About
282
Publications
52,193
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
31,366
Citations
Current institution
Publications
Publications (282)
Neural contextual biasing effectively improves automatic speech recognition (ASR) for crucial phrases within a speaker's context, particularly those that are infrequent in the training data. This work proposes contextual text injection (CTI) to enhance contextual ASR. CTI leverages not only the paired speech-text data, but also a much larger corpus...
Text injection for automatic speech recognition (ASR), wherein unpaired text-only data is used to supplement paired audio-text data, has shown promising improvements for word error rate. This study examines the use of text injection for auxiliary tasks, which are the non-ASR tasks often performed by an E2E model. In this work, we use joint end-to-e...
The last year has seen astonishing progress in text-prompted image generation premised on the idea of a cross-modal representation space in which the text and image domains are represented jointly. In ASR, this idea has found application as joint speech-text encoders that can scale to the capacities of very large parameter models by being trained o...
We introduce AudioPaLM, a large language model for speech understanding and generation. AudioPaLM fuses text-based and speech-based language models, PaLM-2 [Anil et al., 2023] and AudioLM [Borsos et al., 2022], into a unified multimodal architecture that can process and generate text and speech with applications including speech recognition and spe...
In this work, we introduce a ``score-based assessment'' framework for estimating the transferability of pre-trained speech models (PSMs) for fine-tuning target tasks. We leverage upon two representation theories, Bayesian likelihood estimation and optimal transport, to generate rank scores for the PSM candidates using the extracted representations....
We propose a method of segmenting long-form speech by separating semantically complete sentences within the utterance. This prevents the ASR decoder from needlessly processing faraway context while also preventing it from missing relevant context within the current sentence. Semantically complete sentence boundaries are typically demarcated by punc...
End-to-end models with large capacity have significantly improved multilingual automatic speech recognition, but their computation cost poses challenges for on-device applications. We propose a streaming truly multilingual Conformer incorporating mixture-of-expert (MoE) layers that learn to only activate a subset of parameters in training and infer...
Speech data from different domains has distinct acoustic and linguistic characteristics. It is common to train a single multidomain model such as a Conformer transducer for speech recognition on a mixture of data from all domains. However, changing data in one domain or adding a new domain would require the multidomain model to be retrained. To thi...
Unpaired text and audio injection have emerged as dominant methods for improving ASR performance in the absence of a large labeled corpus. However, little guidance exists on deploying these methods to improve production ASR systems that are trained on very large supervised corpora and with realistic requirements like a constrained model size and CP...
Conformer models maintain a large number of internal states, the vast majority of which are associated with self-attention layers. With limited memory bandwidth, reading these from memory at each inference step can slow down inference. In this paper, we design an optimized conformer that is small enough to meet on-device restrictions and has fast i...
In end-to-end (E2E) speech recognition models, a representational tight-coupling inevitably emerges between the encoder and the decoder. We build upon recent work that has begun to explore building encoders with modular encoded representations, such that encoders and decoders from different models can be stitched together in a zero-shot manner with...
We propose a new two-pass E2E speech recognition model that improves ASR performance by training on a combination of paired data and unpaired text data. Previously, the joint acoustic and text decoder (JATD) has shown promising results through the use of text data during model training and the recently introduced deliberation architecture has reduc...
Continued improvements in machine learning techniques offer exciting new opportunities through the use of larger models and larger training datasets. However, there is a growing need to offer these new capabilities on-board low-powered devices such as smartphones, wearables and other embedded environments where only low memory is available. Towards...
We introduce the Universal Speech Model (USM), a single large model that performs automatic speech recognition (ASR) across 100+ languages. This is achieved by pre-training the encoder of the model on a large unlabeled multilingual dataset of 12 million (M) hours spanning over 300 languages, and fine-tuning on a smaller labeled dataset. We use mult...
In the last decade of automatic speech recognition (ASR) research, the introduction of deep learning brought considerable reductions in word error rate of more than 50% relative, compared to modeling without deep learning. In the wake of this transition, a number of all-neural ASR architectures were introduced. These so-called end-to-end (E2E) mode...
Word-piece models (WPMs) are commonly used subword units in state-of-the-art end-to-end automatic speech recognition (ASR) systems. For multilingual ASR, due to the differences in written scripts across languages, multilingual WPMs bring the challenges of having overly large output layers and scaling to more languages. In this work, we propose a un...
While large language models (LLM) have made impressive progress in natural language processing, it remains unclear how to utilize them in improving automatic speech recognition (ASR). In this work, we propose to train a single multilingual language model (LM) for shallow fusion in multiple languages. We push the limits of the multilingual LM to cov...
We propose JEIT, a joint end-to-end (E2E) model and internal language model (ILM) training method to inject large-scale unpaired text into ILM during E2E training which improves rare-word speech recognition. With JEIT, the E2E model computes an E2E loss on audio-transcript pairs while its ILM estimates a cross-entropy loss on unpaired text. The E2E...
Foundation models (FMs), that are trained on broad data at scale and are adaptable to a wide range of downstream tasks, have brought large interest in the research community. Benefiting from the diverse data sources such as different modalities, languages and application domains, foundation models have demonstrated strong generalization and knowled...
In this work, we propose a new parameter-efficient learning framework based on neural model reprogramming for cross-lingual speech recognition, which can \textbf{re-purpose} well-trained English automatic speech recognition (ASR) models to recognize the other languages. We design different auxiliary neural architectures focusing on learnable pre-tr...
Dual learning is a paradigm for semi-supervised machine learning that seeks to leverage unsupervised data by solving two opposite tasks at once. In this scheme, each model is used to generate pseudo-labels for unlabeled examples that are used to train the other model. Dual learning has seen some use in speech processing by pairing ASR and TTS as du...
In the last decade of automatic speech recognition (ASR) research, the introduction of deep learning has brought considerable reductions in word error rate of more than 50% relative, compared to modeling without deep learning. In the wake of this transition, a number of all-neural ASR architectures have been introduced. These so-called
end-to-end...
We explore unifying a neural segmenter with two-pass cascaded encoder ASR into a single model. A key challenge is allowing the segmenter (which runs in real-time, synchronously with the decoder) to finalize the 2nd pass (which runs 900 ms behind real-time) without introducing user-perceived latency or deletion errors during inference. We propose a...
Self-supervised pre-training of a speech foundation model, followed by supervised fine-tuning, has shown impressive quality improvements on automatic speech recognition (ASR) tasks. Fine-tuning separate foundation models for many downstream tasks are expensive since the foundation model is usually very big. Parameter-efficient fine-tuning methods (...
We propose a quantum kernel learning (QKL) framework to address the inherent data sparsity issues often encountered in training large-scare acoustic models in low-resource scenarios. We project acoustic features based on classical-to-quantum feature encoding. Different from existing quantum convolution techniques, we utilize QKL with features in th...
Automatic speech recognition (ASR) systems typically rely on an external endpointer (EP) model to identify speech boundaries. In this work, we propose a method to jointly train the ASR and EP tasks in a single end-to-end (E2E) multitask model, improving EP quality by optionally leveraging information from the ASR audio encoder. We introduce a "swit...
We present JOIST, an algorithm to train a streaming, cascaded, encoder end-to-end (E2E) model with both speech-text paired inputs, and text-only unpaired inputs. Unlike previous works, we explore joint training with both modalities, rather than pre-training and fine-tuning. In addition, we explore JOIST using a streaming E2E model with an order of...
Multilingual end-to-end automatic speech recognition models are attractive due to its simplicity in training and deployment. Recent work on large-scale training of such models has shown promising results compared to monolingual models. However, the work often focuses on multilingual models themselves in a single-pass setup. In this work, we investi...
We summarize the results of a host of efforts using giant automatic speech recognition (ASR) models pre-trained using large, diverse unlabeled datasets containing approximately a million hours of audio. We find that the combination of pre-training, self-training and scaling up model size greatly increases data efficiency, even for extremely large t...
Although supervised deep learning has revolutionized speech and audio processing, it has necessitated the building of specialist models for individual tasks and application scenarios. It is likewise difficult to apply this to dialects and languages for which only limited labeled data is available. Self-supervised representation learning methods pro...
The papers in this special section focus on self-supervised learning for speech and audio processing. A current trend in the machine learning community is the adoption of self-supervised approaches to pretrain deep networks. Self-supervised learning utilizes proxy-supervised learning tasks (or pretext tasks)—for example, distinguishing parts of the...
Language identification is critical for many downstream tasks in automatic speech recognition (ASR), and is beneficial to integrate into multilingual end-to-end ASR as an additional task. In this paper, we propose to modify the structure of the cascaded-encoder-based recurrent neural network transducer (RNN-T) model by integrating a per-frame langu...
On-device end-to-end (E2E) models have shown improvements over a conventional model on English Voice Search tasks in both quality and latency. E2E models have also shown promising results for multilingual automatic speech recognition (ASR). In this paper, we extend our previous capacity solution to streaming applications and present a streaming mul...
In voice-enabled applications, a predetermined hotword isusually used to activate a device in order to attend to the query.However, speaking queries followed by a hotword each timeintroduces a cognitive burden in continued conversations. Toavoid repeating a hotword, we propose a streaming end-to-end(E2E) intended query detector that identifies the...
While a streaming voice assistant system has been used in many applications, this system typically focuses on unnatural, one-shot interactions assuming input from a single voice query without hesitation or disfluency. However, a common conversational utterance often involves multiple queries with turn-taking, in addition to disfluencies. These disf...
Text-only and semi-supervised training based on audio-only data has gained popularity recently due to the wide availability of unlabeled text and speech data. In this work, we propose incorporating text-only and semi-supervised training into an attention-based deliberation model. By incorporating text-only data in training a bidirectional encoder r...
Although supervised deep learning has revolutionized speech and audio processing, it has necessitated the building of specialist models for individual tasks and application scenarios. It is likewise difficult to apply this to dialects and languages for which only limited labeled data is available. Self-supervised representation learning methods pro...
Improving the performance of end-to-end ASR models on long utterances ranging from minutes to hours in length is an ongoing challenge in speech recognition. A common solution is to segment the audio in advance using a separate voice activity detector (VAD) that decides segment boundary locations based purely on acoustic speech/non-speech informatio...
We propose a streaming non-autoregressive (non-AR) decoding algorithm to deliberate the hypothesis alignment of a streaming RNN-T model. Our algorithm facilitates a simple greedy decoding procedure, and at the same time is capable of producing the decoding result at each frame with limited right context, thus enjoying both high efficiency and low l...
Language models (LMs) significantly improve the recognition accuracy of end-to-end (E2E) models on words rarely seen during training, when used in either the shallow fusion or the rescoring setups. In this work, we introduce LMs in the learning of hybrid autoregressive transducer (HAT) models in the discriminative training framework, to mitigate th...
In this paper, we propose a dynamic cascaded encoder Automatic Speech Recognition (ASR) model, which unifies models for different deployment scenarios. Moreover, the model can significantly reduce model size and power consumption without loss of quality. Namely, with the dynamic cascaded encoder model, we explore three techniques to maximally boost...
In this paper, we propose a dynamic cascaded encoder Automatic Speech Recognition (ASR) model, which unifies models for different deployment scenarios. Moreover, the model can significantly reduce model size and power consumption without loss of quality. Namely, with the dynamic cascaded encoder model, we explore three techniques to maximally boost...
Language model fusion helps smart assistants recognize words which are rare in acoustic data but abundant in text-only corpora (typed search logs). However, such corpora have properties that hinder downstream performance, including being (1) too large, (2) beset with domain-mismatched content, and (3) heavy-headed rather than heavy-tailed (excessiv...
The recurrent neural network transducer (RNN-T) has recently become the mainstream end-to-end approach for streaming automatic speech recognition (ASR). To estimate the output distributions over subword units, RNN-T uses a fully connected layer as the joint network to fuse the acoustic representations extracted using the acoustic encoder with the t...