About
26
Publications
5,130
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
718
Citations
Introduction
Skills and Expertise
Current institution
Publications
Publications (26)
Mitophagy is an intracellular degradation pathway crucial for clearing damaged or dysfunctional mitochondria, thereby maintaining cellular homeostasis and responding to various brain injuries. By promptly removing damaged mitochondria, mitophagy protects cells from further harm and support cellular repair and recovery after injury. In different typ...
Background
Radiation‐induced brain injury is a neurological condition resulting from radiotherapy for malignant tumors, with its underlying pathogenesis still not fully understood. Current hypotheses suggest that immune cells, particularly the excessive activation of microglia in the central nervous system and the migration of peripheral immune cel...
Introduction: Preterm brain injury often leads to lifelong disabilities affecting both cognitive and motor functions, and effective therapies are limited. Alpha1-antitrypsin (AAT), an endogenous inhibitor of serine proteinases with anti-inflammatory, anti-apoptotic, and cytoprotective properties, might be beneficial in treating preterm brain injury...
There are sex differences in the severity, mechanisms, and outcomes of neonatal hypoxia–ischemia (HI) brain injury, and apoptosis-inducing factor (AIF) may play a critical role in this discrepancy. Based on previous findings that AIF overexpression aggravates neonatal HI brain injury, we further investigated potential sex differences in the severit...
Radiotherapy is an effective tool in the treatment of malignant brain tumors, but irradiation-induced late-onset toxicity remains a major problem. The purpose of this study was to investigate if genetic inhibition of autophagy has an impact on subcortical white matter development in the juvenile mouse brain after irradiation. Ten-day-old selective...
Background
Radiotherapy is an effective tool in the treatment of malignant brain tumors, but irradiation-induced late-onset toxicity remains a major problem. The purpose of this study was to investigate if genetic inhibition of autophagy has impact on subcortical white matter development in the juvenile mouse brain after irradiation.
Methods
Ten-d...
Cranial radiotherapy induces endocrine disorders and reproductive abnormalities, particularly in long-term female cancer survivors, and this might in part be caused by injury to the pituitary gland, but the underlying mechanisms are unknown. The aim of this study was to investigate the influence of cranial irradiation on the pituitary gland and rel...
Perinatal complications, such as asphyxia, can cause brain injuries that are often associated with subsequent neurological deficits, such as cerebral palsy or mental retardation. The mechanisms of perinatal brain injury are not fully understood, but mitochondria play a prominent role not only due to their central function in metabolism but also bec...
The interaction between apoptosis-inducing factor (AIF) and cyclophilin A (CypA) has been shown to contribute to caspase-independent apoptosis. Blocking the AIF/CypA interaction protects against glutamate-induced neuronal cell death in vitro, and the purpose of this study was to determine the in vivo effect of an AIF/CypA interaction blocking pepti...
Apoptosis inducing factor (AIF) has been shown to be a major contributor to neuron loss in the immature brain after hypoxia-ischemia (HI). Indeed, mice bearing a hypomorphic mutation causing reduced AIF expression are protected against neonatal HI. To further investigate the possible molecular mechanisms of this neuroprotection, we generated an AIF...
Hypoxia‐inducible factor prolyl 4‐hydroxylases (HIF‐PHDs) are important targets against oxidative stress. We hypothesized that inhibition HIF‐PHD by adaptaquin reduces hypoxic‐ischemic brain injury in a neonatal mouse model. The pups were treated intraperitoneally immediately with adaptaquin after hypoxia‐ischemia (HI) and then every 24 h for 3 day...
Radiotherapy is an effective tool for treating brain tumors, but irradiation-induced toxicity to the normal brain tissue remains a major problem. Here, we investigated if selective neural autophagy related gene 7 (Atg7) deletion has a persistent effect on irradiation-induced juvenile mouse brain injury. Ten-day-old Atg7 knockout under a nestin prom...
Iron is important for a remarkable array of essential functions during brain development, and it needs to be provided in adequate amounts, especially to preterm infants. In this review article, we provide an overview of iron metabolism and homeostasis at the cellular level, as well as its regulation at the mRNA translation level, and we emphasize t...
Abstract Apoptosis-inducing factor (AIF) may contribute to neuronal cell death, and its influence is particularly prominent in the immature brain after hypoxia–ischemia (HI). A brain-specific AIF splice-isoform (AIF2) has recently been discovered, but has not yet been characterized at the genetic level. The aim of this study was to determine the fu...
Cranial radiotherapy is one of the most effective tools for treating children with brain tumors. However, radiotherapy-induced late-onset side effects have a significant impact on patients’ quality of life. The purpose of this study was to investigate the effects of irradiation on metabolism and the possible molecular and cellular mechanisms behind...
Background:
Infection and sepsis are associated with brain white matter injury in preterm infants and the subsequent development of cerebral palsy.
Methods:
In the present study, we used a neonatal mouse sepsis-induced white matter injury model to determine the contribution of different T cell subsets (αβT cells and γδT cells) to white matter in...
Mitochondria contribute to neonatal hypoxic-ischemic brain injury by releasing potentially toxic proteins into the cytosol. CHCHD4 is a mitochondrial intermembrane space protein that plays a major role in the import of intermembrane proteins and physically interacts with apoptosis-inducing factor (AIF). The purpose of this study was to investigate...
Posterior fossa tumors are the most common childhood intracranial tumors, and radiotherapy is one of the most effective treatments. However, irradiation induces long-term adverse effects that can have significant negative impacts on the patient’s quality of life. The purpose of this study was to characterize irradiation-induced cellular and molecul...
Radiotherapy is an effective tool in the treatment of malignant brain tumors. However, damage to brain stem and progenitor cells constitutes a major problem and is associated with long-term side effects. Autophagy has been shown to be involved in cell death, and the purpose of this study was to evaluate the effect of autophagy inhibition on neural...
Cranial radiotherapy in children typically causes delayed and progressive cognitive dysfunction and there is no effective preventive strategy for radiation-induced cognitive impairments. Here we show that lithium treatment reduced irradiation-induced progenitor cell death in the subgranular zone of the hippocampus, and subsequently ameliorated irra...
The purpose of this study was to evaluate the effect of dichloroacetate (DCA) treatment for brain injury in neonatal mice after hypoxia ischemia (HI) and the possible molecular mechanisms behind this effect. Postnatal day 9 male mouse pups were subjected to unilateral HI, DCA was injected intraperitoneally immediately after HI, and an additional tw...
Perinatal asphyxia induces neuronal cell death and brain injury, and is often associated with irreversible neurological deficits in children. There is an urgent need to elucidate the neuronal death mechanisms occurring after neonatal hypoxia-ischemia (HI). We here investigated the selective neuronal deletion of the Atg7 (autophagy related 7) gene o...
The possibility that exposure to general anesthetics during early life results in long-term impairment of neural function attracted considerable interest over the past decade. Extensive laboratory data suggest that administration of these drugs during critical stages of central nervous system development can lead to cell death, impaired neurogenesi...
Questions
Question (1)
Currently, I'm using mT/mG reporter mice to check the cre activity of this Ert2 cre mice.
mT/mG mouse is supposed to autofluoresce without any additional staining or immunohistochemistry necessary. Nestin.CreERT2 is the transgenic mice that express CreERT2 under the control of the nestin promoter and enhancer. the cre will become activated by administration of tamoxifen.
After the cross breeding, my study is about neonatal brain,so the fist IP inject at P6 of pups, 0.25mg per body weight. 48h later, the second IP injection at P8, then 24h later, the P9 pups were perfused with cold 0.9% saline. After brain dissociation, brains were fixed 24h in PFA at 4, cryoprotected in 30% sucrose overnight at 4, and embedded in OCT for cryosection. 20 micrometer sections were mounted on slices directly.
the problem is I cannot see any fluorescence signal by using a traditional fluorescent microscope, even without any red fluorescence (mT, tdTomato), I'm thinking do I expose the slice in light a long time? Does this effect a lot? Is there some problems of the microscope? is it better change to confocal? Do I have some problems about the administration, such as the duration, the amount?
ANY SUGGESTIONS WILL BE APPRECIATED ?