13 that
the observed patterns present the overall correspondence
with the fitted profiles; however differences between the
observed beam profiles and the theoretical ones are no-
table at the outermost sidelobes. This deviation at the
outermost sidelobe appears to be a common property of
radially higher-order LG beams generated from the
Gaussian input beam.

IEI? (Arb. units)

Fig. 12. Observed beam patterns of higher-order LG beams gen-
erated from a Gaussian input beam.

IEI? (Arb. units)

Fig. 13. Cross sections of observed beam patterns (closed
circles) with the corresponding fitted profiles (solid curves) for
further higher-order LG beams. Results are aligned correspond-
ing to Fig. 12.
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We note that the observed beam pattern is a Fourier
transformed one magnified through an objective lens (Fig.
3); hence a radius of observed beam w,, which is deter-
mined by a fitting calculation of the observed pattern, is
proportional to a=Ry/wg. As mentioned in Subsection
3.A.2, the size of a holographic phase pattern is deter-
mined with respect to a so that the output beam purity is
maximized for each beam. With properly scaling the val-
ues of a and w,, we confirmed correspondence of w, to a
for each LGr;7 beam with a deviation of less than 7.5%. Ad-
ditionally, asymptotic standard errors of w, derived from
the fitting analyses were less than 0.021% for all the ob-
served beams, indicating confidence of the analyses.

3. Top-Hat Input Beam

In this section, we present experimental results obtained
with a top-hat input beam for comparison with the results
obtained from a Gaussian input beam. Figure 14 shows
the observed mode patterns of multiringed LG;7 (p,l
=1,2,3) beams generated from the top-hat input beam.
Additionally, Fig. 15 demonstrates cross sections of the
observed mode patterns (closed circles) and fitted profiles
(solid curves) corresponding to Fig. 14.

Figures 16 and 17, respectively, show the observed
beam patterns and the corresponding cross-sectional pro-
files with fitted curves of further higher-order LG beams,
e.g., LGé, LG?, LG2, and LGZ, generated from the top-hat
input beam. We also observe agreement between the
cross-sectional beam patterns and the fitted profiles, also

IEI (Arb. units)

Fig. 14. Observed mode patterns of LG; (p,l=1,2,3) beams
generated from a top-hat input beam.

IEI?> (Arb. units)

Fig. 15. Cross sections of observed mode patterns (closed
circles) with the corresponding fitted profiles (solid curves) for
LGﬁ) modes of p,[=1,2,3. Results are aligned corresponding to
Fig. 14.
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|EI? (Arb. units)

Fig. 16. Observed mode patterns of higher-order LG beams
generated from a top-hat input beam.

at the outermost sidelobes, indicating that the top-hat in-
put beam is suitable for generating a higher-order LG
beam.

The behavior of w, with respect to ¢ was also confirmed
as in the case of Gaussian input. As a result, w, corre-
sponds to properly scaled a for each LGﬁ, beam with a
deviation of less than 4.7%, suggesting that the present
LG beam generation involves fewer extrinsic effects.
Asymptotic standard errors of w, derived from the fitting
analyses were less than 0.025%, again indicating
confidence of the analyses.

C. Discussion
We start a discussion from the mode purity of the output
beams in the generation of higher-order LG beams. As de-
scribed in Subsection 3.A.2, the output beams generally
contain the mode contents of various radial mode index p.
Table 1 displays the mode contents of the LGé beam theo-
retically evaluated by assuming Gaussian and top-hat in-
put beams. Two significant facts in Table 1 are also true
for other radially lowest-order LG modes: The Gaussian
input beam is more suitable for high-quality generation of
radially lowest-order LG beams, and the dominant mode
contents of the output beam are localized to the ten
lowest-order components. Based on this fact, previous re-
ports practically performed quantitative analyses of mode
purity by decomposing output beams as sums of the mode
contents of various p [11].

Contrarily, the situation is different for radially higher-
order LG beams. As an example, Table 2 demonstrates
the theoretically derived lowest 30 mode contents of the

IEI? (Arb. units)

Fig. 17. Cross sections of observed mode patterns (closed
circles) with the corresponding fitted profiles (solid curves) for
further higher-order LG beams. Results are aligned correspond-
ing to Fig. 16.
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Table 1. Mode Contents of the First Ten
Components of the Holographically Generated
LG:;IO Beam

Mode Contents

p Gaussian Input Top-Hat Input
0 9.35x 107! 8.66x 107!
1 2.96 x 1014 1.04x 10714
2 1.75x 1072 2.33x1072
3 1.93x10°2 3.71x10°6
4 3.54 %1073 1.83x 1072
5 9.12Xx 10 2.45x 1072
6 2.24x1073 9.54x 1073
7 3.93x 1073 3.59x 10
8 3.06x 1073 1.31x1073
9 1.22%x1073 2.70x 103
Sum 0.987 0.946

LG; beam generated from a top-hat input beam. The sig-
nificant mode contents are widely distributed, and the to-
tal of the mode contents becomes at most 0.925 up to the
order of p=29, which is far from unity. These widely dis-
tributed mode contents are commonly observed in the
generation of radially higher-order LG beams regardless
of whether the input beam is Gaussian or top-hat. Mode
decomposition analysis including a large amount of mode
content is computationally unstable and fails even if a
computer with sufficient resources is provided, indicating
that mode decomposition analysis is practically ineffec-
tive for holographically generated radially higher-order
LG beams. Therefore, correlation analysis between
observed and fitted mode patterns is the only approach
presently available.

Figure 18 shows correlation coefficients R and theoret-
ical mode purities % of holographically generated LG
beams, which are obtained through fitting analyses of
observed beam patterns described in Subsections 3.B.2
and 3.B.3. In Fig. 18, both R and % show a tendency to
decrease as the mode indices of the generated LG beam
become larger, but the decrease is slighter for LG beams
generated from a top-hat input beam. However, further

Table 2. First 30 Mode Contents of the
Holographically Generated LG;;I3 from a Top-Hat
Input Beam

p (Figure of the First Place)

% 0 1« 2

0 6.05%x 1074 2.84 %1073 1.20x 1073
1 5.83%x 1073 3.15% 1073 7.95%x104
2 8.16x 1073 1.11x10°2 7.60% 1074
3 8.05%x 1071 2.13%x1073 4.54%x10™*
4 4.89%x1073 2.01x1073 3.30%x 106
5 7.00x 1073 6.75x 1073 1.69x 1073
6 1.92x 1074 2.63x1073 6.87x1073
7 9.97x 1073 1.86x 1075 1.19x 1072
8 1.91x1073 1.60x 1073 1.17x 1072
9 5.04Xx 1073 1.99%x 1073 6.48x 1073

Sum 0.925
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Fig. 18. Correlation coefficient R and mode purity 7 of holo-

graphically generated LGﬁ, beams from (a) Gaussian and (b) top-
hat input beams.

discussion on the relationship between R and 7 should be
required to conclude from experimentally obtained R that
the top-hat input beam can generate higher-order LG
beams with higher quality than the Gaussian input beam.

Strictly, correlation coefficient R is not a quantitative
benchmark of 7, e.g., we should also keep in mind that R
generally varies during beam propagation while 7 does
not and that R suffers from residual aberrations in a
practical optical setup. To investigate the relation be-
tween R and 7, R is plotted as a function of % in Fig. 19.
We observe in Fig. 19 a globally monotonous increase of R
according to 7, although a clear linear relation is not seen.
From this result, R is considered to involve sufficiently
fewer extrinsic effects to provide a relative benchmark of
n at least for LG beam patterns observed under a same
experimental condition.

Based on the above discussion on R and 7 with Figs. 18
and 19, we proceed to the discussion of the effects of the
input beam pattern on the holographic generation of LG
beams. At first, R and 7 are similar for Gaussian and top-
hat input conditions when generating LG beams of p=1.
This result leads to both Gaussian and top-hat input
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[t o [m] o )
%5 095 O o L4
S °
g o
5 o
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Theoretical mode purity ()

Fig. 19. Plot of correlation coefficient R as a function of theoret-
ical mode purity 7. Closed circles indicate values derived from
the results of top-hat input while open squares indicate those
from the results of Gaussian input.
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beams producing LG beams of similar quality for lower-
order modes. For LGrfU beams of p=2, 5 gives a smaller
value for the Gaussian input condition even though R is
similar for both conditions, meaning that a mode-purity
estimation by R tends to overestimate 7 of LG beams gen-
erated from a Gaussian input beam. Nevertheless, for
LGé beams of p or [>3, the Gaussian input condition pre-
sents smaller R values than the top-hat input condition,
clearly suggesting the advantage of the top-hat input
condition for achieving larger 7. Consequently, we can
conclude the superiority of the top-hat input beam in the
holographic generation of LG beams particularly for
generating higher-order LG;J beams of p or [>3.

Although we established the role of R as an experimen-
tal benchmark of output LG beam purity 7, deviations
still remain between R and 7 in Fig. 19. We consider the
deviation to be caused by the nonideal behavior of LCOS-
SLM, e.g., effects of nonideal phase profiles at the rapid
phase changes (usually referred to as the “flyback region”
[22]), pixelized electrode structure, and stepwise phase
setting of the LCOS-SLM device. Further investigation is
required to confirm the effects of these extrinsic factors on
the holographic generation of LG beams.

4. SUMMARY AND CONCLUSION

This paper examined the generation of high-quality
higher-order LG beams. To display holographic phase pat-
terns on LCOS-SLM with sufficient fidelity, we introduced
phase compensation for the position-dependent inhomo-
geneous phase modulation characteristics of LCOS-SLM.
Moreover, by adding blazed phase grating patterns re-
stricted to the central circular region of the LCOS-SLM
surface, the boundaries of the output beams were pre-
cisely defined to reduce the extrinsic factors deteriorating
the output LG beam quality. Experiments and theoretical
analyses were performed for output beams obtained from
both Gaussian and top-hat input beams to reveal that the
top-hat input beam was more suitable for universally gen-
erating higher-order LG beams than the Gaussian input
beam. The present approach will be valuable to provide
light sources for optical manipulation, optical traps, atom
guides, and so on since the LG beam quality affects the
trapping and manipulation forces when the LG beam is
applied to optical manipulation [23]. The technical limita-
tions of the output LG beam quality in the present
scheme were considered to mainly arise from the density
of the pixelated electrodes of the LCOS-SLM, particularly
when generating LG beams of larger mode indices; in this
case, the holographic phase pattern became fine and in-
cluded many flyback regions [22], i.e., jumps of phase
value from 0 to 2; hence the displayed phase pattern
deviated from the ideal one to cause the deterioration of
the output LG beam quality.
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