About
27
Publications
21,373
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,387
Citations
Introduction
Current institution
Additional affiliations
July 2014 - present
Publications
Publications (27)
The COVID-19 pandemic damaged crude oil markets and amplified the consequences of uncertainty stemming from the Russia-Saudi Arabia oil price war in March–April of 2020. We investigate the impacts of the oil price war on global crude oil markets. By doing so, we use the daily futures and spot prices in three major crude oil markets—West Texas Inter...
This study uses the recently proposed dynamic model averaging (DMA) and dynamic model selection (DMS) framework to develop forecasting models of Chinese soybean futures price with eight predictors, which allows both coefficients and forecasting models to evolve over time. Specifically, covering an out-of-sample period from August 2, 2005 to May 26,...
In view of the importance of seasonal forecasting of agricultural commodity price, particularly vegetable prices, and the limited research attention paid to it previously, this study proposes a novel hybrid method combining seasonal-trend decomposition procedures based on loess (STL) and extreme learning machines (ELMs) for short-, medium-, and lon...
Stock index forecasting has been one of the most widely investigated topics in the field of financial forecasting. Related studies typically advocate for tuning the parameters of forecasting models by minimizing learning errors measured using statistical metrics such as the mean squared error or mean absolute percentage error. The authors argue tha...
In view of the importance of interval-valued time series (ITS) modeling and forecasting, and the less research efforts made before, this study proposes an hybrid modeling framework combining interval Holt's exponential smoothing method (HoltI) and multi-output support vector regression (MSVR) for ITS forecasting. Following the philosophy of well-es...
Accurate forecasting of mid-term electricity load is an important issue for power system planning and operation. Instead of point load forecasting, this study aims to model and forecast mid-term interval loads up to one month in the form of interval-valued series consisting of both peak and valley points by using MSVR (Multi-output Support Vector R...
Selection of input features plays an important role in developing models for short-term load forecasting (STLF). Previous studies along this line of research have focused pre-dominantly on filter and wrapper methods. Given the potential value of a hybrid selection scheme that includes both filter and wrapper methods in constructing an appropriate p...
Interval time series prediction is one of the most challenging research topics in the field of time series modeling and prediction. In view of the remarkable function approximation capability of fully complex-valued radial basis function neural networks (FCRBFNNs), we set out to investigate the possibility of forecasting interval time series by den...
Accurate interval forecasting of agricultural commodity futures prices over future horizons is challenging and of great interests to governments and investors, by providing a range of values rather than a point estimate. Following the well-established “linear and nonlinear” modeling framework, this study extends it to forecast interval-valued agric...
Background
Short-term load forecasting is an important issue that has been widely explored and examined with respect to the operation of power systems and commercial transactions in electricity markets. Of the existing forecasting models, support vector regression (SVR) has attracted much attention. While model selection, including feature selectio...
Opposition-based Learning (OBL) has been reported with an increased performance in enhancing various optimization approaches. Instead of investigating the opposite point of a candidate in OBL, this study proposed a partial opposition-based learning (POBL) schema that focuses a set of partial opposite points (or partial opposite population) of an es...
Highly accurate interval forecasting of electricity demand is fundamental to the success of reducing the risk when making power system planning and operational decisions by providing a range rather than point estimation. In this study, a novel modeling framework integrating bivariate empirical mode decomposition (BEMD) and support vector regression...
The hybrid ARIMA-SVMs prediction models have been established recently, which take advantage of the unique strength of ARIMA and SVMs models in linear and nonlinear modeling, respectively. Built upon this hybrid ARIMA-SVMs models alike, this study goes further to extend them into the case of multistep-ahead prediction for air passengers traffic wit...
Highly accurate interval forecasting of a stock price index is fundamental to successfully making a profit when making investment decisions, by providing a range of values rather than a point estimate. In this study, we investigate the possibility of forecasting an interval-valued stock price index series over short and long horizons using multi-ou...
Following the “decomposition-and-ensemble” principle, the empirical mode decomposition (EMD)-based modeling framework has been widely used as a promising alternative for nonlinear and nonstationary time series modeling and prediction. The end effect, which occurs during the sifting process of EMD and is apt to distort the decomposed sub-series and...
Electricity load forecasting is an important issue that is widely explored and examined in power systems operation literature and commercial transactions in electricity markets literature as well. Among the existing forecasting models, support vector regression (SVR) has gained much attention. Considering the performance of SVR highly depends on it...
Addressing the issue of SVMs parameters optimization, this study proposes an efficient memetic algorithm based on Particle Swarm Optimization algorithm (PSO) and Pattern Search (PS). In the proposed memetic algorithm, PSO is responsible for exploration of the search space and the detection of the potential regions with optimum solutions, while patt...
Accurate time series prediction over long future horizons is challenging and of great interest to both practitioners and academics. As a well-known intelligent algorithm, the standard formulation of Support Vector Regression (SVR) could be taken for multi-step-ahead time series prediction, only relying either on iterated strategy or direct strategy...
Multistep-ahead time series prediction is one of the most challenging research topics in the field of time series modeling and prediction, and is continually under research. Recently, the multiple-input several multiple-outputs (MISMO) modeling strategy has been proposed as a promising alternative for multistep-ahead time series prediction, exhibit...
An accurate prediction of crude oil prices over long future horizons is challenging and of great interest to governments, enterprises, and investors. This paper proposes a revised hybrid model built upon empirical mode decomposition (EMD) based on the feed-forward neural network (FNN) modeling framework incorporating the slope-based method (SBM), w...
Reasons for contradictory findings regarding the gender moderate effect on computer self-efficacy in the adoption of e-learning/mobile learning are limited. Recognizing the multilevel nature of the computer self-efficacy (CSE), this study attempts to explore gender differences in the adoption of mobile learning, by extending the Technology Acceptan...
With regard to the nonlinearity and irregularity along with implicit seasonality and trend in the context of air passenger traffic forecasting, this study proposes an ensemble empirical mode decomposition (EEMD) based support vector machines (SVMs) modeling framework incorporating a slope-based method to restrain the end effect issue occurring duri...
Although the Empirical Mode Decomposition (EMD)-based decomposition and ensemble framework for time series forecasting has been widely used, the end effect of EMD has not been addressed adequately. This study proposed to incorporate Mirror Method (MM), capable of dealing with the problem of end effect, into a hybrid modeling framework with Ensemble...
The hybrid linear and nonlinear modeling framework has been widely used as a promising method
for time series forecasting. However, there have been very few, if any, large scale comparative studies
for the hybrid linear and nonlinear framework for air passenger traffic forecasting. So, we hope this
study would fill this gap. The linear models selec...
In this study, a hybrid decomposition and ensemble framework incorporating Ensemble empirical mode decomposition (EEMD) and selected modeling methodologies are proposed for stock price forecasting. Under the framework, the original stock price series was first decomposed into several subseries including a number of intrinsic mode functions (IMFs) a...
Accurate prediction on crude oil price in a long time horizon has been appealing both for academia and practitioners. Recursive strategy and direct strategy are two mainstream modeling schemas widely used for multi-step-ahead prediction in the context of time series modeling. In this paper, a comparative study has been conducted to justify these tw...
Non-Normal demand is the demand with infrequent demand occurrences or irregular demand sizes, which is very difficult to forecast. In this study, an ensemble empirical mode decomposition (EEMD) based support vector machines (SVMs) learning approach is proposed to forecast demand in these two cases. This approach is under a "decomposition-and-ensemb...