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Abstract 

Large variations in anatomical shape and size, too much overlap between anatomical structures, and inconsistent 

anatomical shapes make accurate lung segmentation in chest x-rays (CXR) a challenging problem. In this paper, 

we propose an automatic method called A-LugSeg that consists of two subnetworks for lung segmentation in 

CXRs. The first is a segmentation subnetwork based on a deep learning model (i.e., Mask-RCNN), which 

completes a coarse segmentation for each input CXR image. The second is a refinement subnetwork designed to 

optimize the coarse segmentation result by combining an improved closed principal curve method and an 

enhanced machine learning, where the lung contour’s explainability-guided mathematical model is expressed by 

the machine learning’s parameters. The performance of the proposed method is evaluated on three public datasets, 

namely the ShenZhen hospital Chest X-ray dataset (SZCX), Japanese Society of Radiological Technology dataset 

(JSRT), and Montgomery County chest x-ray dataset (MC), which contain the 662 CXRs, 247 CXRs, and 138 

CXRs, respectively. We used different datasets for training/validation (SZCX) and testing (SZCX/JSRT/MC). 

Furthermore, we used six evaluation metrics to evaluate the performance of our proposed method, including Dice 

Similarity Coefficient (DSC), Jaccard Similarity Coefficient (Ω), Accuracy (ACC), Precision, Sensitivity, and 

Specificity. The obtained results (DSC=0.973, Ω=0.958, ACC=0.972, and p-value for DSC <0.001) for JSRT, 

(DSC=0.971, Ω=0.955, ACC=0.97, and p-value for DSC <0.001) for MC, (DSC=0.972, Ω=0.956, and ACC=0.97) 

for hybrid datasets (JSRT+MC), and (Precision, Sensitivity, and Specificity are higher than 0.98) show the 

superior performance of the proposed dual subnetwork segmentation algorithm compared to the existing state of 

the art approaches. 

 

Keywords: Automatic lung segmentation; chest radiographs; multi-site dataset; Mask-RCNN; principal curve; 

improved adaptive closed polyline searching algorithm; fractional-order backpropagation learning algorithm; 
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1 Introduction 

Chest radiography remains the most commonly used imaging modality for diagnosing various pulmonary 

diseases such as tuberculosis and lung cancer (Geetha et al., 2021). Because of its low cost, low dose of radiation, 

and widespread availability, hundreds to thousands of chest x-ray images (CXRs) are generated in a typical 
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hospital daily, which creates significant diagnostic workloads (Chandra et al., 2020). Using a Computer-Aided 

Diagnosis system (CAD) to automatically interpret these CXRs can significantly reduce the diagnosis time and 

greatly help clinical radiologists in effective decision making. Accurate lung segmentation is often a necessary 

step for quantitative lung image analysis in CAD, as it is important for identifying lung diseases in clinical 

evaluations (Vidal et al., 2021; Chakraborty, & Mali, 2021). 

Although lung segmentation in CXRs has been researched extensively over the last four decades (Chondro 

et al., 2018), it is still a challenging task due to the following reasons. (1) There are large variations in anatomical 

shape and size between different patients due to gender, age, and genetic variations (Candemir et al., 2014). (2) 

There are overlapping parts between anatomical structures, such as the heart, rib cage, and clavicle bones. (3) 

Inconsistencies in anatomical shape between different individuals make segmenting small costophrenic angles 

challenging. Fig. 1 shows two sample CXR images that illustrate these challenges associated with accurate CXR 

segmentation. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Two randomly selected CXRs on Posterior-Anterior view and their differences. Variable shapes of the 

lung, visible heart shape, strong edges of the rib cage, and sharp corner at the costophrenic angle make it 

challenging for automatic lung segmentation methods. 

Many different segmentation methods have been explored, including (i) feature classification methods (Shu 

et al., 2021), (ii) region segmentation methods (Zeng et al., 2019; Zeng, Li, Wang, et al., 2021), and (iii) contour 

detection methods (Novikov et al., 2018). Shen et al., (2015) presented an automated lung segmentation method 

that uses bidirectional chain codes to minimize the over-segmentation of neighboring regions. The average over-

segmentation rate was as low as 0.3%, but it sometimes failed to re-include the juxtapleural nodules sitting in 

consolidation regions. Wan Ahmad et al., (2015) proposed a Content-Based Medical Image Retrieval System 

(CBMIRS) for lung segmentation, but the Jaccard Similarity Coefficient (Ω) was only 0.87 when they tested the 

method on a public dataset. Alternatively, the shape of anatomical structures can be represented in the form of 

points by the contour detection method (Tu et al., 2018). Compared with the other methods, the contour detection 

method easily obtains the shape of the anatomical structure with less time complexity (Peng et al., 2019). 

The main purpose of the contour detection method is to approximate the contour of organs by using region 

representation (Wang et al., 2015) or curve approximation (Afzali et al., 2018). Souza et al., (2019) investigated 

a Deep Convolutional Neural Network method (DCNN) for automatic lung segmentation with good performance. 

However, this method decreased some of the performance metrics during the reconstruction step. Yang et al., 

(2018) presented a structured edge detector (SED) for lung field segmentation in chest radiographs with high 

accuracy, but accurately segmenting abnormal portions of the lungs with this method is still challenging. Farhangi 

et al., (2017) proposed a lung nodule segmentation method based on Sparse Linear Combination of Training 

Shapes (SCoTS), but this method’s performance depends on the diversity and accuracy of the training shapes. 

The principal curve algorithm has been widely used for separating abnormal anatomical structures from other 
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neighboring normal organs, because it handles noisy input well and obtains robust results (Peng et al., 2019). The 

principal curve is a smooth curve that passes through the middle of an n-dimensional dataset, providing a nonlinear 

description of the n-dimensional dataset (Hastie, & Stuetzle, 1989). The principal curve has been shown to be 

effective in contour detection. Ataer-Cansizoglu et al., (2013) proposed a contour-based shape representation 

method based on the principal curve and tested it on a lung dataset with high accuracy. Khedher et al., (2015) 

combined the Partial Least Squares, principal curve and Support Vector Machine for medical imaging 

segmentation. Meanwhile, machine learning has been used widely in a variety of medical image applications. In 

the field of disease detection, combining machine learning with the principal curve-based method has shown 

promising results for disease detection (Peng, Xu, Wang, Zhou, et al., 2020; Zeng, Li, & Peng, 2021). 

In the present work, we propose a novel automatic lung segmentation framework called A-LugSeg for multi-

site CXR datasets. The proposed framework consists of two subnetworks: 1) the Mask Region-based 

Convolutional Neural Network algorithm (Mask-RCNN) (He et al., 2017) to complete the coarse segmentation of 

the lung and 2) a hybrid refinement step to optimize the final segmentation results. In the hybrid refinement step, 

we combine the improved principal curve and enhanced machine learning methods. Our contributions/novelties 

are summarized as follows: 

⚫ We present a coarse-to-fine cascade segmenting framework that automatically segments the lung contour on 

CXRs while minimizing the impact of other neighboring organs. 

⚫ In our segmenting framework, the coarse segmentation is achieved using Mask-RCNN, while the hybrid 

method combines an Adaptive Closed Polyline Searching algorithm (ACPS) with a Fractional-Order 

Backpropagation Learning algorithm (FOBL) being used as the refinement step. 

⚫ Compared with the traditional Polyline Searching algorithm (PS) (Kégl et al., 2000; Kégl, & Krzyzak, 2002), 

our previous works (Peng et al., 2019; Peng, Xu, Wang, Zhou et al., 2020; Peng et al., 2018) propose an 

improved Closed Polyline Searching algorithm (CPS) for the first time by adding several limitation 

conditions. Based on our previous works, inspired by Ref. (Zhang et al., 2013; Yang et al., 2014), we 

proposed the ACPS by adding certain improvements, including the improved projection step, improved 

vertex optimization step, and adaptive radius selection method. 

⚫ Compared with the traditional Back Propagation algorithm (BP), inspired by Ref. (Wang et al., 2017; Chen 

et al., 2020), we proposed the FOBL, which used the Caputo-type fractional gradient descent algorithm-

based backpropagation step. 

⚫ We proposed a smooth explainability-guided mathematical model to express the lung contour, where the 

mathematical model is the first time to be denoted by the parameters of the FOBL. 

The rest of the paper is organized as follows. Section 2 introduces our method, including Mask-RCNN, ACPS, 

FOBL, and the explainability-guided mathematical model. In Section 3, we introduce the datasets and evaluation 

metrics. In Section 4, we present the experimental results. The last section concludes the paper. 

2. Methods 

Our method aims to achieve accurate lung segmentation to aid in lung disease diagnosis. Fig. 2 shows the 

framework of our proposed method for segmenting lungs from CXRs, including a flowchart of the segmentation 

pipeline. The pipeline consists of a preprocessing step (stage 1) and a refinement step (stage 2). 
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Fig. 2. The framework of our proposed method. 

2.1 Preprocessing step 

The preprocessing step completes the coarse segmentation by using the Mask-RCNN, which is a recently 

proposed general framework for object detection and segmentation. The details of the Mask-RCNN are illustrated 

in Fig. 3. The network layout of the Mask-RCNN is detailed below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Illustration of the Mask-RCNN for the coarse segmentation. 
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We used Mask-RCNN as a coarse segmentation step mainly due to the following reason: Mask-RCNN was 

the COCO 2016 challenge winner on single-model entry, which achieved good accuracy and robustness (Cai et 

al., 2020) for object detection and has been generalized to other tasks such as medical imaging segmentation, 

achieving very promising results (Privalov et al., 2021; Vuola et al., 2019; Gamage et al., 2019; Bagheri et al., 

2021). 

The Mask-RCNN was presented in 2017 and extends the Faster RCNN (Ren et al., 2017) for objection 

localization and object instance segmentation of natural images. Mask-RCNN’s main improvements over the 

Faster RCNN include: 1) Mask-RCNN uses a Region of Interest Align (RoIAlign) operation to replace the less 

precise ROI-Pooling operation used in the Faster RCNN, which results in more accurate segmentation masks; 2) 

Mask-RCNN extends a predictor head with a fully convolutional mask prediction branch to produce the desired 

instance segmentation (Fig. 3); and 3) Mask-RCNN uses decoupled mask and class predictions, where the mask 

network head predicts the mask independently from the network head that predicts the class (Fig. 3). 

Mask-RCNN is built on a backbone convolutional neural network architecture for feature extraction. In 

principle, the backbone network could be any convolutional neural network (CNN) designed for image analysis 

(i.e., ResNet-50 or ResNet-101) (He et al., 2016), but it has been demonstrated that combining a feature pyramid 

network (FPN) with a network (i.e., ResNet-50 or ResNet-101) as the backbone of the Mask-RCNN increases 

both its accuracy and its speed (He et al., 2017). 

The properties of natural images differ from those of medical images, but given the effectiveness of Mask-

RCNN for general-purpose object segmentation, we investigated its performance for coarse lung segmentation in 

CXRs. Because combining ResNet-101 with FPN achieves higher accuracy than ResNet-50 (He et al., 2016), we 

used the FPN and ResNet-101 for the backbone network of Mask-RCNN. 

In this work, we set the configuration of Mask-RCNN as follows: we used a pre-trained weight on the COCO 

dataset (Lin et al., 2014) to handle the limited training data. In Region Proposal Network (RPN), if a ROI has an 

Intersection Over Union (IoU) with ground truth less than 0.5, it is regarded as negative, otherwise it is regarded 

as positive. Each mini-batch has 2 images per GPU and each image has 256 ROIs, where the ratio of positive to 

negative is 1:3. Furthermore, we set the anchor ratio scale at (16, 32, 64, 128, 256). In total, we trained for 100 

epochs using stochastic gradient descent with momentum of 0.9, where we set the constant learning rate of 0.001, 

and a weight decay of 0.0001. Furthermore, Mask-RCNN produces the predicted detection outputs as the 

bounding boxes. Each bounding box is associated with a detection confidence score. All the boxes below the 

detection confidence threshold parameter are ignored for further processing. At last, we accepted the detection 

confidence level threshold of 0.7. 

2.2 Refinement step 

The goal in this step is to increase the accuracy of lung contours by fine-tuning the coarse segmentation result 

via an improved ACPS coupled with the improved FOBL. 

2.2.1 ACPS 

Principal curves were firstly defined by Hastie, & Stuetzle (1989) as “self-consistent” smooth curves which 

pass through the “middle” of a n-dimensional probability distribution or data cloud, whereas the medial axis is a 

set of smooth curves that go equidistantly from the contours of a character. To improve the efficiency and 

robustness of our previous work, we proposed the ACPS, where the workflow of the ACPS is shown in Fig. 4, 

respectively. 

Tao Peng
Highlight
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Fig. 4. The workflow of the ACPS (purple box shows the traditional steps from PS, orange box shows the 

improvement steps by our previously proposed CPS, and light blue box shows the improvements steps by this 

work). 

A. Closed Polyline Searching algorithm (CPS) 

Kégl et al., (2000) first proposed the traditional PS to find the principal curve from the data cloud. However, 

the main challenge for the actual principal curve is to correctly describe the projection index of the dataset to 

produce a closed and smooth curve (Peng et al., 2019). To handle this issue, we previously proposed an improved 

CPS (Peng et al., 2019; Peng, Xu, Wang, Zhou et al., 2020; Peng et al., 2018). Compared with the traditional PS, 

there are several improvements in CPS, such as initialization, normalization, stop conditions, and constraint 

conditions, as shown below, 

Initialization and normalization steps: To deal with the closed dataset, in the improved initialization step, we 

use a closed square as the first principal component line, where the four vertices of the closed square are (0.05, 

0.05), (-0.05, 0.05), (-0.05, -0.05), and (0.05, -0.05). Then, the initial step of the PS is removed, and the new initial 

step is added, as shown in Fig. 4. In the added normalization step, the coordinates of data points xi are unified into 

the range of {(-1,1)}. 

Stop conditions: The stop conditions are mainly used in the whole loop, outer loop, and inner loop. The whole 

loop is used as the global constraint loop and executes after the normalization step. The whole loop will exit when 

k satisfies, 

 ( ) 1/3 1/2

, ,, ( ) ( )n k n n k nk c n f n f r −  =                      (1) 

where the robustness of the principal curve method is determined by the selection of the number of segments k, 

which depends on the average squared distance Δn(fk,n) (Kégl, & Krzyzak, 2002). The parameter β is set as 0.3 
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determined by experimental results (Kégl et al., 2000), n shows the number of data points, f denotes the principal 

curve, and r is the radius of data points. 

Both the inner and outer loops need to satisfy the condition that the difference in value between the current 

distance and the last loop distance is smaller than the maximum distance deviation Δs=0.002. The distance 

deviation Δs used in both the outer and inner loops was determined by several trial runs. 

Constraint conditions: The innovations of this part mainly focus on the optimal selection of vertices, line 

segments, and the shape of the contour curve. 

The main steps in selecting the optimal vertices are the following: 1) a new vertex is inserted, and the whole 

dataset is chosen to project the segments or the determined vertices; 2) the distance function from data points to 

the curve is calculated; and 3) the position of each vertex is adjusted only when the value of the distance function 

becomes smaller; otherwise, another new vertex is selected to start a new test. 

In selecting the line segments, the longest segment will be chosen because the line segment needs to contain 

as many projection points as possible. The obtained contour curve stays closed all the time. 

B. ACPS 

When dealing with complex data, PS and CPS often have low robustness. In this work, inspired by the works 

(Zhang et al., 2013; Yang et al., 2014), we propose a new ACPS by adding three improvements based on the CPS, 

including, 1) improved projection step, 2) improved vertex optimization step, and 3) adaptive selection of radius 

of data points. 

Improved projection step: In the traditional projection step, the data points are classified according to which 

segment or vertex they project (Peng et al., 2019). During this process, the entire principal curve is scanned to 

partition each data point xi into the nearest neighbor vertices or segments (Kégl et al., 2000). Due to too many 

required scans, this process is time-consuming when dealing with a large number of complex data. In this work, 

we only scan certain regions of the principal curve around the data point xi and partition it into the nearest 

neighborhood region to take the place of the entire principal curve. If the data point xi finds the suitable project 

region, then the scanning process of this data point ends. 

Improved vertex optimization step: In our previously proposed CPS, the curvature penalty P(f) is denoted by, 

1

1
( ) ( )

m

v i

i

P f P v
m =

= 
                                (2) 

where m is the number of vertices, the curvature penalty function Pv(vi) on the vertex vi is a triangle-based function  

(Zhang et al., 2013). Furthermore, we set the average squared distance Δ(f) is from data point c to the nearest 

segments or vertices of the principal curve f, shown as below, 

1

1 n

i

i

( f ) ( c , f )
n =

 = 
                                (3) 

where n is the number of data points. The penalized distance function E(f) in the vertex optimization step is shown 

as below: 

( ) ( ) ( )E f f P f=  +                               (4) 

where λ is the penalty factor. 

Considering that P(f) uses triangle functions for calculating that decrease the efficiency of the method, this 

work uses a new constraint function D(f) to take the place of P(f) in the vertex optimization step, where D(f) only 

uses the addition and average for calculating as follows: 
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1

1
( ) ( , )

m

i

i

D f c v
m =

= 
                            (5) 

where Δ(c, v) denotes the distance between a data point c to the nearest vertex v. Then, the new penalized distance 

function Enew(f) can be denoted as below, 

( ) ( ) ( )newE f f D f=  +                              (6) 

Adaptive radius selection method: As shown in Eq. (1), the data points’ radius r determines the value of the 

number of segments k, where k is used to balance between the accuracy and efficiency of the method. In this work, 

we proposed an adaptive radius selection method to improve the adaptive ability of the proposed method. Detailed 

steps are summarized below: 

(i) the vertices (vi, i=1,2,..,num) are first determined, and vertices’ number is num. 

(ii) through scanning all the data points, the minimum distance DSmin and maximum distance DSmax from 

data points to the principal curve are calculated, respectively. 

(iii) if the num is larger than 3, it turns to the next step. 

(iv) a middle point cm is found by simple averaging (Yang et al., 2014), and the distance DScm from the 

middle point cm to the principal curve f is calculated. 

(v) if the coordinate of cm is different from the coordinate of any determined vertex, it turns to the next step. 

(vi) the distance DSi-1i between vertex vi-1 and vertex vi is calculated. 

(vii) we set the initial interval radius within the range of [rd, ru], where initial rd and ru equal to DSi-1i and 

2DSi-1i, respectively. Furthermore, we suppose the suitable radius r=rd+(ru-rd)/2. 

(viii) if it meets the condition that DSmin<= DScm <=DSmax, cm is regarded as a newly added vertex and r is 

determined; or it turns to the next step. 

(ix) if DScm<DSmin, we set rd=r; or if DScm> or = DSmin, we set ru=r. 

(x) the data points’ radius r is obtained. 

2.2.2 FOBL using the Fractional-order gradient descent learning with Caputo derivative 

The Caputo-type fractional gradient descent algorithm has good memory and heredity (Wang et al., 2017). 

To improve the performance of traditional BP, inspired by Ref. (Wang et al., 2017; Chen et al., 2020), we proposed 

the FOBL using the Fractional-order gradient descent learning with Caputo derivative, which was used to replace 

the gradient descent learning of the BP and update the weights vector in the backpropagation step. Furthermore, 

the forward propagation step of both methods (BP and FOBL) is the same, where the details can be found in the 

work (Chen et al., 2020). 

A. Overall 

In this section, we introduce the FOBL with three layers, including the input layer, hidden layer, and output 

layer, as a fully connected neural network. The FOBL mainly contains two steps, including the forward and back 

propagation steps. First, in the forward propagation step, the data sequence d={di=(ti, ci(x,y)),i=1,2…,n; t1<t2<…

<tn} obtained by ACPS is used by the FOBL, where projection index t is used as the input of the FOBL’s input 

layer, and the coordinates of the data point c(x,y) are used as the expected output to calculate the total error E. 

Meanwhile, Sigmoid activation function g1=1/(1+e-x) and Tanh activation function g2=(ex-e-x)/(ex+e-x) are used in 

the hidden layer and output layer, respectively. Secondly, we use the improved back propagation step, where the 

main improvements are shown in the next section. Table 1 shows the key parameters of the FOBL, where # denotes 

the parameters optimized in this work, and * denotes the selection of parameters, discussed in the work (Peng et 

al., 2018). 
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Table 1 The parameters of the FOBL. 

Type of the layer of 

FOBL 
Parameters of each layer 

Parameters of the whole 

model 

Input Layer #Input: projection index (t) 

* weights vector (w1, w2) 

 

Hidden Layer 

#Number of hidden layers 

*Hidden neurons (h) 

*Epoch 

*Learning rate 

*Momentum 

#Threshold (a) 

#Activation function: g1(x) 

Output Layer 

#Output (x, y) 

#Threshold (b) 

#Activation function: g2(x) 

B. Improvements of proposed FOBL based on BP 

Compared with the BP, we introduce the improvements of the FOBL, which are mainly in the 

backpropagation step. The details of differences between these two methods (BP and FOBL) are summarized 

below. 

In the traditional BP, to minimize the total error E, the weights vector {w1, w2} are updated at the (r+1)-th 

training iteration by the gradient descent method in the backpropagation step, shown as the following rule: 

2

2 2 1

'

2 1 2 1 1 1 1

1 1

( )
( 1) ( )

( )

                = ( ) ( ( ) ( ( ) ) ) ( ( ) )
N O

k s j k s j

s k

E w
w r w r

v r

w r g w r g w r t a b g w r t a




= =


+ = − 



−    − −   − 
        (7) 

1

1 1 2

' '

1 2 2 1 1 2 1 1

1 1

( )
( 1) ( )

( )

                = ( ) ( ( ) ( ( ) ) ) ( ) ( ( ) )
N O

k s j k s j s

s k

E w
w r w r

w r

w r g w r g w r t a b w r g w r t a t




= =


+ = − 



−    − −   − 
         (8) 

where the projection index t is the input of input layer and N is the number of points of coarse segmentation result. 

w denotes the weight from the i-th input neurons to j-th hidden neurons and v denotes the weight from the j-th 

hidden neurons to k-th output neurons. η1 and η2 are the learning rates from input to the hidden layer and from 

hidden to the output layer, respectively, where both η1 and η2 are in the range of [0, 1]. Furthermore, constructed 

function gk(•) is the composite function of g1(•) and g2(•), shown as 
2

2

1
( ) (exp ( ))

2
kg r g r

N
= − , where exp is 

the expected results. aj(j=1,2,…,h) and bk(k=1,2) are the thresholds of the j-th hidden neuron and the k-th output 

neuron, respectively. 

In our proposed FOBL, the backpropagation step is trained by the improved fractional-order gradient descent 

method with the Caputo derivative (Wang et al., 2017). The weights vector{w1, w2} are updated as follows, 

2

2 2 1 2

( )
( 1) ( ) a ( ( ))

( )

E w
w r w r C puto w r

v r



+ = −  


                     (9) 
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1

1 1 2 1

( )
( 1) ( ) ( ( ))

( )

E w
w r w k Caputo w r

w r



+ = −  


                      (10) 

The Caputo(•) function is defined as: 

' 1-

1 2 1 1

1
( ( )) ( ) ( ( ) ) ( ( ) - )

(1- ) (1- )
s sCaputo w r w r sum w r t t w r ap 

 
=     


              (11) 

1-

2 1 2

1
( ( )) ( ( ) ) ( ( ) - )

(1- ) (1- )
sCaputo w r sum w r t w r ap 

 
=   


                  (12) 

where α is the fractional order in the range of [0, 1];  shows the Gamma function; objective function sum(•) is 

the sum function (Chen et al., 2020) and adjustment parameter 1 2min{ ( ), ( )}ap w r w r= . 

2.2.3 An explainability-guided mathematical model for obtaining the smooth contour 

The contribution of this step is to develop a smooth mathematical model of the lung, which is denoted by the 

parameters of the FOBL (shown in Eq. (13) and Eq. (14)). By using the FOBL for training to minimize the total 

error E, this step fine-tunes the coarse segmentation results. After completing training, the newly proposed 

mathematical expression of the lung contour can be obtained as follows: 

( )
2 2( ( )) 1 1 ( ( ( ))) ( ( )) 1 1 ( ( ( )))

( ) ( ( ( ))), ( ( ( ))) ,
2 ( ( )) 2 ( ( ))

c x t c x t c y t c y t
f t X c x t Y c y t

c x t c y t

 + − − + − −
 = =
  
 

       (13) 

where X(•) and Y(•) show the x-axis and y-axis coordinates of the points of the generated lung contour, 

respectively. c(•) shows the output of the FOBL’s output units, corresponding to c(x(t)) and c(y(t)), shown as 

below, 

( )

1 1 1 12 - -( 2 - ) 2 - -( 2,1 1 ,1 1 ,2 2 ,2-( 1 - ) -( 1 - ) -( 1 - ) -( 1 - )1 1 11 1 1 11

1 12 -,1 1 -( 2 - ),1 1-( 1 - ) -( 1 - )11 11

- -
( , ) ( ( )), ( ( )) ,

h h h h
w b w b w b wj j j jtw a tw a tw a tw aj j j j j jj j j j je e e j e

h h
w bj w bjtw aj j tw aj j je j e

e e e e
c x y c x t c y t

e e

   
= = =+ + + = +

 
= + = +

= =

+

- )2

11 -( 2 - )2 - ,2 2,2 2 -( 1 - )-( 1 - ) 1111

b

hh
w bw b jj tw atw a j jj j j ej ee e


= += +

 
 
 
 
 
 

+ 

  (14) 

where c(x(t)) and c(y(t)) are the two output units. x(t) and y(t) can be regarded as the continuous functions, 

respectively, on projection index t, where the projection index t is regarded as the independent variable, and the 

x-axis coordinates x(t) and y-axis coordinates y(t) of the data points are the dependent variables. 

3 Multi-site datasets and evaluation metrics 

In this study, we evaluated our proposed method by using three different CXR datasets: 1) Shenzhen hospital 

chest x-ray dataset (SZCX) (Jaeger et al., 2014), 2) Japanese Society of Radiological Technology dataset (JSRT) 

(Shiraishi et al., 2000), and 3) Montgomery County chest x-ray dataset (MC) (Jaeger et al., 2014). 

⚫ SZCX: This dataset is collected by Shenzhen No. 3 People’s Hospital, Guangdong Medical College, 

Shenzhen, China. SZCX dataset contains 662 CXRs, where 326 are normal cases and the remaining 336 are 

abnormal cases with tuberculosis manifestations. 

⚫ JSRT: The JSRT dataset is one of the most widely used public lung CXR datasets, which has been available 

more than two decades ago. All the CXRs are represented by the 12-bit gray-level image with the size of 

2048 × 2048 pixels. 

⚫ MC: The MC dataset is collected in collaboration with the Department of Health and Human Services of 

Montgomery County, Maryland, USA. This dataset consists of 138 posterior-anterior CXRs, where 80 CXRs 

are normal and the other 58 CXRs are abnormal with different degrees of tuberculosis manifestations. 
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We evaluated the model’s performance on segmentation accuracy by using several parameters, including 

Dice Similarity Coefficient (DSC)/F1-score2, Jaccard Similarity Coefficient (Ω)/Intersection-Over-Union (IoU)3, 

and Accuracy (ACC). These parameters are defined as follows: 

2
 ( )

2
1

TP
DSC

TP FP FN
F score =

+
−

+
                           (15) 

 ( )
TP

IoU
FP TP FN

 =
+ +

                                (16) 

TP TN
ACC

TP FN FP TN

+
=

+ + +
                               (17) 

where TP, FP, FN, and TN represent True Positive, False Positive, False Negative, and True Negative, respectively. 

4. Experimental and results 

We first used the SZCX dataset to determine the hyperparameter (i.e., hidden neurons and epochs) of 

proposed method during both training and validation steps (Section 4.1), where we used 400 of them for training, 

162 for validation, and the other 100 for testing. Then, we used all 100 testing cases, comprising 50 normal and 

50 abnormal cases, for qualitative and quantitative evaluation (Section 4.2). In Section 4.3, we used the other two 

datasets (JSRT and MC) to test the stability and generalizability of the model obtained in Section 4.2. Finally, we 

compared our proposed method with other state-of-the-art methods (Section 4.4).  

All the ground truths of lung contours have been marked and verified by five board-certified radiologists. 

Each radiologist independently checked their own marks along with the anonymous marks of the other radiologists, 

and the consensus ground truths were obtained by the majority voting of five experts’ annotations. All experiments 

have been implemented on a computer with an Intel Core i5-9300H CPU and a Geforce GTX 1650 GPU with 

4GB memory. 

4.1. Determining the hyperparameter of proposed method on SZCX 

In this section, we evaluated the impact of the hyperparameter (i.e., hidden neurons and epochs) on the 

performance of refinement step of the proposed method. Due to the image resolution of each dataset is different, 

each testing case was down-sampled to 256×256. After coarse segmentation stage, the DSC, Ω, and ACC of the 

testing results of Mask-RCNN are 83.6%, 82.1%, and 83.1%, respectively, where the detail of configuration of 

Mask-RCNN is shown in Section 2.1. Then, we use the refinement step to fine-tune the coarse segmentation 

results. 

During training and validation stages, Fig. 5 and Fig. 6 show the results obtained with different hidden 

neurons and epochs, respectively. Brown, blue, and green curves show the change trends of the DSC, Ω, and ACC, 

respectively. Each dot (i.e., brown rhombic, blue triangle, and green square) shows the average result at different 

hidden neurons or epochs, respectively. Overall, the trend of training results is more stable, while the curve of the 

validation results is more oscillated. To the best of our knowledge, the validation set is mainly used to determine 

the optimal model (Yu et al., 2018), and we will mainly discuss the validation results here. 

To investigate the impact of hidden neurons, we set the constant epochs of 1000. From Fig. 5 (b), when the 

hidden neuron is 1, all the metrics (i.e., DSC, Ω, and ACC) of the validation result were only near 86%. The main 

reason is that due to the limited hidden neurons, FOBL may not handle the complex issue successfully. After 

increasing the hidden neurons, the validation results increase as well. When the number of hidden neurons rises 

to 10, we can obtain the optimal performance of the model, where the DSC, Ω, and ACC of the validation result 

are 96.8%, 95.3%, and 96.4%, respectively. After that, the hidden neurons continue increasing, the validation 

 
2 https://en.wikipedia.org/wiki/F-score 
3 https://en.wikipedia.org/wiki/Jaccard_index 
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accuracy starts to decrease, where overfitting occurs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                          (b) 

Fig. 5. Training and validation results at different hidden neurons. 

According to the previous results, we used the optimal selection of 10 neurons in the following experiments, 

and investigated the impact of epochs for the performance of the proposed method, shown in Fig. 6. From Fig. 6 

(b), the metrics increase at the beginning stage and remain stable after reaching the peak. When it reaches 1000 

epochs, the model gets the best model. 

  

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                          (b) 

Fig. 6. Training and validation results at different epochs. 

4.2. Segmentation performance on SZCX 

Based on the previous results, we set 10 neurons and 1000 epochs for the following experiments. We first 

quantitatively evaluated the performance of the proposed method on different resolutions, where each testing case 

was downsampled to 256×256, 512×512, and 1024×1024. Then, we randomly selected one slice for step-by-

step comparison and chose another eight results—five normal cases and three nodule-containing cases—from the 

100 testing cases at 256×256 resolution for the global and local qualitative display. We carried out the global 

qualitative comparison step by step and illustrated the Apical Regions (AR) and CostoPhrenic angle Regions (CPR) 

of the global results in Section 4.2.1. Finally, we used several evaluation metrics to test the stability of the proposed 

method, with each image at a resolution of 256×256 (Section 4.2.2). 
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4.2.1. Qualitative evaluation 

A. Step by step comparison 

The qualitative testing experimental results are denoted step by step, as shown in Fig. 7. The input of the 

proposed method is the raw data and GT shows the ground truth marked and verified by five board-certified 

radiologists (first column). The preprocessing step of the proposed method is Mask-RCNN (second column). The 

refinement step combines ACPS with FOBL, where ACPS is used obtain the data sequences and closed curve 

consisting of segments, and FOBL is used to train the data sequences and denote a mathematical model of smooth 

contour using its parameters. The proposed ACPS is used to update the positions of all the vertices according to 

the principle of minimizing the penalty distance function (Kégl et al., 2000), while the position of each line 

segment is also adjusted. Therefore, the intermediate result can be achieved, which is obtained by ACPS using the 

results of Mask-RCNN as the input (third column). The final result shows the experimental result compared with 

the ground truth (fourth column). From the second row (results of different steps) of Fig. 7, we can find that the 

result of Mask-RCNN is the worst, while the results between ACPS and proposed method are similar. From the 

third row (results of ROI) of Fig. 7, we can find that the result of proposed method is more accurate and smoother. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Qualitative discussion of experimental results step by step. The first column shows the raw data, Ground 

Truth (GT), and the ROI of GT. The second, third, and fourth row show the results of Mask-RCNN, principal 

curve method, and our proposed method, respectively. Meanwhile, the second, third, and fourth row show the 

segmented result, compared result, and ROI of the compared result, respectively. Yellow curve shows the 

experimental result and red curve shows the GT. 

B. Global comparison 

Fig. 8 shows eight CXR results (Lung A-Lung H) randomly selected from the 100 testing results for 

qualitative evaluation. The first five cases (Lung A-Lung E) are normal, and the last three cases (Lung F-Lung H) 

are from patients with lung disease. Each row shows the flow through which the segmentation results were 

obtained. “Preprocessed Result-A” denotes the results obtained by the Mask-RCNN, which consist of the mask, 

annotated name, box, and ROI contour. “Preprocessed Result-B” shows only the contour. The final result, called 
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“Compared with GT,” shows the experimental result obtained after the refinement step, and it is also compared 

with the ground truth. As shown in Fig. 8, the experimental results have good similarities with the ground truths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Several raw images are randomly selected for assisting qualitative analysis. “Preprocessed Result-A” 

shows the preprocessed result with the mask, box, contour, and annotated name. “Preprocessed Result-B” 

denotes the preprocessed result consisting only of the contour. “Compare with GT” shows the results after the 

refinement step and compares with the ground truth. 

C. AR and CPR of lung 

Accurate segmentation of AR and CPR is important for subsequent diagnosis of diseases such as tuberculosis 

or lung cancer, which often start at the AR. A blunt CostoPhrenic (CP) angle is often considered to show abnormal 

pulmonary (Leong et al., 2020; Peng, Xu, Wang, & Li, 2020). To demonstrate the proposed method’s performance 

in these regions, we tested our method at the top 25% and the bottom 25% of the lung. Fig. 9 and Fig. 10 denote 

the AR and CPR, respectively, of the segmentation results, which are zoomed images from Fig. 8 (“Compared 

with GT” column). Yellow and red contours show the automatic segmentation and the ground truth, respectively. 

Sharp corner areas (too small CP angle) and big turning areas (AR) make the segmentation more challenging. 

Nevertheless, the principal curve method shows a strong ability to fit the data accurately. Overall, the proposed 
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method can accurately extract these lung regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Segmentation results for AR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Segmentation results for CPR. 

4.2.2. Quantitative evaluation 

We first used DSC, Ω, and ACC as metrics to evaluate the performance of our proposed A-LugSeg at 256×

256, 512×512, and 1024×1024 resolutions. All (All), negative (-), and positive (+) cases represent all 100 testing 

cases, normal cases (50), and abnormal radiographs (50), respectively. 

For all CXRs in the test dataset, DSC values obtained by the proposed method were all above 0.955, and the 

average DSC obtained by using “ALL” results on different resolutions was about 0.965 (Fig. 11). All the Ω and 

ACC values are higher than 0.93 and 0.95, respectively. Higher resolution leads to lower DSC, Ω, and ACC 

(Candemir et al., 2014), as the performance was the best on CXRs at 256×256 resolution. However, the DSC, Ω, 

and ACC deviated only slightly at different resolutions (ranging from 0.958 to 0.971, from 0.939 to 0.955, and 

from 0.952 to 0.97 for “ALL”), which shows that our method’s performance is generally stable across different 

image resolutions. The optimal DSC, Ω, and ACC is obtained at 256×256 resolution, which are 0.971, 0.955, 

and 0.97, respectively. 
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Fig. 11. The segmentation performance as measured by DSC, Ω, and ACC on SZCX at different resolutions. 

DSC, Ω, and ACC denote the brown-related, blue-related, and green-related histogram, respectively. All (All), 

negative (-), and positive (+) cases represent all 100 testing cases, normal cases (50), and abnormal radiographs 

(50), respectively. 

We further evaluated the accuracy and stability of the proposed method by using the boxplot of different 

evaluation metrics on the 100 testing cases (Fig. 12). Key components of the boxplot include median value, mean 

value, and outliers (Li et al., 2019; Pereira et al., 2016). From Fig. 12, the median and mean value of DSC, Ω, and 

ACC are 0.977 and 0.971, 0.961 and 0.955, and 0.976 and 0.97, respectively. Furthermore, the DSC was above 

the mean value of DSC (0.971) for 58% of the images and above 0.98 for 38% of the images. The ACC for 68% 

of the images was higher than the mean value of ACC (0.97) and above 0.98 for 23% of the images. The Ω was 

higher than the mean value of Ω (0.955) for 64% of the images. Overall, due to the impact of the outlier points, 

the mean value is lower than the median value. There are seven radiographs with scores of Ω below 0.9, with the 

lowest score of Ω being 0.876. 
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Fig. 12. Performance measures of the proposed method by different evaluation metrics (i.e., DSC, Ω, and 

ACC), where 100 testing CXRs were used. The middle line in the box shows the median result and the “X” 

shows the mean result. 

4.3. Performance evaluation on the other public datasets 

We used two additional public datasets (JSRT and MC) to test the generalizability of the model trained on 

the SZCX dataset. We described these datasets in Section 3. Because the CXRs have different resolutions, we 

resized all the CXRs to 256×256 in this experiment. Fig. 13 shows the boxplot of each quantitative result, as 

measured by DSC, Ω, and ACC, of all the JSRT and MC datasets. The average DSC, Ω, and ACC for JSRT dataset 

were 0.973, 0.958, and 0.972, respectively. Meanwhile, the average DSC, Ω, and ACC for MC dataset were 0.971, 

0.955, and 0.97, respectively. These values of both datasets are comparable to that of the SZCX test cases (0.971, 

0.955, and 0.97), thus demonstrating our model’s generalizability. From Fig. 12 and Fig. 13, compared with all 

the metrics of both SZCX and MC datasets, the outlier points of JSRT dataset are less. The main reason is that the 

majority of the CXR images in both SZCX and MC datasets have more tuberculosis manifestations inside the 

lung regions, which can lead to severe shape deformations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. DSC of each CXR image in the JSRT and MC datasets. Both JSRT and MC datasets are used, where 

JSRT dataset contains 247 CXRs and MC dataset contains 138 CXRs. 

4.4. Comparison with state-of-the-art methods on public datasets 

We have demonstrated via the previous experiments that the proposed method is both effective and efficient 

for lung segmentation. To further illustrate the effectiveness of our method, we compared our method with other 

existing state-of-the-art lung contour extraction methods on the two popular public datasets, JSRT and MC. We 

used each of these datasets in its entirety for testing. To evaluate the performance comprehensively, we have added 

another metrics for evaluation, including precision/positive predictive value (PPV), sensitivity/recall, and 

Specificity. 
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We compared with state-of-the-art methods by using the average values of all the used metrics, shown in 
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Table 2. We also investigated the statistical significance of the differences for DSCs between our method and 

different models (Peng et al., 2018; Peng et al., 2019) using paired t-test with a significance level of 0.05 (Khiyali 

et al., 2017) on different testing datasets (JSRT and MC), shown in Table 3. We considered the following two 

categories of methods: 

⚫ Machine learning (ML) models (Novikov et al., 2018; Souza et al., 2019; Rashid et al., 2018; Mansoor et al., 

2020; Nishio et al., 2021): Novikov et al., (2018) presented the InvertedNet with Exponential Linear Units 

activation functions (ELU) for multi-class segmentation (i.e., lung, clavicle, and heart) in chest radiographs. 

Souza et al., (2019) proposed an automatic method that uses a ResNet-based Deep Convolutional Neural 

Network (RDCNN) to segment lung fields in chest radiographs. Rashid et al., (2018) proposed the Fully 

Convolutional Neural Network (FCNN) for lung segmentation from CXRs, which was validated on MC 

dataset. Mansoor et al., (2020) presented a generic approach to lung field segmentation that uses Deep Space 

and Shape Learning (DSSL). Furthermore, Nishio et al., (2021) designed a Modified U-net model (MU-net) 

combining the U-net with the Bayesian optimization for lung CXR segmentation, where Bayesian 

optimization is used for optimizing the U-net’s parameters. 

⚫ Hybrid models (T. Peng et al., 2019; Peng et al., 2018; Reamaroon et al., 2020; Afzali et al., 2021; Zou et al., 

2021): Peng et al., (2018) combined Closed Polyline Searching algorithm (CPS) with Back Propagation 

algorithm (BP) to detect the lung contour. Furthermore, Peng et al., (2019) proposed a hybrid method called 

Hull-CPS to detect the boundaries of the lung Region of Interest (ROI), and Reamaroon et al., (2020) 

proposed the Total Variation-based Active Contour algorithm (TVAC) for lung segmentation. Both methods 

have been tested on JSRT and MC datasets, respectively, with good performance. Afzali et al., (2021) 

proposed the Active Shape Model (ASM) using Center Of Mass (COM)-based model for lung CXR 

segmentation. The model has been tested on the hybrid dataset (JSRT and MC). Zou et al., (2021) presented 

a recursive cascaded unsupervised registration network (RCINet) for lung segmentation in CXRs. 

According to Table 2, the proposed method obtains a higher result among all the metrics than other existing 

state-of-the-art methods to prove the better performance, except for the works (Rashid et al., 2018; Mansoor et al., 

2020; Nishio et al., 2021). Compared with the proposed method (A-LugSeg), the method (Rashid et al., 2018) has 

better performance on MC dataset using ACC, the method (Mansoor et al., 2020) has better Ω. Furthermore, there 

are higher DSC and Specificity values in the method (Nishio et al., 2021). One reason is that we used a more 

challenging evaluation strategy where our model was trained on one dataset (SZCX) while tested on the other two 

datasets (JSRT/MC). However, Rashid et al., (2018) used each dataset individually for training/validation/testing. 

Furthermore, both works (Rashid et al., 2018; Mansoor et al., 2020) have combined all the datasets and then 

randomly selected CXRs as training/validation/testing set. 

Overall, the proposed method has an excellent performance, especially for precision (PPV) and sensitivity 

(Recall). Compared with other methods, the proposed method obtained the best precision (PPV), no matter we 

used the individual dataset (JSRT/MC) or hybrid datasets (JSRT+MC) for testing. Furthermore, the proposed 

method obtains the best Sensitivity (Recall), which proves that the A-LugSeg can obtain more samples correctly 

classified from the whole dataset. 

Table 2 

Quantitative comparison with the state-of-the-art methods. “JSRT/MC” shows the result of each dataset, and 

“JSRT+MC” shows the result of the hybrid datasets. All the papers are sorted according to the year of publication. 

Paper Method Model Data 

Performance evaluation 

DSC/ 

F1-score 

Ω/ 

IoU 

Accuracy 

(ACC) 

Precision/ 

PPV 

Sensitivity 

/Recall 
Specificity 
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(Novikov et 

al., 2018) 

Inverted 

Net 

with 

ELU 

ML JSRT 0.974 0.949 - - - - 

(Peng et al., 

2018) 
CPS-BP Hybrid 

JSRT/

MC 

0.913/ 

0.895 

0.881/ 

0.87 

0.91/ 

0.887 

0.946/ 

0.93 

0.936/ 

0.935 

0.956/ 

0.945 

(Rashid et 

al., 2018) 

FCN 

(U-Net) 
ML 

JSRT/

MC 

0.951/ 

0.954 
- 

0.971/ 

0.977 
- 

0.951/ 

0.954 

0.98/ 

0.985 

(Peng et al., 

2019) 

Hull-

CPS 
Hybrid 

JSRT/

MC 

0.965/ 

0.961 

0.932/ 

0.93 

0.97/ 

0.97 

0.973/ 

0.964 

0.946/ 

0.938 
0.97/0.965 

(Souza et 

al., 2019) 

RDCN

N 
ML MC 0.94 0.88 0.969 - 0.975 0.967 

(Mansoor et 

al., 2020) 
DSSL ML JSRT 0.969 0.961 - - - - 

(Reamaroon 

et al., 2020) 
TVAC Hybrid 

JSRT/

MC 

0.95/ 

0.956 
- - - - - 

(Afzali et 

al., 2021) 

ASM+C

OM 
Hybrid 

JSRT+

MC 
0.966 0.934 - - - - 

(Zou et al., 

2021) 
RICNet Hybrid 

JSRT/

MC 

0.947/ 

0.953 
- - - - - 

(Nishio et 

al., 2021) 
MU-net ML 

JSRT/

MC 

0.976/ 

0.973 

0.954/ 

0.949 
- - 

0.987/ 

0.967 

0.985/ 

0.992 

Our 

model 

A-

LugSeg 
Hybrid 

JSRT/

MC 

0.973/ 

0.971 

0.958/ 

0.955 

0.972/ 

0.97 

0.989/ 

0.984 

0.995/ 

0.991 

0.993/ 

0.989 

JSRT

+MC 
0.972 0.956 0.97 0.982 0.992 0.99 

 

Table 3 

Statistical analysis using paired t-test for DSCs on different testing datasets between 

different models and our method. 

 JSRT MC 

(Peng et al., 2018) <0.001 <0.001 

(Peng et al., 2019) <0.001 <0.001 

5. Discussion and Conclusion 

In this paper, we have proposed a new hybrid model for accurate and robust lung segmentation from CXRs. 

The innovations of our proposed method include: (1) an automatic and hybrid segmentation strategy; (2) an 

improved principal curve model; and (3) a smooth mathematical expression of the ROI contour. To demonstrate 

the applicability of our proposed segmentation method to lungs with various shapes, we used three clinical CXR 
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datasets to validate the performance of the proposed method. Both qualitative and quantitative experimental 

results show that: (1) the proposed A-LugSeg can obtain consistently accurate results regardless of dataset (SZCX, 

JSRT, or MC), evaluation metric (Ω, DSC, or ACC), or different kinds of CXRs (normal or abnormal); and (2) the 

proposed A-LugSeg has good accuracy in challenging regions, such as AR and CPR regions. While we focus on 

lung contour identification in this work, the method proposed in this work can be readily applied to segment any 

object with a smooth boundary in an image. 

Although the proposed method achieves overall accurate segmentation, it still yields a few unsatisfactory 

segmentation results. As shown in Fig. 12, one case had a low Ω score of 0.876, where the DSC and ACC of the 

corresponding case in SZCX are 0.919 and 0.911, respectively. The inferior performance of the proposed method 

for this case may be owing to the extraordinary condition of the left lung, as shown in Fig. 14. This patient has 

bilateral pulmonary tuberculosis (PTB), where the apex of the right lung presents a similar intensity to the 

background due to the disease. Lung diseases such as tuberculosis can severely affect the lung’s shape. In the 

extreme case of a collapsed lung or an effusion, the lung shape will differ dramatically from the shape of a healthy 

lung (Candemir et al., 2014). These abnormal lung shapes can cause problems for auto-segmentation methods. 

For these extraordinary cases, manual segmentation may be needed to obtain accurate lung contours. 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Unsatisfactory segmentation result of SZCX, which is the lowest score Ω of 0.876 (Fig. 12). (a) denotes 

the raw data, (b) denotes the ground truth, and (c) shows the result compared to the ground truth, where the 

yellow contour is the segmented result, and the red contour is the ground truth. 

The preprocessing step of the proposed method is based on a deep convolutional neural network architecture 

(Mask-RCNN) for automatic segmentation. We only use 400 and 162 CXRs from SZCX for training and 

validation, respectively. Compared with other works (Flores et al., 2019) that use more than 1000 images for 

training, the 400 training CXRs that we used for our method seem to be limited. This could explain why using 

Mask-RCNN to initially detect the lung contour did not obtain very accurate results in the coarse segmentation of 

the lung. The Mask-RCNN’s performance for initial coarse segmentation could be improved by data 

augmentations, such as image transformation (Peng, Estrada, Pedersoli, & Desrosiers, 2020) and Generative 

Adversarial Networks (GAN)-based methods (Mahapatra, & Ge, 2020). We will investigate whether the data 

augmentation step would affect the initial segmentation results and whether improving the initial coarse 

segmentation would further improve the final segmentation results after the refinement step. 

In this paper, we use the refinement step to fine-tune the coarse segmentation results, where the parameters 

of the FOBL are used to represent an explainability-guided mathematical model of the lung contour (Eq. (13) and 

Eq. (14)). In the FOBL, several parameters, such as connection weights and thresholds, must be optimized to 

achieve accurate segmentation results during training. In our implementation, we randomly initialized the 

connection weights and thresholds of the FOBL. However, the trained network depends on the initial connection 

weights and thresholds, and the solutions could fall into a local minimum rather than into the global optimum. To 
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overcome this issue, we may adopt different methods, such as differential evolution algorithms, to select the 

optimal initial connection weights and thresholds of the FOBL (Leema et al., 2016; Vivekanandan, & Sriman 

Narayana Iyengar, 2017). 

In the future, we will further consider the below aspects to improve the performance of our method and 

validate its applicability to other organs and imaging modalities. First, the proposed network architecture contains 

two subnetworks, which increases the memory burden for segmentation. Therefore, model compression is desired 

for real-time clinical applications. Second, we plan to validate our method on other organs in the future, such as 

prostate, kidney, and bladder. Furthermore, we plan to test on multi-organs, instead of one organ. Considering that 

the contours of the prostate are usually much smoother than lungs (which contain small CP angles), our proposed 

A-LugSeg may be suitable for segmenting these smooth organs as well. Finally, for multi-modality imaging, the 

performance of our proposed method may be improved by fusing segmentation results from individual modalities. 

For example, Positron Emission Tomography (PET) and Computed Tomography (CT) are two commonly used 

imaging technologies for cancer diagnosis and staging. We can test our method on both of them for co-

segmentation that take advantage of the superior tumor contrast from PET images and the anatomical information 

from CT images. 
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