
Tamás Beke-Somfai- PhD
- Group Leader at Hungarian Academy of Sciences
Tamás Beke-Somfai
- PhD
- Group Leader at Hungarian Academy of Sciences
About
98
Publications
18,281
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
2,997
Citations
Introduction
Current institution
Additional affiliations
August 2015 - present
January 2005 - October 2008
November 2010 - present
Publications
Publications (98)
In the last decade, the rise of antibiotic resistance has heightened interest in antimicrobial peptides and lipopeptides as promising alternatives to conventional antibiotics because of their lower propensity to develop resistance. However, lipopeptides often show undesired cytotoxicity due to their non‐selective membrane disruptive effect, and the...
Guanylate kinase-associated protein (GKAP) is a large postsynaptic scaffold protein bearing two closely spaced noncanonical binding sites for the bivalent dynein light chain LC8 hub protein. This might allow the formation of heterogeneous complexes with different sizes and topologies. Here, we show that a well-defined hexameric complex is formed, c...
Host antimicrobial peptides (AMPs) and extracellular vesicles (EVs) are known to play important roles as part of the immune system, from antimicrobial actions to immune regulation. Recent results also demonstrate that EVs could serve as carriers for AMPs. Related, it was shown that some AMPs can remove the protein corona (PC), the externally adsorb...
Fungal infections with high mortality rates represent an increasing health risk. The Neosartorya (Aspergillus) fischeri antifungal protein 2 (NFAP2) is a small, cysteine-rich, cationic protein exhibiting potent anti-Candida activity. As the underlying mechanism, pore formation has been demonstrated; however, molecular level details on its membrane...
The ruthenium‐catalyzed azide‐alkyne cycloaddition (RuAAC) gives access to 1,5‐disubstitued triazoles in a single atom‐economical step and offers advantages compared to its copper‐catalyzed counterpart in that both terminal and internal alkynes can be employed. This review summarizes recent findings in this field during the last eight years, coveri...
Developing unique mechanisms of action are essential to combat the growing issue of antimicrobial resistance. Supramolecular assemblies combining the improved biostability of non-natural compounds with the complex membrane-attacking mechanisms of natural peptides are promising alternatives to conventional antibiotics. However, for such compounds th...
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their
cell of origin and change the functions and phenotypes of other cells. These features
indicate strong biomarker and therapeutic potential and have generated broad interest,
as evidenced by the steady year-on-year increase in the numbers of scientific publicati...
The increased focus on green energy storage devices and the related rapid advancement in biomedical technologies makes the investigation of biocompatible integrated systems with medical relevance increasingly important. Peptides and their assembled morphologies with their innate biocompatibility and biodegradability are emerging as promising candid...
Antimicrobial cationic peptides (AMPs) are excellent candidates for use as therapeutic antimicrobial agents. Among them, short peptides possessing sequences of 9–11 amino acids have some advantages over long-sequence peptides. However, one of the main limitations of short peptides is that their mechanism of action at the molecular level is not well...
Computer-assisted study and design of non-natural peptidomimetics is increasingly important in the development of novel constructs with widespread applicability. Among these methods, molecular dynamics can accurately describe monomeric as well as oligomeric states of these compounds. We studied seven different sequences composed of cyclic and acycl...
In the last years, extracellular vesicles (EVs), secreted by various cells and body fluids have shown extreme potential in biomedical applications. Increasing number of studies suggest that a protein corona could adhere to the surface of EVs which can have a fundamental effect on their function, targeting and therapeutical efficacy. However, removi...
Self-assembled peptide nanostructures with stimuli-responsive features are promising as functional materials. Despite extensive research efforts, water-soluble supramolecular constructs that can interact with lipid membranes in a controllable way are still challenging to achieve. Here, we have employed a short membrane anchor protein motif (GLFD) a...
In synapses that show signs of local apoptosis and mitochondrial stress and undergo neuro-immunological synapse pruning, an increase in the levels of the presynaptic protein, neuronal-specific septin-3 can be observed. Septin-3 is a member of the septin GTPase family with the ability to form multimers and contribute to the cytoskeleton. However, th...
Microfluidic resistive pulse sensing (MRPS) was used to determine the size distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on detecting nearly 30 000 single virions. However, the ultrastructure of SARS-CoV-2 is thoroughly described, but ensemble properties of SARS-CoV-2, e.g., its particle size distribution, are s...
Extracellular vesicles (EVs) are released during the storage of red blood cell (RBC) concentrates and might play adverse or beneficial roles throughout the utilization of blood products (transfusion). Knowledge of EV release associated factors and mechanism amends blood product management. In the present work the impact of storage time and medium (...
Under ruthenium catalysis, 1,5-disubstituted 1,2,3-triazoles can be accessed with high selectivity from terminal alkynes and organic azides via a ruthenium-catalyzed azide–alkyne cycloaddition (RuAAC) reaction. These conditions also allow the use of internal alkynes, providing access to 1,4,5-trisubstituted 1,2,3-triazoles. This chapter reviews the...
In the emerging era of antimicrobial resistance, the susceptibility to co-infections of patients suffering from either acquired or inherited hemolytic disorders can lead to dramatic increase in mortality rates. Closely related, heme liberated during hemolysis is one of the major sources of iron, which is vital for both host and invading microorgani...
Host defense antimicrobial peptides (HDPs) constitute an integral component of the innate immune system having non-specific activity against a broad spectrum of microorganisms. They also have diverse biological functions in wound healing, angiogenesis, and immunomodulation, where it has also been demonstrated that they have a high affinity to inter...
Macromolecular associates, such as membraneless organelles or lipid-protein assemblies, provide a hydrophobic environment, i.e., a liquid protein phase (LP), where folding preferences can be drastically altered. LP as well as the associated phase change from water (W) is an intriguing phenomenon related to numerous biological processes and also pos...
Anticancer peptides (ACPs) could potentially offer many advantages over other cancer therapies. ACPs often target cell membranes, where their surface mechanism is coupled to a conformational change into helical structures. However, details on their binding are still unclear, which would be crucial to reach progress in connecting structural aspects...
Owing to their potential applicability against multidrug-resistant bacteria, antimicrobial peptides (AMPs) or host defense peptides (HDPs) gain increased attention. Besides diverse immunomodulatory roles, their classical mechanism of action mostly involves membrane disruption of microbes. Notably, their unbalanced overexpression has also been assoc...
We report a theoretical and experimental study on a new series of small-sized antibacterial peptides. Synthesis and bioassays for these peptides are reported here. In addition, we evaluated different physicochemical parameters that modulate antimicrobial activity (charge, secondary structure, amphipathicity, hydrophobicity and polarity). We also pe...
β-peptides are peptide-mimetics with wide biomedical and biotechnological applications. Their most peculiar feature is their readiness to fold into various secondary structures not found in their natural counterparts. Furthermore, β-amino acid insertions to natural polypeptides were found to provide unique features and also increase enzymatic stabi...
The host defense peptide LL-37 is the only human cathelicidin, characterized by pleiotropic activity ranging from immunological to anti-neoplastic functions. However, its overexpression has been associated with harmful inflammatory responses and apoptosis. Thus, for the latter cases, the development of strategies aiming to reduce LL-37 toxicity is...
Significance
Amyloids are protein fiber aggregates that are associated with both pathology, e.g., neurodegenerative diseases, and functionality, e.g., adaptation to environmental changes in yeasts. A particular property of amyloid fibrils is their ability to show structural variations among different fibrils formed by the same polypeptide chain, a...
Peptide–drug conjugates are organic molecules composed of (i) a small drug molecule, (ii) a peptide and (iii) a linker. The drug molecule is mandatory for the biological action, however, its efficacy can be enhanced by targeted delivery, which often also reduces unwanted side effects. For site-specificity the peptide part is mainly responsible. The...
Besides the outstanding potential in biomedical applications, extracellular vesicles (EVs) are also promising candidates to expand our knowledge on interactions between vesicular surface proteins and small-molecules which exert biomembrane-related functions. Here we provide mechanistic details on interactions between membrane active peptides with a...
Self-assembling peptides offer a versatile set of tools for bottom-up construction of supramolecular biomaterials. Among these compounds, non-natural peptidic foldamers experience increased focus due to their structural variability and lower sensitivity to enzymatic degradation. However, very little is known about their membrane properties and thei...
A growing number of evidence shows that human-associated microbiota is an important contributor in health and disease. However, much of the complexity of host-microbiota interaction remains to be elucidated both at cellular and molecular levels. Siderophores are chemically diverse, ferric-specific chelators synthesized and secreted by microbes to s...
Among peptidic foldamers, 1,4- and 1,5-disubstitued triazole amino acid monomers have gained increasing interest, as they are easily prepared via Cu- and Ru-catalyzed click reactions, with the potential for side chain variation. While the latter is key to their applicability, the synthesis and structural properties of the chiral mono- or disubstitu...
Here it is demonstrated how some anionic food additives commonly used in our diet, such as tartrazine (TZ), bind to DHVAR4, an antimicrobial peptide (AMP) derived from oral host defense peptides, resulting in significantly fostered toxic activity against both Gram-positive and Gram-negative bacteria, but not against mammalian cells. Biophysical stu...
New methods for quantifying extracellular vesicles (EVs) in complex biofluids are critically needed. We report the development of a new technology combining size exclusion chromatography (SEC), a commonly used EV purification technique, with fluorescence detection of specifically labelled EVs. The resulting platform, Flu-SEC, demonstrates a linear...
Foldamers are non-natural oligomers that mimic the structural behaviour of natural peptides, proteins and nucleotides by folding into a well-defined 3D conformation in solution. Since their first description about two decades ago, numerous studies have been undertaken dealing with the design, synthesis, characterization and application of foldamers...
The intracellular pathogen Mycobacterium tuberculosis can survive and replicate within host macrophages. Among various immunomodulatory substances, macrophages also produce α1-acid glycoprotein (AAG) which is secreted into the extracellular matrix of tuberculosis granulomas that represents a specific binding environment. Employing circular dichrois...
A peculiar polygonal protein scaffolding that resembles to spectrin-based skeleton of red blood cells can be reconstructed on the outer surface of vesicle-like nanoerythrosomes. The approximately 130 nm sized nanoerythrosomes are produced from red blood cell ghosts by addition of phospholipids (dipalmitoylphosphatidylcholine, DPPC). The scaffolding...
The interfacial hydrolysis of phospholipids (1, 2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) catalyzed by phospholipase A1 (PLA1) was studied via sum frequency generation (SFG) vibrational spectroscopy and fluorescence microscopy. Both the monolayer and bilayer were used to confirm the hydrolysis mechanism. During the hydrolysis, lysophospholip...
The increasing interest in novel foldamer constructs demands an accurate computational treatment on an extensive timescale. However, it is still a challenge to derive a force field (FF) that can reproduce the experimentally known fold while also allowing the spontaneous exploration of other structures. Here, aiming at a realistic reproduction of ba...
Antimicrobial peptides (AMPs) kill bacteria by targeting their membranes through various mechanisms involving peptide assembly, often coupled with disorder‐to‐order structural transition. However, for several AMPs, similar conformational changes in cases in which small organic compounds of both endogenous and exogenous origin have induced folded pe...
Dynamic increase of resistant bacterial infectious diseases continuously requires development of novel compounds against them. The molecular level understanding of the mechanism and interactions of natural host-defense peptides or antimicrobial peptides (AMPs) is an important step towards rational design and development of compounds inspired by the...
The human antimicrobial and immunomodulatory peptide LL-37 is ubiquitously expressed and secreted by epithelial cells of mucosal surfaces including the gastrointestinal tract, the primary absorption site of orally administered drugs and food components. Besides antimicrobial properties, LL-37 also contributes to the pathophysiology of various disea...
Abstract Membrane-active, basic amphipathic peptides represent a class of biomolecules with diverse functions. Sequentially close protein segments also show similar behaviour in several ways. Here we investigated the effect of the lipid mediator lysophosphatidic acid (LPA) on the conformation of structurally disordered peptides including extracellu...
Entropy calculations represent one of the most challenging steps in obtaining the binding free energy in biomolecular systems. A novel computationally effective approach (IE) was recently proposed to calculate the entropy based on the computation of protein-ligand interaction energy directly from molecular dynamics (MD) simulations. We present a st...
This study is aimed to assess the binding interaction between the antiparasitic cationic drug imidocarb (IMD) and sulfated glycosaminoglycans (GAGs), the ubiquitious nonprotein macromolecules of living organisms. These complex, heterogeneous polyanions are the integral constituents of cell membranes and the extracellular matrix and display affinity...
The interaction of protoporphyrin compounds of human origin with the major bee venom component melittin (26 a.a., Z +6) and its hybrid derivative (CM15, 15 a.a., Z +6) were studied by a combination of various spectroscopic methods. Throughout a two-state, concentration-dependent process, hemin and its metabolites (biliverdin, bilirubin, bilirubin d...
Extracellular vesicles (EVs) are currently in the scientific focus having a great potential to revolutionize the diagnosis and therapy of various diseases. However, numerous aspects of these species are still poorly understood, thus additional insight to molecular level properties, membrane-protein interactions, or membrane rigidity is still needed...
The rapid increase of antimicrobial resistance against conventional antibiotics has resulted in a significant focus on the use of peptides as antimicrobial agents. Understanding the structure and function relationships of these compounds is thus highly important, however, their in vivo actions are a complex issue, including interactions with small...
DJ-1 (PARK7) is a multifunctional protein linked to the onset and progression of a number of diseases, most of which are associated with high oxidative stress. The oxidation state of Cys106 of DJ-1 is believed to determine the specific functions of the protein in normal and disease conditions. Here we report molecular dynamics simulation and biophy...
We have discovered a well-defined extended conformation of double-stranded DNA, which we call Σ-DNA, using laser-tweezers force-spectroscopy experiments. At a transition force corresponding to free energy change Δ G = 1·57 ± 0·12 kcal (mol base pair) ⁻¹ 60 or 122 base-pair long synthetic GC-rich sequences, when pulled by the 3′−3′ strands, undergo...
Extracellular vesicles isolated by differential centrifugation from Jurkat T-cell line were investigated by attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR). Amide and CH stretching band intensity ratios calculated from IR bands, characteristic of protein and lipid components, proved to be distinctive for the different...
The ruthenium-catalyzed azide alkyne cycloaddition (RuAAC) affords 1,5-disubstituted 1,2,3-triazoles in one step and complements the more established copper-catalyzed reaction providing the 1,4-isomer. The RuAAC reaction has quickly found its way into the organic chemistry toolbox and found applications in many different areas, such as medicinal ch...
Human serum albumin (HSA) binding of anticancer plant alkaloid ellipticine has been studied in conjunction with assessing its association to serum [small alpha]1-acid-glycoprotein (AAG). Taking advantage of the ability of chiral protein environments to induce optical activity, circular dichroism (CD) spectroscopy was employed to characterize the al...
The cell membrane is an ordered environment, which anisotropically affects the structure and interactions of all of its molecules. Monitoring membrane orientation at a local level is rather challenging but could reward crucial information on protein conformation and interactions in the lipid bilayer. We monitored local lipid ordering changes upon v...
To address the mechanistic roles of ATP hydrolysis in RecA-promoted strand exchange reaction in homologous recombination, quantum mechanical (QM) calculations are performed on key parts of the RecA-DNA complex. We find that ATP hydrolysis may induce changes at the protein-DNA interface, resulting in the rearrangement of a hydrogen-bond network conn...
Peptidic foldamers have recently emerged as a novel class of artificial oligomers with properties and structural diversity similar to that of natural peptides, but possessing additional interesting features granting them great potential for applications in fields from nanotechnology to pharmaceutics. Among these, foldamers containing 1,4- and 1,5-s...
Significance
Amyloids, which are protein fiber aggregates, are often associated with neurodegenerative diseases such as Alzheimer’s, but they can also be beneficial, as in yeasts, where they help cells adapt to environmental changes. Intriguingly, the same protein has the ability to aggregate into different fiber forms, known as strains, that gener...
To assist polarized-light spectroscopy for protein-structure analysis, the UV spectrum of p-cresol, chromophore of tyrosine, was studied with respect to transition moment directions and perturbation by solvent environment. From linear dichroism (LD) spectra of p-cresol aligned in stretched matrices of polyvinylalcohol and polyethylene the lowest π-...
Non-natural peptides with structures and functions similar to natural peptides have emerged lately in biomedical as well as nanotechnological contexts. They are interesting for pharmaceutical applications since they can adopt structures with new targeting potentials and because they are generally not prone to degradation by proteases. We report her...
Large unilamellar lipid vesicles do not normally fuse under fluid shear stress. They might deform and open pores to relax the tension to which they are exposed, but membrane fusion occurring solely due to shear stress has not yet been reported. We present evidence that shear forces in a viscous solution can induce lipid bilayer fusion. The fusion o...
Six water-soluble spiropyran derivatives have been characterized with respect to the thermal and photoinduced reactions over a broad pH-interval. A comprehensive kinetic model was formulated including the spiro- and the merocyanine isomers, the respective protonated forms, and the hydrolysis products. The experimental studies on the hydrolysis reac...
In recent years, multi-lipid bicellar systems have emerged as promising membrane models. The fast orientational diffusion and magnetic alignability made these systems very attractive for NMR investigations. However, their alignment was so far achieved with a strong magnetic field, which limited their use with other methods that require macroscopic...
The interactions between anionic or zwitterionic liposomes and a water-soluble, DNA-binding photochromic spiropyran are studied using UV/vis absorption and linear dichroism (LD) spectroscopy. The spectral characteristics as well as the kinetics of the thermal isomerization process in the absence and presence of the two different liposome types prov...
Computer-designed artificial enzymes will require precise understanding of how conformation of active sites may control barrier heights of key transition states, including dependence on structure and dynamics at larger molecular scale. F(o)F(1) ATP synthase is interesting as a model system: a delicate molecular machine synthesizing or hydrolyzing A...
Voltage-sensitive dyes are frequently used for probing variations in the electric potential across cell membranes. The dyes respond by changing their spectral properties: measured as shifts of wavelength of absorption or emission maxima or as changes of absorption or fluorescence intensity. Although such probes have been studied and used for decade...
Catalysts are agents that by binding reactant molecules lower the energy barriers to chemical reaction. After reaction the catalyst is regenerated, its unbinding energy recruited from the environment, which is associated with an inevitable loss of energy. We show that combining several catalytic sites to become energetically and temporally phase-sh...
Due to the two methylene groups in their backbone, β-amino acids can adopt numerous secondary structures, including helices, sheets and nanotubes. Chirality introduced by the additional side chains can significantly influence the folding preference of β-peptides composed of chiral β-amino acids. However, only conceptual suggestions are present in t...
Bicelles are excellent membrane-mimicking hosts for a dynamic and structural study of solutes with NMR, but the magnetic fields required for their alignment are hard to apply to optical conditions. Here we demonstrate that bicellar mixtures can be aligned by shear forces in a Couette flow cell, to provide orientation of membrane-bound retinoic acid...
Michler's hydrol blue (MHB) is investigated with respect to photophysical properties in varied solvent environment and when bound to insulin and lysozyme fibrils. The MHB chromophore is shown to act like a molecular rotor and bind well to amyloid fibrils, where it exhibits a characteristic red-shift in its excitation spectrum and an increase in the...
In a majority of living organisms, FoF1 ATP synthase performs the fundamental process of ATP synthesis. Despite the simple net reaction formula, ADP+Pi→ATP+H2O, the detailed step-by-step mechanism of the reaction yet remains to be resolved owing to the complexity of this multisubunit enzyme. Based on quantum mechanical computations using recent hig...
Acylaminoacyl peptidase from Aeropyrum pernix is a homodimer that belongs to the prolyl oligopeptidase family. The monomer subunit is composed of one hydrolase and one
propeller domain. Previous crystal structure determinations revealed that the propeller domain obstructed the access of substrate
to the active site of both subunits. Here we investi...
Acylaminoacyl peptidase from Aeropyrum pernix is a homodimer that belongs to the prolyl oligopeptidase family. The monomer subunit is composed of one hydrolase and one propeller domain. Previous crystal structure determinations revealed that the propeller domain obstructed the access of substrate to the active site of both subunits. Here we investi...
This study is on structure and stability of sheetlike conformers of beta-peptides; never seen new foldamers are reported here for the first time. Single- and double-stranded structures are analyzed, and the seeds of large beta-layers and biocompatible nanomaterials are described here. Both the monomeric, HCO-[NH-CH(2)-CH(2)CO](n)-NH(2), and dimeric...
In this study, quantum mechanical calculations were used for an atomic level investigation of the beta-sheet unfolding mechanism aided by pioneer water molecules accessing the structural motif. Results indicate that there is a qualitatively different forced unfold mechanism for parallel and antiparallel beta-sheets. In the case of parallel beta-she...
Despite exhaustive chemical and crystal structure studies, the mechanistic details of how F(o)F(1)-ATP synthase can convert mechanical energy to chemical, producing ATP, are still not fully understood. On the basis of quantum mechanical calculations using a recent high-resolution X-ray structure, we conclude that formation of the P-O bond may be ac...
The infrared spectra of two model beta-peptides, N-acetyl-3-aminopropionic acid-N'-methylamide (Ac-beta-HGly-NHMe) and N-acetyl-3-aminobutanoic acid-N'-methylamide (Ac-beta-HAla-NHMe), have been recorded in low-temperature Ar and Kr matrixes. The spectra were assigned by the help of electronic structure calculations. The analysis of spectra, in lin...
A combined but independently applied NMR and QM procedure has been used to investigate the conformational properties of the exchangeable hydroxyl protons of polyalcohols. In this study, to demonstrate the applicability of such a strategy, we investigated a simple monosaccharide, i.e. alpha- and beta-anomers of a D-glucopyranoside derivative. The re...
Since secondary structure elements are known to play a key role in stabilizing the 3D-fold of proteins for the design of non-natural proteins composed of beta-amino acid residues, the construction of suitable secondary structural elements is mandatory. Folding analogues of alpha-helices and beta-strands of beta-polypeptides were already described (...
Self-assembling peptide-based nanotubes are among the most investigated bioactive compounds as a result of their numerous potential applications as novel biomaterials. To support rational bottom-up design of such artificial nanosystems, here we investigate structural and energetic properties of various sheet-derived nanotubes. We carried out high l...
The inhibitory gamma-aminobutyric acid transporter subtype 1 (GAT1) maintains low resting synaptic GABA level, and is a potential target for antiepileptic drugs. Here we report a high scored binding mode that associates GABA with gating in a homology model of the human GAT1. Docking and molecular dynamics calculations recognize the amino function o...
Phosphate ester hydrolysis is a key step in several enzymatic processes, which follow either a dissociative or an associative
mechanism. While in the aqueous phase both pathways are favoured to about the same extent, the associative mechanism is relatively
rarely observed. In this paper we report on quantum mechanical calculations for three enzymes...
Parallel or polar strands of beta-peptides spontaneously form nanotubes of different sizes in a vacuum as determined by ab initio calculations. Stability and conformational features of [CH3CO-(beta-Ala)k-NHCH3]l (1 < or = k < or = 4, 2 < or = l < or = 4) models were computed at different levels of theory (e.g., B3LYP/6-311++G(d,p)// B3LYP/6-31G(d),...
Nanofibers, nanofilms and nanotubes constructed of one to four strands of oligo-alpha- and oligo-beta-peptides were obtained by using carefully selected building units. Lego-type approaches based on thermoneutral isodesmic reactions can be used to reconstruct the total energies of both linear and tubular periodic nanostructures with acceptable accu...
Intrinsic conformational characteristics of beta-peptides built up from simple achiral and chiral beta-amino acid residues (i.e., HCO-beta-Ala-NH2, HCO-beta-Abu-NH2) were studied using quantum chemical calculations and 1H-NMR spectroscopy. A conformer-based systematic and uniform nomenclature was introduced to differentiate conformers. Geometry opt...
Applicability of two different concepts has been investigated for the exploration of conformational properties of flexible molecules, such as alpha- and beta-amino acids. The first concept is based on multidimensional conformation analysis (MDCA), while the second one is calculation of potential energy curves, surfaces and hypersurfaces (PEC, PES,...
The full conformational space was explored for an achiral and two chiral beta-peptide models: namely For-beta-Ala-NH2, For-beta-Abu-NH2, and For-beta-Aib-NH2. Stability and conformational properties of all three model systems were computed at different levels of theory: RHF/3-21G, B3LYP/6-311++G(d,p)//RHF/3-21G, B3LYP/6-311++G(d,p), MP2//B3LYP/6-31...
Both tautomers of N-formyl-L-histidinamide and ethylimidazole were subjected to conformational analysis at the ab initio RHF/6-31G(d) level of theory. Side-chain potential energy surfaces (PES) were calculated for the nine typical backbone conformations predicted by Multidimensional Conformational Analysis. The side-chain torsions of N-formyl-L-his...
Munkánk során biológiai jelentőséggel bíró peptidek és fehérjék térszerkezetének és dinamikájának elemzését végeztük el NMR-spektroszkópiával. Megmutattuk, hogy az SGCI nevű proteázinhibitor egésze térszerkezeti/dinamikai változásokat szenved az enzimhez való kötődéskor. Valószínűsítettük a belső dinamika szerepét az immunrendszer egyik fehérjéjéne...