Tanya Berger-Wolf

Tanya Berger-Wolf
University of Illinois at Chicago | UIC · Department of Computer Science

PhD

About

151
Publications
26,874
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,131
Citations

Publications

Publications (151)
Article
Full-text available
High uptake of vaccinations is essential in fighting infectious diseases, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the ongoing coronavirus disease 2019 (COVID-19) pandemic. Social media play a crucial role in propagating misinformation about vaccination, including through conspiracy theories and can negativ...
Preprint
Full-text available
In many applications such as recidivism prediction, facility inspection, and benefit assignment, it's important for individuals to know the decision-relevant information for the model's prediction. In addition, the model's predictions should be fairly justified. Essentially, decision-relevant features should provide sufficient information for the p...
Preprint
Full-text available
Hoping to stimulate new research in individual animal identification from images, we propose to formulate the problem as the human-machine Continual Curation of images and animal identities. This is an open world recognition problem, where most new animals enter the system after its algorithms are initially trained and deployed. Continual Curation,...
Preprint
Full-text available
Cannabis legalization has been welcomed by many U.S. states but its role in escalation from tobacco e-cigarette use to cannabis vaping is unclear. Meanwhile, cannabis vaping has been associated with new lung diseases and rising adolescent use. To understand the impact of cannabis legalization on escalation, we design an observational study to estim...
Article
Full-text available
Granger causality is a fundamental technique for causal inference in time series data, commonly used in the social and biological sciences. Typical operationalizations of Granger causality make a strong assumption that every time point of the effect time series is influenced by a combination of other time series with a fixed time delay. The assumpt...
Preprint
Full-text available
Leadership plays a key role in social animals, including humans, decision-making and coalescence in coordinated activities such as hunting, migration, sport, diplomatic negotiation etc. In these coordinated activities, leadership is a process that organizes interactions among members to make a group achieve collective goals. Understanding initiatio...
Preprint
BACKGROUND The onset of the COVID-19 pandemic and the consequent “infodemic” increased concerns about Twitter’s role in advancing antivaccination messages, even before a vaccine became available to the public. New computational methods allow for analysis of cross-platform use by tracking links to websites shared over Twitter, which, in turn, can un...
Article
Background The onset of the COVID-19 pandemic and the consequent “infodemic” increased concerns about Twitter’s role in advancing antivaccination messages, even before a vaccine became available to the public. New computational methods allow for analysis of cross-platform use by tracking links to websites shared over Twitter, which, in turn, can un...
Article
Full-text available
Network analysis of large-scale neuroimaging data is a particularly challenging computational problem. Here, we adapt a novel analytical tool, the community dynamic inference method (CommDy), for brain imaging data from young and aged mice. CommDy, which was inspired by social network theory, has been successfully used in other domains in biology;...
Preprint
Background Understanding functional correlations between the activities of neuron populations is vital for the analysis of neuronal networks. Analyzing large-scale neuroimaging data obtained from hundreds of neurons simultaneously poses significant visualization challenges. We developed V-NeuroStack, a novel network visualization tool to visualize...
Preprint
Full-text available
Leadership and followership are essential parts of collective decision and organization in social animals, including humans. In nature, relationships of leaders and followers are dynamic and vary with context or temporal factors. Understanding dynamics of leadership and followership, such as how leaders and followers change, emerge, or converge, al...
Preprint
Ensuring fairness in computational problems has emerged as a $key$ topic during recent years, buoyed by considerations for equitable resource distributions and social justice. It $is$ possible to incorporate fairness in computational problems from several perspectives, such as using optimization, game-theoretic or machine learning frameworks. In th...
Article
Full-text available
Direct monitoring of wild animals' behavior is challenging and data tampering. Instrument the animals with collars that embeds sensors, such as tri-axial accelerometer and GPS, allows obtaining sufficient information for remotely classifying the performed activities. In this work is presented an accurate and human intelligible framework, designed l...
Article
Full-text available
How do groups of individuals achieve consensus in movement decisions? Do individuals follow their friends, the one predetermined leader, or whomever just happens to be nearby? To address these questions computationally, we formalize Coordination Strategy Inference Problem. In this setting, a group of multiple individuals moves in a coordinated mann...
Preprint
Full-text available
Networks are complex models for underlying data in many application domains. In most instances, raw data is not natively in the form of a network, but derived from sensors, logs, images, or other data. Yet, the impact of the various choices in translating this data to a network have been largely unexamined. In this work, we propose a network model...
Preprint
Full-text available
The structure of network data enables simple predictive models to leverage local correlations between nodes to high accuracy on tasks such as attribute and link prediction. While this is useful for building better user models, it introduces the privacy concern that a user's data may be re-inferred from the network structure, after they leave the ap...
Preprint
Full-text available
Granger causality is a fundamental technique for causal inference in time series data, commonly used in the social and biological sciences. Typical operationalizations of Granger causality make a strong assumption that every time point of the effect time series is influenced by a combination of other time series with a fixed time delay. The assumpt...
Article
Propagation of signals across the cerebral cortex is a core component of many cognitive processes and is generally thought to be mediated by direct intracortical connectivity. The thalamus, by contrast, is considered to be devoid of internal connections and organized as a collection of parallel inputs to the cortex. Here, we provide evidence that "...
Preprint
Full-text available
Granger causality is a fundamental technique for causal inference in time series data, commonly used in the social and biological sciences. Typical operationalizations of Granger causality make a strong assumption that every time point of the effect time series is influenced by a combination of other time series with a fixed time delay. However, th...
Preprint
Full-text available
Network analysis of large-scale neuroimaging data has proven to be a particularly challenging computational problem. In this study, we adapt a novel analytical tool, known as the community dynamic inference method (CommDy), which was inspired by social network theory, for the study of brain imaging data from an aging mouse model. CommDy has been su...
Preprint
Full-text available
How do groups of individuals achieve consensus in movement decisions? Do individuals follow their friends, the one predetermined leader, or whomever just happens to be nearby? To address these questions computationally, we formalize Coordination Strategy Inference Problem. In this setting, a group of multiple individuals moves in a coordinated mann...
Article
Full-text available
Leadership and followership are essential parts of collective decision and organization in social animals, including humans. In nature, relationships of leaders and followers are dynamic and vary with context or temporal factors. Understanding dynamics of leadership and followership, such as how leaders and followers change, emerge, or converge, al...
Article
Full-text available
Abstract We propose sequence-to-sequence architectures for graph representation learning in both supervised and unsupervised regimes. Our methods use recurrent neural networks to encode and decode information from graph-structured data. Recurrent neural networks require sequences, so we choose several methods of traversing graphs using different ty...
Conference Paper
Full-text available
Activity recognition and, more generally, behavior inference tasks are gaining a lot of interest. Much of it is work in the context of human behavior. New available tracking technologies for wild animals are generating datasets that indirectly may provide information about animal behavior. In this work, we propose a method for classifying these dat...
Preprint
Full-text available
We are losing biodiversity at an unprecedented scale and in many cases, we do not even know the basic data for the species. Traditional methods for wildlife monitoring are inadequate. Development of new computer vision tools enables the use of images as the source of information about wildlife. Social media is the rich source of wildlife images, wh...
Preprint
Activity recognition and, more generally, behavior inference tasks are gaining a lot of interest. Much of it is work in the context of human behavior. New available tracking technologies for wild animals are generating datasets that indirectly may provide information about animal behavior. In this work, we propose a method for classifying these dat...
Conference Paper
Graph representation learning for static graphs is a well studied topic. Recently, a few studies have focused on learning temporal information in addition to the topology of a graph. Most of these studies have relied on learning to represent nodes and substructures in dynamic graphs. However, the representation learning problem for entire graphs in...
Preprint
Full-text available
Since the discovery of the receptive field, scientists have tracked receptive field structure to gain insights about mechanisms of sensory processing. At the level of the thalamus and cortex, this linear filter approach has been challenged by findings that populations of cortical neurons respond in a stereotyped fashion to sensory stimuli. Here, we...
Preprint
Full-text available
Propagation of signals across the cerebral cortex is a core component of many cognitive processes and is generally thought to be mediated by direct intracortical connectivity. The thalamus, by contrast, is considered to be devoid of internal connections and organized as a collection of parallel inputs to the cortex. Here, we provide evidence that “...
Chapter
Full-text available
How do leaders lead and what aspects of the leader’s identity make others agree to follow? Are the individuals with influence always at the front of their group? Do they initiate travel in new directions or are they just the first ones to start moving? Which attempts to initiate movement translate to leadership? In this paper we present a computati...
Article
Full-text available
Behavior initiation is a form of leadership and is an important aspect of social organization that affects the processes of group formation, dynamics, and decision-making in human societies and other social animal species. In this work, we formalize the Coordination Initiator Inference Problem and propose a simple yet powerful framework for extract...
Chapter
Predicting the evolution of a dynamic network—the addition of new edges and the removal of existing edges—is challenging. In part, this is because: (1) networks are often noisy; (2) various performance measures emphasize different aspects of prediction; and (3) it is not clear which network features are useful for prediction. To address these chall...
Chapter
Full-text available
Leadership plays a key role in social animals, including humans, decision-making and coalescence in coordinated activities such as hunting, migration, sport, diplomatic negotiation etc. In these coordinated activities, leadership is a process that organizes interactions among members to make a group achieve collective goals. Understanding initiatio...
Conference Paper
Full-text available
Networks are fundamental models for data used in practically every application domain. In most instances, several implicit or explicit choices about the network definition impact the translation of underlying data to a network representation, and the subsequent question(s) about the underlying system being represented. Users of downstream network d...
Conference Paper
Full-text available
We present the curriculum and evaluation of a pilot Biology-themed CS1 course offering at a large public university. Inspired by Harvey Mudd's CS 5 Green, we adapt CS1 + Bio to fit the needs of our student body, which is much more typical for those US institutions that produce the bulk of the nation's CS undergraduate degrees. This course was team-...
Article
Full-text available
Photographs, taken by field scientists, tourists, automated cameras, and incidental photographers, are the most abundant source of data on wildlife today. Wildbook is an autonomous computational system that starts from massive collections of images and, by detecting various species of animals and identifying individuals, combined with sophisticated...
Article
Full-text available
Networks are fundamental models for data used in practically every application domain. In most instances, several implicit or explicit choices about the network definition impact the translation of underlying data to a network representation, and the subsequent question(s) about the underlying system being represented. Users of downstream network d...
Article
Full-text available
Networks are models representing relationships between entities. Often these relationships are explicitly given, or we must learn a representation which generalizes and predicts observed behavior in underlying individual data (e.g. attributes or labels). Whether given or inferred, choosing the best representation affects subsequent tasks and questi...
Conference Paper
Full-text available
How do leaders lead? Are individuals with influence always at the front of their group? Do they initiate travel in new directions or are they first to start moving? Which attempts to initiate movement translate to leadership? In this paper we present a computational method to characterize and classify the types of leaders in movement initiation. We...
Article
Full-text available
Networks are representations of complex underlying social processes. However, the same given network may be more suitable to model one behavior of individuals than another. In many cases, aggregate population models may be more effective than modeling on the network. We present a general framework for evaluating the suitability of given networks fo...
Conference Paper
Nowadays, with the increase of computational analysis in sciences such as biology and neuroscience, the computational aspect is one of the most challenging. The purpose of this work is the achieve the possibility to apply spatio-temporal networks inference techniques on brain to perform network analysis. One of the problems of spatio-temporal netwo...
Conference Paper
While the technologies of the Information Age have produced staggering amounts of data about people, they are by and large failing the world’s wildlife. Even the simplest and most critical piece of information, the number of animals of a species, is either unknown or is uncertain for most species. Here, we propose to use images of wildlife posted o...
Article
Full-text available
We present a brief introduction to a flexible, general network inference framework which models data as a network space, sampled to optimize network structure to a particular task. We introduce a formal problem statement related to influence maximization in networks, where the network structure is not given as input, but learned jointly with an inf...
Article
Full-text available
Researchers have long noted that individuals occupy consistent spatial positions within animal groups. However, an individual's position depends not only on its own behaviour, but also on the behaviour of others. Theoretical models of collective motion suggest that global patterns of spatial assortment can arise from individual variation in local i...
Article
Full-text available
Networks represent relationships between entities in many complex systems, spanning from online social interactions to biological cell development and brain connectivity. In many cases, relationships between entities are unambiguously known: are two users “friends” in a social network? Do two researchers collaborate on a published article? Do two r...
Article
Full-text available
In many animal societies, groups of individuals form stable social units that are shaped by well-delineated dominance hierarchies and a range of affiliative relationships. How do socially complex groups maintain cohesion and achieve collective movement? Using high-resolution GPS tracking of members of a wild baboon troop, we test whether collective...
Article
Sparse linear algebra is fundamental to numerous areas of applied mathematics, science and engineering. In this paper, we propose an efficient data structure named AdELL+ for optimizing the SpMV kernel on GPUs, focusing on performance bottlenecks of sparse computation. The foundation of our work is an ELL-based adaptive format which copes with matr...
Preprint
Full-text available
Leadership is an important aspect of social organization that affects the processes of group formation, coordination, and decision-making in human societies, as well as in the social system of many other animal species. The ability to identify leaders based on their behavior and the subsequent reactions of others opens opportunities to explore how...
Article
Study of the behavior of individual members in communities of dynamic networks can help neuroscientists to understand how interactions between neurons in brain networks change over time. Visualization of those temporal features is challenging, especially for networks embedded within spatial structures, such as brain networks. In this article, the a...
Article
Full-text available
Study of the behavior of individual members in communities of dynamic networks can help neuroscientists to understand how interactions between neurons