Tao Mei

Tao Mei
Microsoft

About

545
Publications
72,033
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
17,765
Citations

Publications

Publications (545)
Preprint
Multi-scale learning frameworks have been regarded as a capable class of models to boost semantic segmentation. The problem nevertheless is not trivial especially for the real-world deployments, which often demand high efficiency in inference latency. In this paper, we thoroughly analyze the design of convolutional blocks (the type of convolutions...
Preprint
Multi-scale Vision Transformer (ViT) has emerged as a powerful backbone for computer vision tasks, while the self-attention computation in Transformer scales quadratically w.r.t. the input patch number. Thus, existing solutions commonly employ down-sampling operations (e.g., average pooling) over keys/values to dramatically reduce the computational...
Preprint
Prior works have proposed several strategies to reduce the computational cost of self-attention mechanism. Many of these works consider decomposing the self-attention procedure into regional and local feature extraction procedures that each incurs a much smaller computational complexity. However, regional information is typically only achieved at t...
Preprint
Many recent works have been proposed for face image editing by leveraging the latent space of pretrained GANs. However, few attempts have been made to directly apply them to videos, because 1) they do not guarantee temporal consistency, 2) their application is limited by their processing speed on videos, and 3) they cannot accurately encode details...
Preprint
The leverage of large volumes of web videos paired with the searched queries or surrounding texts (e.g., title) offers an economic and extensible alternative to supervised video representation learning. Nevertheless, modeling such weakly visual-textual connection is not trivial due to query polysemy (i.e., many possible meanings for a query) and te...
Preprint
Motion, as the uniqueness of a video, has been critical to the development of video understanding models. Modern deep learning models leverage motion by either executing spatio-temporal 3D convolutions, factorizing 3D convolutions into spatial and temporal convolutions separately, or computing self-attention along temporal dimension. The implicit a...
Preprint
Comprehending the rich semantics in an image and ordering them in linguistic order are essential to compose a visually-grounded and linguistically coherent description for image captioning. Modern techniques commonly capitalize on a pre-trained object detector/classifier to mine the semantics in an image, while leaving the inherent linguistic order...
Preprint
Convolutional Neural Networks (CNNs) have been regarded as the go-to models for visual recognition. More recently, convolution-free networks, based on multi-head self-attention (MSA) or multi-layer perceptrons (MLPs), become more and more popular. Nevertheless, it is not trivial when utilizing these newly-minted networks for video recognition due t...
Preprint
This paper presents an overview and comparative analysis of our systems designed for the following two tracks in SAPIEN ManiSkill Challenge 2021: No Interaction Track: The No Interaction track targets for learning policies from pre-collected demonstration trajectories. We investigate both imitation learning-based approach, i.e., imitating the obser...
Preprint
Recent high-performing Human-Object Interaction (HOI) detection techniques have been highly influenced by Transformer-based object detector (i.e., DETR). Nevertheless, most of them directly map parametric interaction queries into a set of HOI predictions through vanilla Transformer in a one-stage manner. This leaves rich inter- or intra-interaction...
Article
Unsupervised learning is just at a tipping point where it could really take off. Among these approaches, contrastive learning has led to state-of-the-art performance. In this paper, we construct a novel probabilistic graphical model that effectively incorporates the low rank promoting prior into the framework of contrastive learning, referred to as...
Preprint
To date, visual question answering (VQA) (i.e., image QA and video QA) is still a holy grail in vision and language understanding, especially for video QA. Compared with image QA that focuses primarily on understanding the associations between image region-level details and corresponding questions, video QA requires a model to jointly reason across...
Article
Vision-language pre-training has been an emerging and fast-developing research topic, which transfers multi-modal knowledge from rich-resource pre-training task to limited-resource downstream tasks. Unlike existing works that predominantly learn a single generic encoder, we present a pre-trainable Universal Encoder-DEcoder Network (Uni-EDEN) to fac...
Article
Video captioning has been an emerging research topic in computer vision, which aims to generate a natural sentence to correctly reflect the visual content of a video. The well established way of doing so is to rely on encoder-decoder paradigm by learning to encode the input video and decode the variable-length output sentence in a sequence to seque...
Preprint
Full-text available
Existing studies for gait recognition are dominated by 2D representations like the silhouette or skeleton of the human body in constrained scenes. However, humans live and walk in the unconstrained 3D space, so projecting the 3D human body onto the 2D plane will discard a lot of crucial information like the viewpoint, shape, and dynamics for gait r...
Preprint
Full-text available
While action anticipation has garnered a lot of research interest recently, most of the works focus on anticipating future action directly through observed visual cues only. In this work, we take a step back to analyze how the human capability to anticipate the future can be transferred to machine learning algorithms. To incorporate this ability in...
Article
Transformer with self-attention has led to the revolutionizing of NLP field, and recently inspires the emergence of Transformer-style architecture design with competitive results in numerous CV tasks. Nevertheless, most of existing designs directly employ self-attention over a 2D feature map to obtain the attention matrix based on pairs of isolated...
Article
Estimation of the human pose from a monocular camera has been an emerging research topic in the computer vision community with many applications. Recently, benefiting from the deep learning technologies, a significant amount of research efforts have advanced the monocular human pose estimation both in 2D and 3D areas. Although there have been some...
Article
Vision-and-Language Navigation (VLN) has been an emerging and fast-developing research topic, where an embodied agent is required to navigate in real-world environment based on natural language instructions. In this paper, we present a Direction-guided Navigator Agent (DNA) that novelly integrates direction clues derived from instructions into the...
Article
Scene graph is a symbolic data structure that comprehensively describes the objects and visual relations in a visual scene, while ignoring the inherent perceptual saliency of each visual relation (i.e., relation saliency). However, humans often quickly allocate attention to important/salient visual relations in a scene. To align with such human per...
Preprint
Vision Transformer (ViT) has become a leading tool in various computer vision tasks, owing to its unique self-attention mechanism that learns visual representations explicitly through cross-patch information interactions. Despite having good success, the literature seldom explores the explainability of vision transformer, and there is no clear pict...
Preprint
Full-text available
Action recognition from videos, i.e., classifying a video into one of the pre-defined action types, has been a popular topic in the communities of artificial intelligence, multimedia, and signal processing. However, existing methods usually consider an input video as a whole and learn models, e.g., Convolutional Neural Networks (CNNs), with coarse...
Preprint
People naturally conduct spontaneous body motions to enhance their speeches while giving talks. Body motion generation from speech is inherently difficult due to the non-deterministic mapping from speech to body motions. Most existing works map speech to motion in a deterministic way by conditioning on certain styles, leading to sub-optimal results...
Preprint
In this study, we aim to predict the plausible future action steps given an observation of the past and study the task of instructional activity anticipation. Unlike previous anticipation tasks that aim at action label prediction, our work targets at generating natural language outputs that provide interpretable and accurate descriptions of future...
Preprint
Human actions are typically of combinatorial structures or patterns, i.e., subjects, objects, plus spatio-temporal interactions in between. Discovering such structures is therefore a rewarding way to reason about the dynamics of interactions and recognize the actions. In this paper, we introduce a new design of sub-graphs to represent and encode th...
Preprint
Motion, as the most distinct phenomenon in a video to involve the changes over time, has been unique and critical to the development of video representation learning. In this paper, we ask the question: how important is the motion particularly for self-supervised video representation learning. To this end, we compose a duet of exploiting the motion...
Preprint
It is not trivial to optimally learn a 3D Convolutional Neural Networks (3D ConvNets) due to high complexity and various options of the training scheme. The most common hand-tuning process starts from learning 3D ConvNets using short video clips and then is followed by learning long-term temporal dependency using lengthy clips, while gradually deca...
Preprint
Video is complex due to large variations in motion and rich content in fine-grained visual details. Abstracting useful information from such information-intensive media requires exhaustive computing resources. This paper studies a two-step alternative that first condenses the video sequence to an informative "frame" and then exploits off-the-shelf...
Preprint
Vision-language pre-training has been an emerging and fast-developing research topic, which transfers multi-modal knowledge from rich-resource pre-training task to limited-resource downstream tasks. Unlike existing works that predominantly learn a single generic encoder, we present a pre-trainable Universal Encoder-DEcoder Network (Uni-EDEN) to fac...
Preprint
Video content is multifaceted, consisting of objects, scenes, interactions or actions. The existing datasets mostly label only one of the facets for model training, resulting in the video representation that biases to only one facet depending on the training dataset. There is no study yet on how to learn a video representation from multifaceted lab...
Preprint
Live video broadcasting normally requires a multitude of skills and expertise with domain knowledge to enable multi-camera productions. As the number of cameras keep increasing, directing a live sports broadcast has now become more complicated and challenging than ever before. The broadcast directors need to be much more concentrated, responsive, a...
Preprint
Responsive listening during face-to-face conversations is a critical element of social interaction and is well established in psychological research. Through non-verbal signals response to the speakers' words, intonations, or behaviors in real-time, listeners show how they are engaged in dialogue. In this work, we build the Responsive Listener Data...
Preprint
Given an image with multiple people, our goal is to directly regress the pose and shape of all the people as well as their relative depth. Inferring the depth of a person in an image, however, is fundamentally ambiguous without knowing their height. This is particularly problematic when the scene contains people of very different sizes, e.g. from i...
Preprint
Our work reveals a structured shortcoming of the existing mainstream self-supervised learning methods. Whereas self-supervised learning frameworks usually take the prevailing perfect instance level invariance hypothesis for granted, we carefully investigate the pitfalls behind. Particularly, we argue that the existing augmentation pipeline for gene...
Preprint
Self-supervised learning (SSL) has recently become the favorite among feature learning methodologies. It is therefore appealing for domain adaptation approaches to consider incorporating SSL. The intuition is to enforce instance-level feature consistency such that the predictor becomes somehow invariant across domains. However, most existing SSL me...
Preprint
BERT-type structure has led to the revolution of vision-language pre-training and the achievement of state-of-the-art results on numerous vision-language downstream tasks. Existing solutions dominantly capitalize on the multi-modal inputs with mask tokens to trigger mask-based proxy pre-training tasks (e.g., masked language modeling and masked obje...
Preprint
Mainstream state-of-the-art domain generalization algorithms tend to prioritize the assumption on semantic invariance across domains. Meanwhile, the inherent intra-domain style invariance is usually underappreciated and put on the shelf. In this paper, we reveal that leveraging intra-domain style invariance is also of pivotal importance in improvin...
Article
Face anti-spoofing (FAS) plays a vital role in preventing face recognition systems from presentation attacks. Existing face anti-spoofing datasets lack diversity due to the insufficient identity and insignificant variance, which limits the generalization ability of FAS model. In this paper, we propose Dual Spoof Disentanglement Generation (DSDG) fr...
Preprint
Face anti-spoofing (FAS) plays a vital role in preventing face recognition systems from presentation attacks. Existing face anti-spoofing datasets lack diversity due to the insufficient identity and insignificant variance, which limits the generalization ability of FAS model. In this paper, we propose Dual Spoof Disentanglement Generation (DSDG) fr...
Article
Live video broadcasting normally requires a multitude of skills and expertise with domain knowledge to enable multi-camera productions. As the number of cameras keeps increasing, directing a live sports broadcast has now become more complicated and challenging than ever before. The broadcast directors need to be much more concentrated, responsive,...
Preprint
Only a few cherry-picked robust augmentation policies are beneficial to standard self-supervised image representation learning, despite the large augmentation family. In this paper, we propose a directional self-supervised learning paradigm (DSSL), which is compatible with significantly more augmentations. Specifically, we adapt risky augmentation...
Preprint
We demonstrate ViDA-MAN, a digital-human agent for multi-modal interaction, which offers realtime audio-visual responses to instant speech inquiries. Compared to traditional text or voice-based system, ViDA-MAN offers human-like interactions (e.g, vivid voice, natural facial expression and body gestures). Given a speech request, the demonstration i...
Preprint
Full-text available
Some cognitive research has discovered that humans accomplish event segmentation as a side effect of event anticipation. Inspired by this discovery, we propose a simple yet effective end-to-end self-supervised learning framework for event segmentation/boundary detection. Unlike the mainstream clustering-based methods, our framework exploits a trans...
Article
Face parsing infers a pixel-wise label to each facial component, which has drawn much attention recently. Previous methods have shown their success in face parsing, which however overlook the correlation among facial components. As a matter of fact, the component-wise relationship is a critical clue in discriminating ambiguous pixels in facial area...
Preprint
Full-text available
Deep person generation has attracted extensive research attention due to its wide applications in virtual agents, video conferencing, online shopping and art/movie production. With the advancement of deep learning, visual appearances (face, pose, cloth) of a person image can be easily generated or manipulated on demand. In this survey, we first sum...
Preprint
Full-text available
In this paper, we propose a novel video super-resolution method that aims at generating high-fidelity high-resolution (HR) videos from low-resolution (LR) ones. Previous methods predominantly leverage temporal neighbor frames to assist the super-resolution of the current frame. Those methods achieve limited performance as they suffer from the chall...
Preprint
With the rise and development of deep learning over the past decade, there has been a steady momentum of innovation and breakthroughs that convincingly push the state-of-the-art of cross-modal analytics between vision and language in multimedia field. Nevertheless, there has not been an open-source codebase in support of training and deploying nume...
Preprint
Existing person re-identification (re-id) methods are stuck when deployed to a new unseen scenario despite the success in cross-camera person matching. Recent efforts have been substantially devoted to domain adaptive person re-id where extensive unlabeled data in the new scenario are utilized in a transductive learning manner. However, for each sc...
Preprint
Unsupervised learning is just at a tipping point where it could really take off. Among these approaches, contrastive learning has seen tremendous progress and led to state-of-the-art performance. In this paper, we construct a novel probabilistic graphical model that effectively incorporates the low rank promoting prior into the framework of contras...
Article
Recent advances in video object detection have characterized the exploration of temporal coherence across frames to enhance object detector. Nevertheless, previous solutions either rely on additional inputs (e.g., optical flow) to guide feature aggregation, or complex post-processing to associate bounding boxes. In this paper, we introduce a simple...
Preprint
Transformer with self-attention has led to the revolutionizing of natural language processing field, and recently inspires the emergence of Transformer-style architecture design with competitive results in numerous computer vision tasks. Nevertheless, most of existing designs directly employ self-attention over a 2D feature map to obtain the attent...
Preprint
Data augmentation is practically helpful for visual recognition, especially at the time of data scarcity. However, such success is only limited to quite a few light augmentations (e.g., random crop, flip). Heavy augmentations (e.g., gray, grid shuffle) are either unstable or show adverse effects during training, owing to the big gap between the ori...
Preprint
The performance of human pose estimation depends on the spatial accuracy of keypoint localization. Most existing methods pursue the spatial accuracy through learning the high-resolution (HR) representation from input images. By the experimental analysis, we find that the HR representation leads to a sharp increase of computational cost, while the a...
Preprint
Although deep face recognition benefits significantly from large-scale training data, a current bottleneck is the labelling cost. A feasible solution to this problem is semi-supervised learning, exploiting a small portion of labelled data and large amounts of unlabelled data. The major challenge, however, is the accumulated label errors through aut...
Preprint
With the recent development of deep convolutional neural networks and large-scale datasets, deep face recognition has made remarkable progress and been widely used in various applications. However, unlike the existing public face datasets, in many real-world scenarios of face recognition, the depth of training dataset is shallow, which means only t...
Preprint
Weakly supervised temporal action localization aims to detect and localize actions in untrimmed videos with only video-level labels during training. However, without frame-level annotations, it is challenging to achieve localization completeness and relieve background interference. In this paper, we present an Action Unit Memory Network (AUMN) for...
Preprint
Estimation of the human pose from a monocular camera has been an emerging research topic in the computer vision community with many applications. Recently, benefited from the deep learning technologies, a significant amount of research efforts have greatly advanced the monocular human pose estimation both in 2D and 3D areas. Although there have bee...
Preprint
Near-infrared to visible (NIR-VIS) face recognition is the most common case in heterogeneous face recognition, which aims to match a pair of face images captured from two different modalities. Existing deep learning based methods have made remarkable progress in NIR-VIS face recognition, while it encounters certain newly-emerged difficulties during...
Article
Near-infrared to visible (NIR-VIS) face recognition is the most common case in heterogeneous face recognition, which aims to match a pair of face images captured from two different modalities. Existing deep learning based methods have made remarkable progress in NIR-VIS face recognition, while it encounters certain newly-emerged difficulties during...
Preprint
The significant progress on Generative Adversarial Networks (GANs) has facilitated realistic single-object image generation based on language input. However, complex-scene generation (with various interactions among multiple objects) still suffers from messy layouts and object distortions, due to diverse configurations in layouts and appearances. P...
Preprint
Full-text available
Due to the subjective annotation and the inherent interclass similarity of facial expressions, one of key challenges in Facial Expression Recognition (FER) is the annotation ambiguity. In this paper, we proposes a solution, named DMUE, to address the problem of annotation ambiguity from two perspectives: the latent Distribution Mining and the pairw...