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Abstract 

The flow and heat transfer performance of solar water heaters for different initial temperatures (273K, 283K, 293K, 303K and 

313K) with elliptical collector tubes are evaluated using numerical simulation. The predicted results match fairly well with 

experimental data. Results indicate that, the temperature distributions of all the tube cross sections are alike, but the velocity 

profiles of them are much dissimilar. The fluid velocity near the wall decrease with decrease in the ratio of the cross section 

major and minor axis, which induces the reduction in the circulation rate through the collector tubes, which is not conducive to 

heat transfer. The mean Nusselt number of solar water heater with b/a=1 (b and a here are respectively major and minor axis of 

collector tube cross section) are respectively 59% and 19% larger than the solar water heaters withb/a=0.6 and 0.8 for the 

temperature ranging from 273K to 313K. 
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1. Introduction 

Solar water heater is widely used all over the world due to its simplicity, technological feasibility, economical and 

commercial viability. Extensive and systematic researches have been carried out over the years to evaluate the 

performance of the solar water heater [1-4]. Jaisankar et al. [5] experimentally investigated the friction factor and 

heat transfer characteristics of thermosyphon solar water heater with full length Left-Right twist, twist fitted with rod 

and spacer at the trailing edge, results showed that the solar water heaters with full length twists are better for heat 
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transfer and with lower flow resistance than the other two. Morrison et al. [6] developed a numerical model of the 

heat transfer and flow inside a single-ended evacuated tube to evaluate the characteristics of water-in-glass 

evacuated tube solar water heater, results showed that, the natural convection flow rate in the tube is high enough to 

disturb the tank’s stratification and that the tank temperature strongly affects the circulation flow rate through the 

tubes. Budihardjo et al. [7] undertake experimental and numerical investigations to develop a correlation for natural 

circulation flow rate through single-ended water-in-glass evacuated tubes mounted over a diffuse reflector. The 

circulation flow rate was correlated in terms of solar input, tank temperature, collector inclination and tube aspect 

ratio. The sensitivity of the flow rate correlation to the variation in circumferential heat flux distribution was also 

investigated. Yan et al. [8, 9] numerically and experimentally studied the effect of irradiance, tilt angle and the guide 

plate on the heat transfer performance, based on the results of the study, they proposed many suggestions for 

optimization of the solar water heater. 

With the popularity of wall hanging solar water heater, there will be security threat because of the large weight of 

the collector. The potential safety hazard may be reduced if the circular collector tube changed into elliptic pipe, 

which make the weight of the collector tube lower. In this paper, the flow and heat transfer performance of solar 

water heaters with elliptical collector tubes are evaluated and compared with the normal one using CFD. 

 

Nomenclature 

D circular tube diameter (m) h heat transfer coefficient (W/m2·K) 

a minor axis of elliptical cross section (m) A heat transfer surface area (m2) 

b major axis of elliptical cross section (m) TW average wall temperature (K) 

L length of collector tube (m) Tb average bulk temperature (K) 

DT inner diameter of tank (m) Nu Nusselt number 

T fluid temperature (K) d equivalent diameter of collector tube (m) 

cp specific heat of fluid (J/kg ·K) g acceleration of gravity (m/s2) 

k thermal conductivity (W/m ·K) p static pressure (Pa) 

Q heat transfer rate (W) qW average heat input into the tube (W/m2) 

m mass flow rate (kg/s)  tilt angle of the solar water heater (°) 

Tin  inlet temperature of tank (K)  density (kg/m3) 

Tout  outlet temperature of tank (K)  dynamic viscosity (kg/m ·s) 

2. Numerical method 

2.1. Physical model 

The inner tube of the all glass evacuated solar collector tube used in this paper was elliptical tube, and the outer 

one was circular tube. The general structure of the inner tube cross section of the collector tube was shown in Fig.1. 

The major axis of the all tubes were 0.047m, the minor axis of the tubes were respectively 0.047m, 0.0376m and 

0.0282m. In the other words, the ratios of the minor axis and major axis were respectively 1, 0.8 and 0.6. The length 

of the collector L was 1.8m, the inner diameter of tank was 0.36m, and the tilt angle of the solar collector was 45°. 

The thermophysical property of the working fluid, water, was shown in Table 1. The properties between them get 

from line interpolation. 

Table 1 Thermophysical property of water  

T (K)  (kg/m3) cp (J/kg · K) k (W/m · K)  (kg/m·s) 

273 999.9 4212 0.551 0.001788 

283 999.7 4191 0.574 0.001306 

293 998.2 4183 0.599 0.001004 
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303 995.7 4174 0.618 0.0008015 

313 992.2 4174 0.635 0.0006533 

323 988.1 4174 0.648 0.0005494 

 

section 1

(b/a=1)

section 2

(b/a=0.8)

section 3

(b/a=0.6)

 
Fig. 1 Cross sections of the collector tubes                                                                 Fig. 2 Computational domain 

2.2. Data reduction 

The data is reduced in the following procedure. Firstly, the total heat transfer rate can be obtained by 

( )p out inQ mc T T  (1) 

Tin and Toutare calculated using 
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where iT , i , 
iu , 

iA are respectively temperature, density, velocity vector and area vector of area element i which 

on the inlet or outlet of the tank. 

The heat transfer coefficient is determined by 
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The Nu is calculated from 

/Nu hd k  (5) 
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2.3. Numerical model 

Some assumptions are used to simplify the problem: (1) the radiation intensity is almost uniform on the top half 

of the tube, and the bottom half is thermally insulated, (2) the tank has good heat-retaining performance, the heat 

loss through the insulation layer is zero, (3) the tank is positioned horizontally and all the walls are hydraulically, (4) 

there is no heat exchange between the evacuated collector tube and outside surrounding due to its good vacuum 

quality, (5) the tank is full of water and no air, (6) the flow in the whole computational domain is laminar. The 

numerical model used in this paper is a single tube connected to tank, the whole computational domain as shown in 

Fig. 2. For simplicity, the model considered the inner tube and the outer tube was neglected. In addition, the heat 

transformed from the radiation replaced by the uniform heat input. 

2.4. Mesh design 

a 

 

b c 

Fig. 3 Meshed geometry of the tube cross sections (a) b/a=1; (b) b/a=0.8; (c) b/a=0.6 

Grid generation is a key issue in numerical simulation as it governs the stability, economy and accuracy of the 

predictions. The meshed geometry of the tube cross sections are shown in Fig. 3. Considering the steeper gradient 

near the wall, finer mesh was meshed near the wall. A mesh independence test was carried out by comparison of Nu 

for different mesh sizes. Three grid systems with about 870000, 1510000 and 2690000 nodes are adopted to 

calculate a baseline case in which b/a=1, T=313K. The Nuseelt numbers of the baseline case are shown in Fig. 4, 

which demonstrates that the difference between the calculated results of 1510000 and 2690000 nodes is very small. 

Therefore, the grid system with 1510000 nodes is adopted for the following calculations.  
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Fig. 4 Mesh independence test                                         Fig. 5 Comparison of present results and Morrison’s results 



 Kaichun Li et al.  /  Energy Procedia   70  ( 2015 )  285 – 292 289

2.5. Governing equations 

The problem under consideration is assumed to be three-dimensional, laminar and steady. Equations of continuity, 

momentum and energy for the fluid flow are given below in a tensor form, 

Continuity equation: 

0
i

i

u

x
 (6) 

Momentum equation: 

i j i

i

j j j i

u u u p
g

x x x x
 (7) 

Energy equation: 
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2.6. Boundary conditions and solution scheme 

At the computational domain of inlet and outlet, periodical condition is imposed, which indicates that the velocity, 

pressure and temperature gradient repeat themselves in the domain as follows: 

2 ...i i iu r u r L u r r  (9) 

2 ...p p r p r L p r L p r L  (10) 

2
...

T r L T r T r L T r L

L L
 (11) 

where r , L , p  and  are respectively position vector, length vector of a period, pressure drop of a period and 

temperature of a period. The mass flow rate through the inlet and outlet is 0.02kg/s. 

No slip condition is applied on all the walls, that is, the velocity magnitude near the wall is zero: 

0iu  (12) 

Uniform heat flux condition is imposed on the top half of the tube wall: 

wq q  (13) 

where 
2750 /Wq W m . All the other walls are thermally insulated. 

In the present study, the governing equations were solved with the finite volume approach. The second order  
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upwind scheme was used to discrete momentum and energy equation. A Body Force Weighted interpolation method 

was imposed for pressure. The coupling between the pressure and velocity field was established using SIMPLE 

algorithm. The solution convergence is achieved by a criterion for the normalized residuals below 10-6 for energy 

and 10-3 for other equations. 

To validate the accuracy of the numerical solutions, the predicted results in this paper are compared with the 

experimental and numerical results of Morrison [6] under similar condition. From Fig. 5 it is clearly seen that the 

deviation between the results is very limited. Therefore, the present numerical simulations have reasonable accuracy. 

3. Results and discussions 

3.1. Flow structure 

a 

b 

Fig. 6 (a) Velocity counters and (b) temperature counters of the cross sections 

Fig.6 shows the velocity and temperature counters of the tube cross sections which L/3 away from the tanks (the 

initial temperature is 293K).  It can be seen that, as heated by the top half of the tube wall, the water near the top half 

of the tube wall flow toward the tank driven by the body force due to the density decrease. At the same time, the 

water near the bottom half of the tube wall flow downward driven by gravity due to its larger density. For this 

reason, the velocity of the water near the tube wall is higher than other regions. Furthermore, the velocity of the 

water near the top half of the tube wall is higher than the water near the bottom half of the tube wall due to its higher 

temperature.  Since the water near the top and bottom half of the tube wall flow in opposite directions, a shear layer 

is formed between them. And the shear layer has the smallest velocity. It can also be seen that all the cross sections 

have similar temperature distributions. However, the velocity distributions of the cross sections are different from 

each other. From Fig. 6 (a) it can be seen that the velocity decrease with the decrease in the ratio of major axis and 

minor axis of the elliptical cross section, it will induce the reduction of circulation rate which is not conducive to 

heat transfer. 

Fig. 7 depicts the variation of mean velocity magnitudes of eighteen cross sections, namely, L//L = 0, 0.06, 0.11, 

0.17, 0.22 until 0.94, where L/ is the distance of the cross section away from the tank. From Fig. 7, it can be seen 

that the mean velocity magnitude near the tank is smaller than the region range from 0.06L to 0.4L. The explanation 

for this phenomenon is that, the upward hot water is cooled by the downward cold water and it will lead the hot 
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water to flow in the opposite direction due to the smaller density, at the same time, the cold water is heated by the 

hot water, and the cold water will flow upward due to the increment in density, all these can lead to the generation of 

short current flow. The velocity magnitude in the domain range from 0.06L to 0.4L is larger because of the higher 

temperature. The mean velocity magnitude is become smaller from 0.4L to the bottom of the tube. This is because 

the cold water is heated in the process of flowing to the bottom of the tube, and it is carried off by the upward hot 

flow before reaching the tube bottom. Another feature can be seen from Fig. 7 is that the mean velocity magnitude 

increase with increment in the ratio of major axis and minor axis of the tube cross section, which indicates excellent 

agreement with Fig. 6. 
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Fig. 7 Variation of mean velocity magnitudes of the cross sections                  Fig. 8 Variation of Nuseelt number of the solar water heaters 

3.2. Heat transfer 

Fig. 8 presents the variation in the Nuseelt number of the three solar water heaters at different initial temperatures. 

It can be seen that the value of Nuseelt number increase with increment in initial temperature. This is because the 

higher temperature leads to a higher circulation rate, which makes heat transfer better. The Nuseelt numbers of the 

solar water heaters with b/a=1, 0.8 and 0.6 are respectively increase by 2.21, 1.98 and 1.80 times for the initial 

temperature ranging from 273K to 313K. Moreover, it can also be seen that, the larger the value of b/a, the better 

heat transfer is, which is agree with Fig. 6 and 7. Over the range investigated, the mean Nuseelt number of the solar 

water heater with b/a=1 is respectively 59% and 19% larger than the solar water heaters with b/a=0.6 and 0.8. 

Consequently, although the solar water heater with elliptical collector tube is ahead of the normal solar water heater 

in some ways, but, as to flow and heat transfer performance, the normal solar water heater do better than it. 

4. Conclusion 

The flow and heat transfer performance of solar water heaters for different initial temperatures (ranging from 

273K to 313K) with elliptical collector tubes are evaluated and compared with normal solar water heater using 

numerical simulation. The predicted results match fairly well with experimental data. Results indicate that, the 

temperature distributions of all the tube cross sections are similar, but the velocity profiles of them are much 

dissimilar. The fluid velocity near the wall and decrease with decrease in the ratio of the cross section major and 

minor axis, which induces the reduction in the circulation rate through the collector tubes, which is not conducive to 

heat transfer. The value of Nuseelt number increase with increment in initial temperature. The larger the value of b/a, 

the better heat transfer is. Over the range investigated, the mean Nusselt number of solar water heater with b/a=1are 
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respectively 59% and 19% larger than the solar water heaters withb/a=0.6 and 0.8 for the temperature ranging from 

273K to 313K. 
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