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Abstract

Optimal transport (OT) theory provides a useful
set of tools to compare probability distributions.
As a consequence, the field of OT is gaining trac-
tion and interest within the machine learning com-
munity. A few deficiencies usually associated
with OT include its high computational complex-
ity when comparing discrete measures, which is
quadratic when approximating it through entropic
regularization; or supercubic when solving it ex-
actly. For some applications, the fact that OT
distances are not usually negative definite also
means that they cannot be used with usual Hilber-
tian tools. In this work, we consider a particular
family of ground metrics, namely tree metrics,
which yield negative definite OT metrics that can
be computed in linear time. By averaging over
randomly sampled tree metrics, we obtain a tree-
sliced-Wasserstein distance. We illustrate that the
proposed tree-sliced-Wasserstein distances com-
pare favorably with other baselines on various
benchmark datasets.

1. Introduction
Many tasks in machine learning involve the comparison of
two probability distributions, or histograms. Several ge-
ometries in the statistics and machine learning literatures
have been routinely used, such as the Kullback-Leibler di-
vergence, Fisher information metric, the χ2 distance, or the
Hellinger distance, to name a few. Among them, the opti-
mal transport (OT) geometry, also known as Wasserstein
(Villani, 2008), Monge-Kantorovich (Kantorovich, 1942),
or Earth Mover’s (Rubner et al., 2000), has gained traction
in the machine learning community. OT plays an increas-
ingly important role in machine learning (Cuturi & Doucet,
2014; Solomon et al., 2014b; Frogner et al., 2015; Kusner
et al., 2015; Genevay et al., 2016; Ho et al., 2017; Arjovsky
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et al., 2017; Adler & Lunz, 2018; Lee & Raginsky, 2018;
Ambrogioni et al., 2018; Gao et al., 2018), statistics (Panare-
tos et al., 2016; Ebert et al., 2017), or computer graphics
(Solomon et al., 2014a; 2015; Bonneel et al., 2016; Lavenant
et al., 2018).

Related work: The naive computation of OT between
two discrete measures involves solving a network flow prob-
lem whose best known complexity scales super cubically in
the size of these measures (Burkard & Cela, 1999; Tarjan,
1997). There are two notable lines of work to reduce the
time complexity of OT. (i) The first one is to leverage sim-
ple ground costs. For instance, if one uses the binary metric
1x6=z between two points, the OT distance is equivalent to
the total variation distance (Villani, 2003, p.7). When mea-
sures are supported on the line R and the cost c is a convex
function f of the absolute difference |x− z| between two
points, namely for x, z ∈ R we have c(x, z) = f(|x− z|),
then the OT distance is equal to the integral of f evaluated
on the absolute difference between the generalized quantile
functions of these two probability distributions (Santambro-
gio, 2015, §2). Other simplifications include thresholding
the ground cost distance (Pele & Werman, 2009) or con-
sidering for a ground cost the shortest-path metric on a
graph (Peyré & Cuturi, 2019, §6) (ii) The second one is to
use regularization to approximate solutions of OT problems,
notably entropy (Cuturi, 2013), which results in a prob-
lem that can be solved using Sinkhorn iterations. Genevay
et al. (2016) extended this approach to the semi-discrete and
discrete OT problems using stochastic optimization. Dif-
ferent variants of Sinkhorn algorithm have been proposed
recently (Altschuler et al., 2017; Dvurechensky et al., 2018)
and speed-ups are obtained when the ground cost is the
quadratic Euclidean distance (Altschuler et al., 2018a;b;
Tenetov et al., 2018) or more generally the heat kernel on
geometric domains (Solomon et al., 2015). The convergence
of Sinkhorn algorithm has been considered in (Franklin &
Lorenz, 1989; Linial et al., 2000; Kalantari et al., 2008;
Altschuler et al., 2017; Dvurechensky et al., 2018).

Contributions: In this work, we follow the first line of
work to provide fast algorithms to approximate OT. In par-
ticular, we consider tree metrics as ground costs for OT, to
define the tree-Wasserstein distances. Then, we propose
tree-sliced Wasserstein by averaging over randomly tree
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metrics. We derive linear time algorithms for this class of
OT with two practical families of tree metrics for both low-
dimensional and high-dimensional data points. Moreover,
this family of OT distances is also negative definite. Con-
sequently, we propose positive definite kernels that use the
OT geometry. Empirically, we show that averaging over
random tree metrics for tree-sliced Wasserstein is essential
for this proposed class of OT in applications.

2. Background
In this section, we briefly review definitions of optimal
transport (OT) and tree metrics.

Let (Ω, d) be a measurable metric space. For any x ∈
Ω, δx is the Dirac unit mass on x. Define the probability
simplex Sn =

{
u ∈ Rn+ | uT1n = 1

}
, where 1n is the n-

dimensional vector of ones.

Optimal transport. In this work, we only consider ei-
ther point clouds of the same finite cardinality or empirical
measures with a finite number of supports for OT.

Point clouds. Let X = (x1, x2, . . . , xn) and Z =
(z1, z2, . . . , zn) be two families of points of cardinality n,
where xi, zi ∈ Ω,∀i ≤ n. Let c be a ground cost metric,
the OT problem between X and Z is defined as

dOT(X,Z) = min
σ∈Σn

n∑
i=1

c(xi, zσ(i)), (1)

where Σn is the set of all permutations of n elements.

Empirical measures. Consider two empirical measures
µ =

∑n
i=1 aiδxi

and ν =
∑m
i=1 biδzi , where xi, zj ∈ Ω,

∀i ≤ n, ∀j ≤ m, a = (a1, a2, . . . , an) ∈ Sn, and b =
(b1, b2, . . . , bm) ∈ Sm. Let c be a ground cost metric, the
OT between µ and ν is defined as

dOT(µ, ν) = min
P∈U(a,b)

n∑
i=1

m∑
j=1

Pijc(xi, zj), (2)

where U(a, b) =
{
P ∈ Rn×m+ | P1m = a, PT1n = b

}
is

the transportation polytope of a ∈ Sn and b ∈ Sm.

Tree metrics. A metric (X, dT) is a tree metric if there is a
tree T with non-negative edge lengths whose nodes contain
X and such that for every x, z ∈ X, we have dT(x, z) equals
to the length of the path between x and z (Semple & Steel,
2003) (Chapter 7, p.145–182).

3. Tree-Wasserstein Distances (TW Distances)
We call an optimal transport distance a tree-Wasserstein
distance if the ground cost is a tree metric.

Figure 1. An illustration for
a tree with root r. For
node x on the lower left
here, P(x) = {ea, eb}. For
an edge ec, hec(x) = 0,
hec(y) = 1. For a set
X = {x, y}, hea(X) =
2, hec(X) = 1, and
hee(X) = 0.

The tree-Wasserstein dis-
tance is built upon the
UniFrac method (Lozupone
& Knight, 2005; Lozupone
et al., 2007) in metage-
nomics community. We re-
call that the UniFrac method
is used for comparing micro-
bial communities by measur-
ing the phylogenetic distance
between sets of taxa in a phy-
logenetic tree as the fraction
of the branch length of the
tree that leads to descendants
from either one environment
or the other, but not both
(Lozupone & Knight, 2005).

In this section, we will lever-
age geometric structure of tree metrics on local spaces of
OT, and rely on the optimal assignment formulation of OT
(Equation 1) to derive a closed form for the tree-Wasserstein,
which is similar as the UniFrac method (Lozupone et al.,
2007). We further propose tree-sliced-Wasserstein distances
by averaging over randomly sampled tree metrics, and use
the tree-sliced-Wasserstein to build positive definite kernels
on OT geometry.

Linear time computation for the TW distances: Let a
tree metric dT be the ground cost in the TW distance dTW
between X = (x1, x2, . . . , xn) and Z = (z1, z2, . . . , zn)
in Pn. Following the definition of tree metrics, there exists a
tree T where ∀i ≤ n, xi, zi are nodes of T . Let r be a root
of T , and P(x) be the set of edges of the unique path from
the root r to node x, he(x) is 1 if the edge e appears in the
path between the root r and x, and 0 otherwise. With a light
abuse of notations, let he(X) =

∑
x∈X he(x), as illustrated

in Figure 1. We also denote w(e) as a non-negative length
(or weight) of an edge e in T . Then, the tree-Wasserstein
has a closed form as showed in Theorem 3.1.

Theorem 3.1. Let Pn be a space of point clouds of cardinal-
ity n. Then, tree-Wasserstein distances between X,Z ∈ Pn
has a following closed form:

dTW(X,Z) =
∑
e∈T

w(e) |he(X)− he(Z)|. (3)

Proof. From the definition of tree metrics, dT(x, z) equals
to the length of the path between x and z in T , so we have

dT(x, z) =
∑

e∈P(x)

w(e) +
∑

e∈P(z)

w(e) − 2
∑

e∈P(x)∩P(z)

w(e).

Therefore, for any fixed σ ∈ Σn, consider the objective
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function of Equation (1), and note that∑
e∈P(x)

w(e) =
∑
e∈T

w(e)he(x).

Then, we have:
n∑
i=1

dT(xi, zσ(i)) =
∑
e∈T
x∈X

w(e)he(x) +
∑
e∈T
z∈Z

w(e)he(z)

−2
∑
e∈T

w(e)

n∑
i=1

min{he(xi), he(zσ(i))}.

Additionally, we have
n∑
i=1

min{he(xi), he(zσ(i))} ≤ min{he(X), he(Z)}.

Moreover, let construct a greedy assignment σ̄ ∈ Σn as
follow: we run a bottom-up traversal for edges on tree T
starting from edges which are farthest to the root r. For
each edge e in this order of the bottom-up traversal in T ,
if it exists xi ∈ X and zj ∈ Z where e ∈ P(xi) and
e ∈ P(zj), then we set σ̄(i) = j, and remove xi, zj in X,Z
respectively. When the bottom-up traversal is completed, if
X 6= ∅, one can arbitrarily match for the rest. Since for any
node x in T , there is a unique shortest path from the root
r to x, and the greedy assignment σ̄ is constructed by the
bottom-up traversal for edges in T , we have

n∑
i=1

min{he(xi), he(zσ̄(i))} = min{he(X), he(Z)}.

Furthermore, note that∑
e∈P(x)
x∈X

w(e) =
∑
e∈T

w(e)
∑
x∈X

he(x) =
∑
e∈T

w(e)he(X),

he(X)+he(Z)−2min{he(X) , he(Z)}= |he(X)−he(Z)| .
Thus, the TW distance can be computed as

dTW(X,Z) =
∑
e∈T

w(e) |he(X)− he(Z)|.

Moreover, let consider the smallest subtree T̃ having the
same root r in T and containing all xi ∈ X and zi ∈ Z.
Without any loss, one can remove nodes of degree 2, except
the root node r, to construct a tree T̄ with root r from T̃ . T̄
has at most 4n nodes, consequently at most (4n− 1) edges.
Therefore, from Equation (3), the TW distance can be com-
puted in linear time O(n). We summarize a computation of
the TW distance for point sets of a cardinality n in Pn in
Algorithm 11.

1In practice, one can obtain the path from root to each node x

Algorithm 1 Compute dTW for point clouds of cardinality
n
Input: X,Z ∈ Pn, a tree T corresponding to a ground tree

metric in dTW, and denote m as the number of edges in
tree T .

Output: dTW(X,Z)
1: Compute a count vector u ∈ Rm+ for X where each

coordinate of u corresponds to an edge e in T , and
equals to he(X).

2: Compute a count vector v ∈ Rm+ for Z similarly.
3: Compute a weighted vector w̄ ∈ Rm+ where each coor-

dinate of w̄ corresponds to an edge e in T , and equals
to w(e).

4: Compute dTW(X,Z) = w̄T |u− v|, where |·| is an
element-wise absolute operator.

Remark 1. Evans & Matsen (2012) showed a relation be-
tween the UniFrac and OT distance by relying on the Kan-
torovich duality of OT and total mass of phylogenetic sub-
trees. We note that this result was also implicitly showed in
(Do Ba et al., 2011) based on network flow and total mass of
subtrees. Later, it was noted in (McGregor & Stubbs, 2013),
also based on total mass of subtrees. Differently, in our
work, we derive the TW distances based on general tree met-
rics, and optimal assignment formulation of OT (Equation
(1)).

Remark 2. In literature, there are a few more work related
to our proposed class of OT with tree metrics (Kloeckner,
2015; Sommerfeld & Munk, 2018). In particular, Kloeckner
(2015) studied geometric properties of OT space for mea-
sures on an ultrametric space, and Sommerfeld & Munk
(2018) focused on statistical inference for empirical OT on
finite spaces including tree metrics.

Negative definiteness for the TW distances:
Theorem 3.2. Let Pn be a space of point clouds of cardi-
nality n. Then, the tree-Wasserstein distance dTW is negative
definite on Pn.

Proof. Let m be the number of edges in tree T . From
Equation (3), he(X) with e ∈ T can be considered as a
feature map for point cloud X from Pn to {0, 1, . . . , n}m.
Consequently, tree-Wasserstein distance is equivalent to a
weighted L1 distance, with positive weights w(e), between
these feature maps. Therefore, tree-Wasserstein is negative
definite.

Positive definite tree-Wasserstein kernels.

(i.e. P(x)) along a tree construction procedure. Or, one can index
those paths in a preprocessing phase by performing a bottom-up
traversal over all edges in tree T in linear time with respect to the
number of nodes in T .
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Lemma 3.3. Let Pn be a space of point sets of cardinality
n. Given t > 0, X,Z ∈ Pn, we proposed tree-Wasserstein
kernels, defined as kTW(X,Z) = exp(−tdTW(X,Z)). Then,
the tree-Wasserstein kernels are positive definite on Pn.

Proof. From Theorem 3.2, dTW is negative definite on Pn.
Following (Berg et al., 1984) (Theorem 3.2.2, p.74), the
proposed TW kernels kTW are positive definite on Pn.

Practical families of tree metrics for general cases2.

• Partition-based tree metrics: For low-dimensional lo-
cal spaces, one can construct a partition-based tree metric
with a tree structure T as follows:

For simplicity, we use R2 as a running example. Assume
that data points are in a square region of R2 with side λ/2.
We then randomly expand the square region into a bigger
one with side at most λ. Inspired by Indyk & Thaper (2003),
we use a following recursive procedure to construct a tree T
from the square region with side at most λ: for each square
region s with side `, there are three cases: (i) if s does not
contain any data points, we discard it, (ii) if s contains 1
data point, we use either this data point or the center of s as
a node in T , and (iii) if s contains more than 1 data point,
we use its center to represent it as a node x in tree T , then
equally partition s into 4 smaller child square regions with
side `/2 to obtain potential child nodes of x in T , then we
recursive the procedure for those child square regions with
side `/2. One can use any metrics in R2 to obtain a length
for each edge in T .

To reduce a quantization problem for the partition-based
approach in dTW, we use several different partition-based
tree metrics, obtained by using different randomly expan-
sions for the original square region, to compute several
corresponding dTW, then we average them, namely the tree-
sliced-Wasserstein distance.

• Clustering-based tree metrics: For high-dimensional
local spaces, the number of partitioned regions, in the re-
cursive procedure of partition-based tree metrics, grows
exponentially with respect to the number of dimensions of
local spaces. To overcome this high-dimension problem,
we leverage a distribution of data points to adaptively parti-
tion a space via clustering, inspired by the clustering-based
approach for a space subdivision in Improved Fast Gauss
Transform (Yang et al., 2005; Morariu et al., 2009). We de-
rive a similar recursive procedure as in partition-based tree
metrics, but use the farthest clustering of Gonzalez (1985)
to partition for data points. The complexity of the farthest
clustering into κ clusters for n data points is O(n log κ) by

2General cases are meant that a tree structure is not known, and
required to construct from data for computing the TW distances.

using Feder & Greene algorithm (1988). So, the complexity
to build a clustering-based tree metric is linear with respect
to n.

Similarly, one can consider its corresponding tree-sliced-
Wasserstein distance, where the TW distances are aver-
aged over a several times of computations with different
clustering-based tree metrics, obtained by using different
initializations for the farthest clustering of Gonzalez (1985).

Remark 3. In practice, one can use a predefined highest
level of tree as a stopping condition for a tree construction
procedure. We note that the shortest path from the root
to each node can be obtained along the tree construction
procedure. Moreover, averaging over randomly tree met-
rics in tree-sliced-Wasserstein distances is necessary for
applications as illustrated in our experiments.

A relation between the TW distance and OT with Eu-
clidean ground metric: Given a modified partition-based
tree metric dHT , where a corresponding tree T is constructed
as follow: assume that all data points are in am-dimensional
hypercube with side λ. At a height level 0 in T , there is
1 hypercube with side λ. For each hypercube with side `,
at a height level i in T , we partition it into 2m child hyper-
cubes with side `/2, corresponding to 2m child nodes in
T at a height level (i + 1). Therefore, at a height level i
in T , there are (2i)m hypercubes with side λ/2i. Assume
that at a height level H in T , all data points are separated
into different hypercubes, then the partitioning procedure is
stopped at that level. Each hypercube is represented by its
center as a node in T , and each edge in T is computed by
Euclidean distance.

Let consider the OT with Euclidean ground metric, denoted
as dOT(·, ·;L2), and the TW distance with the partition-
based tree metric dHT , denoted as dTW(·, ·; dHT ), for X =
(x1, x2, . . . , xn) and Z = (z1, z2, . . . , zn) in Pn. We
show a relation between dOT(·, ·;L2) and dTW(·, ·; dHT ) as
in Lemma 3.4.

Lemma 3.4. Let X,Z ∈ Pn, λ be a side of a m-
dimensional hypercube containing all data points in X
and Z, and H be the height level of tree T for dHT , then
dOT(X,Z;L2) ≤ dTW(X,Z; dHT )/2 + λn

√
m/2H .

Proof. At a height level i in T , the maximum Euclidean
distance between any two data points in a same hypercube,
denoted as ∆i, equals to λ

√
m/2i. LetEi(i+1) be a set of all

edges between a height level i and a height level (i+1) in T .
So, for any e ∈ Ei(i+1), w(e) = λ

√
m/2i+1. Let qi be the

number of matched pairs at a height level i. So, (qi − qi+1)
is the number of pairs matched at a height level i, but un-
matched at a height level (i+1). Moreover, observe that the
number of unmatched pairs at a height level i is n− qi =
1
2

∑
e∈E(i−1)i

|he(X)− he(Z)|. So, from Equation (3),
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Table 1. Results on SVM classification for MPEG7 and Orbit datasets. For each dataset, two numbers in the parenthesis are corresponding
to the number of persistence diagrams (PD) and the maximum number of points in PD respectively. For each kernel, the averaged accuracy
(%) and standard deviation are shown on its first line, and time consumption (seconds) is shown in a parenthesis on its second line. For a
trade-off between speed and performance, we set (ns = 6, HT = 6), and (ns = 12, HT = 5) for tree-sliced-Wasserstein distances in
kTW in MPEG7 and Orbit datasets respectively. We highlight our approach and its results in bold.

kPSS kPWG kSW kPF kOT kTW
MPEG7
(200/80)

73.33± 4.17
(7.51)

74.83± 4.36
(5.23)

76.83± 3.75
(1.55)

80.00± 4.08
(6.63)

69.17± 5.40
(7.98)

81.83 ± 3.15
(4.48)

Orbit
(5K/300)

72.38± 2.41
(11024)

76.63± 0.66
(8756)

83.60± 0.87
(6473)

85.87± 0.77
(9891)

77.57± 0.75
(433752)

86.31 ± 1.01
(1480)

dTW(X,Z; dHT ) =
∑H−1
i=0 2w(e|e ∈ Ei(i+1))(n− qi+1) =∑H−1

i=0 ∆i(n− qi+1). Additionally, note that q0 = n,
qH = 0, and ∆i = ∆i−1/2, then we have

dOT(X,Z; dL2
) ≤

H−1∑
i=0

∆i (qi − qi+1)

= dTW(X,Z; dHT )−
H−1∑
i=0

∆i(n− qi)

= dTW(X,Z; dHT )−
H∑
i=1

∆i−1(n− qi)/2 + n∆H

= dTW(X,Z; dHT )/2 + λn
√
m/2H .

Generalization for empirical measures. Let M be a
space of empirical measures with a finite number of support.
Consider a tree T corresponding to a ground tree metric
in dTW. For any µ =

∑n
i=1 aiγxi in M (Section 2), with a

slight abuse of notations, we define

he(µ) =

n∑
i=1

aihe(xi).

Moreover, empirical measures (e.g. µ =
∑n
i=1 aiγxi

) can
be considered as a generalization of point clouds
(e.g. X = (x1, x2, . . . , xn)) since ai can be regarded as a
frequency of appearances of xi. Therefore, all results of
the TW distances on Pn (i.e. Theorem 3.1, Theorem 3.2,
Lemma 3.3 and Lemma 3.4) are also hold for the TW dis-
tances on M.

Special cases of the TW distances. We highlight some
special cases of the TW distances which are either trivial
and/or have similar spirits to other different tools, consid-
ered in literature.

• OT with a ground binary metric: For a binary metric
1x6=z between two points on a set X, one can construct a
tree T where all points in X are leaves, an additional virtual
point is its root, and all edges in T have a same length 1/2.
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Figure 2. The kernel Fisher discriminant ratio (KFDR) graphs on
granular packing system and SiO2 datasets. For kTW, tree-sliced-
Wasserstein distances are computed with (ns = 12, HT = 6).

Then, 1x 6=z equals to the length of the path between x and
z in T . Hence, binary metric is a tree metric.

•OT with ground metrics in 1-dimensional local spaces:
For a metric d in 1-dimensional local spaces of OT, all data
points in the local spaces lay on a line which is a trivial case
of trees. So, all data points are nodes in a tree, and a length
of an edge equals to the distance d between two nodes of
the edge. Thus, d is a tree metric.

• OT with ground ultrametrics: An ultrametric is also
known as non-Archimedean metric or isosceles metric
(Shkarin, 2004). Ultrametrics strengthen a triangle inequal-
ity to a strong inequality (i.e. for any x, y, z in an ultra-
metric space, d(x, z) ≤ max{d(x, y), d(y, z)}). Note that
binary metrics are a special case of ultrametrics since binary
metrics satisfy the strong inequality. Following (Johnson,
1967) (§.1, p.245–247), ultrametric implies a tree structure
which can be constructed by hierarchical clustering schemes.
Therefore, ultrametric is a tree metric. Furthermore, we note
that ultrametrics have similar spirits with strong kernels and
hierarchy-induced kernels which are key components to
form valid optimal assignment kernels for applications with
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Table 2. Results of kTW with SVM on MPEG7 dataset over different parameters (ns, HT ) for tree-sliced-Wasserstein distances. For each
pair (ns, HT ), the averaged accuracy (%) and standard deviation are shown on its first line while time consumption (seconds) is shown in
a parenthesis on its second line.

ns = 1 ns = 6 ns = 12 ns = 18 ns = 24 ns = 30

HT = 3
58.00± 3.75

(0.03)
71.33± 3.31

(0.15)
73.33± 2.83

(0.29)
76.17± 3.60

(0.52)
79.00± 4.17

(0.62)
77.83± 4.78

(0.83)

HT = 4
71.17± 3.69

(0.08)
79.17± 4.98

(0.44)
80.17± 2.54

(1.26)
79.50± 3.24

(1.68)
79.67± 4.18

(1.91)
83.00± 3.75

(2.57)

HT = 5
74.17± 3.36

(0.27)
79.17± 3.16

(1.68)
80.00± 4.39

(2.86)
80.33± 3.91

(3.97)
80.83± 3.95

(5.78)
80.83± 1.96

(7.32)

HT = 6
78.00± 3.22

(0.73)
81.83± 3.15

(4.48)
81.50± 2.58

(8.96)
80.67± 12.78

(12.78)
83.00± 2.92

(18.40)
81.00± 5.78

(22.86)

graph classification (Kriege et al., 2016).

4. Experimental Results
In this section, we apply our proposed TW kernel on topo-
logical data analysis and word embedding-based document
classification.

4.1. Topological Data Analysis (TDA)

Topological data analysis (TDA have recently gained inter-
est within the machine learning community (Reininghaus
et al., 2015; Kusano et al., 2016; Carriere et al., 2017; Le &
Yamada, 2018). TDA is a powerful tool for statistical analy-
sis on geometric structured data such as linked twist maps,
or material data. TDA employs algebraic topology methods,
such as persistence homology, to extract robust topological
features (i.e. connected components, rings, cavities) and
output 2-dimensional point multisets, known as persistence
diagrams (PD) (Edelsbrunner et al., 2000; Edelsbrunner
& Harer, 2008). Each 2-dimensional point in PD summa-
rizes a lifespan, corresponding to birth and death time as its
coordinates, of a particular topological feature.

Setup. We evaluated our proposed TW kernel kTW (Sec-
tion 3) for orbit recognition and object shape classification
with support vector machines (SVM), as well as change
point detection for material data analysis with kernel Fisher
discriminant ratio (KFDR) (Harchaoui et al., 2009). Gener-
ally, we used the same setting as in (Le & Yamada, 2018)
for these TDA experiments3. We consider five baseline ker-
nels for persistence diagrams (PD): (i) Persistence Scale
Space kernel (kPSS) (Reininghaus et al., 2015), (ii) Per-
sistence Weighted Gaussian kernel (kPWG) (Kusano et al.,
2016), (iii) Sliced Wasserstein kernel (kSW) (Carriere et al.,
2017), (iv) Persistence Fisher kernel (kPF) (Le & Yamada,
2018), and (v) optimal transport (OT)4 kernel, defined as

3Le & Yamada (2018) kindly helped us evaluate kTW and kOT
on their system for a fair comparison on TDA.

4We used a fast OT implementation (e.g. on MPEG7 dataset, it
took 7.98 seconds while the mex-file with Rubner’s implementa-
tion requires 28.72 seconds).

kOT = exp(−tdOT) for t > 0, as in (Zhang et al., 2007;
Cuturi, 2013). Since kOT is indefinite, we regularize its cor-
responding kernel matrices by adding a sufficiently large
diagonal term as in (Cuturi, 2013). We consider ns random-
ized partition-based tree metrics, built with a predefined
highest level HT of tree T as a stopping condition, cor-
responding to a tree-sliced-Wasserstein distance with ns
tree-slices for dTW in kTW. We typically use a cross valida-
tion to choose hyper-parameters, and follow corresponding
authors of those baseline kernels to form set of candidates.
For kTW and kOT, we choose 1/t from {1, q10, q20, q50}
where qs is the s% quantile of a subset of TW distances
and OT distances respectively, observed on a training set.
We use one-vs-one strategy with Libsvm (Chang & Lin,
2011) for multi-class classification,

{
10−2:1:2

}
as a set of

regularization candidates for SVM, and DIPHA toolbox5 to
extract PD.

Orbit recognition. Adams et al. (2017) (§6.4.1) proposed
a synthesized dataset for link twist map, a discrete dynami-
cal system to model flows in DNA microarrays (Hertzsch
et al., 2007). Given an initial position (a0, b0) ∈ [0, 1]

2,
and t > 0, an orbit is modeled as ai+1 = ai + tbi(1 − bi)
mod 1, and bi+1 = bi + tai+1(1 − ai+1) mod 1. There
are 5 classes, corresponding to 5 different parameters
t = 2.5, 3.5, 4, 4.1, 4.3. For each class, we generated 1000
orbits with random initial positions. Each orbit contains
1000 points. We consider 1-dimensional topological fea-
tures for PD, extracted with Vietoris-Rips complex filtra-
tion (Edelsbrunner & Harer, 2008), and use a random split
70%/30% for training and test with 100 repeats for SVM.
Results of SVM, and computational time are shown in the
third row of Table 1. The proposed kTW compares favor-
ably with other baseline kernels. Moreover, kTW and kPF
which enjoy OT geometry and Fisher information geometry
respectively, without either approximation or regularization
for PD, clearly outperform other approaches. Furthermore,
the computational time of kTW is less than other baseline
kernels. Especially, kTW is 293 times faster than kOT. We
also illustrate a trade-off of computational time and per-

5https://github.com/DIPHA/dipha
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Table 3. Results of kTW with SVM on Orbit dataset over different parameters (ns, HT ) for tree-sliced-Wasserstein distances. For each
pair (ns, HT ), the averaged accuracy (%) and standard deviation are shown on its first line while time consumption (seconds) is shown in
a parenthesis on its second line.

ns = 1 ns = 6 ns = 12 ns = 18 ns = 24 ns = 30

HT = 3
75.96± 0.67

(9)
83.12± 0.60

(53)
83.33± 0.80

(103)
83.84± 0.85

(150)
84.53± 0.83

(193)
83.56± 0.83

(244)

HT = 4
79.37± 0.86

(24)
84.55± 0.41

(143)
85.58± 1.01

(294)
85.37± 0.84

(456)
85.64± 0.65

(604)
85.72± 0.88

(799)

HT = 5
80.63± 1.00

(109)
85.34± 0.86

(685)
86.31± 1.01

(1480)
86.75± 0.60

(1943)
86.57± 0.71

(2607)
85.73± 0.76

(3670)

HT = 6
82.73± 0.90

(541)
85.62± 0.63

(3458)
86.27± 0.66

(7757)
86.62± 0.42

(11718)
85.77± 0.70

(19752)
85.73± 0.59

(22034)

Table 4. Computational time (seconds) for granular packing sys-
tem (35/20.4K) and SiO2 (80/30K) datasets. For each dataset,
the first number in the parenthesis is the number of persistence
diagrams (PD) while the second one is the maximum number of
points in PD. For kTW, tree-sliced-Wasserstein distances are com-
puted with (ns = 12, HT = 6). Computation for OT is out of
memory due to many points in PD. We highlight our approach and
its computational time in bold.

kPSS kPWG kSW kPF kTW
Granular 38.14 17.44 8.30 22.70 2.01

SiO2 515 288 249 318 6

formance for (ns, HT ) in tree-sliced-Wasserstein distances
for kTW in Table 3. Averaging over randomly tree metrics
as in our proposed tree-sliced-Wasserstein is essential in
Orbit dataset since the results of kTW with ns > 1 clearly
outperforms those with ns = 1.

Object shape classification. We evaluated object shape
classification on a 10-class subset of MPEG7 dataset (Late-
cki et al., 2000), containing 20 samples for each class as in
(Le & Yamada, 2018). For simplicity, we use the same pro-
cedure as in (Le & Yamada, 2018) to extract 1-dimensional
topological features for PD with Vietoris-Rips complex fil-
tration6(Edelsbrunner & Harer, 2008). We also used a ran-
dom split 70%/30% for training and test with 100 repeats
for SVM. Results of SVM and computational time are sum-
marized in the second row of Table 1. The performances
of the proposed kTW are comparative with kPF, and clearly
outperform other baseline kernels. Therefore, geometry
for PD plays an important role for kernel approaches in
TDA. The computational time of kTW is slower than kSW,
but faster than other baseline kernels. A trade-off of compu-
tational time and performance for (ns, HT ) in tree-sliced-
Wasserstein distances for kTW is shown in Table 2. Similarly,
averaging over randomly tree metrics for MPEG7 dataset
also helps to improve performances for kTW.

Change point detection for material data analysis. We
consider granular packing system (Francois et al., 2013)
and SiO2 (Nakamura et al., 2015) datasets for change point

6Turner et al. (2014) proposed a more complicated and ad-
vanced filtration for this task.

detection problem with KFDR as a statistical score. We
extracted 2-dimensional topological features for PD in gran-
ular packing system dataset, and 1-dimensional topological
features for PD in SiO2 dataset, both with ball model filtra-
tion. Following (Kusano et al., 2018; Le & Yamada, 2018),
the regularization parameter in KFDR is set to 10−3. KFDR
graphs for the granular packing system and SiO2 datasets
are shown in Figure 2. For granular tracking system dataset,
all kernel approaches obtain the change point as the 23rd

index, which support an observation result (corresponding
id = 23) in (Anonymous, 1972) . For SiO2 dataset, results
of all kernel methods are within a supported range (35 ≤ id
≤ 50), obtained by a traditional physical approach (Elliott,
1983). The KFDR results of kTW compare favorably with
those of other baseline kernels. As shown in Table 4, kTW is
faster than other baseline kernels. We note that we omit the
baseline kOT for this application since computation of OT is
out of memory.

4.2. Word Embedding-based Document Classification

Kusner et al. (2015) proposed Word Mover’s distances for
document classification. Each document is regarded as an
empirical measure where each word plays a role of a support,
and its frequency is considered as a weight for the support.
Kusner et al. (2015) used word embedding such as word2vec
to map each word to a vector data point. Or, Word Mover’s
distances are optimal transport metrics between empirical
measures (i.e. documents) where its ground cost is a metric
on word embedding space.

Setup. We evaluated our proposed TW kernel on 4
datasets: TWITTER, RECIPE, CLASSIC and AMAZON,
following the approach of Word Mover’s distances (Kusner
et al., 2015), for document classification with SVM. Statisti-
cal characteristics for those datasets are summarized in the
first row of Table 6. We used the word2vec word embedding
(Mikolov et al., 2013), pre-trained on Google News7, which
contains about 3 million words/phrases. word2vec maps
words/phrases into a vector in R300. For all datasets, we
removed all SMART stop word (Salton & Buckley, 1988),

7https://code.google.com/p/word2vec
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Table 5. Results of SVM with different parameters (ns, HT ) with κ = 4 for kTW and different ns for kTW on TWITTER dataset.
ns = 1 ns = 5 ns = 10 ns = 20 ns = 30 ns = 50

kTW
(HT = 4, κ = 4)

69.74± 0.41
(12)

71.68± 0.26
(56)

71.66± 0.50
(113)

72.28± 0.76
(239)

72.94± 0.80
(364)

72.79± 0.62
(605)

kTW
(HT = 5, κ = 4)

71.57± 0.71
(46)

72.67± 0.42
(231)

72.86± 0.78
(472)

73.24± 0.43
(939)

73.37± 0.35
(1469)

73.42± 0.42
(2400)

kTW
(HT = 6, κ = 4)

72.81± 0.65
(180)

72.82± 0.51
(929)

73.09± 0.37
(1914)

73.67± 0.63
(3703)

73.37± 0.39
(5569)

73.54± 0.81
(9166)

kSW
68.86± 0.13

(152)
68.85± 0.11

(669)
68.89± 0.14

(1316)
70.10± 0.75

(2746)
69.61± 0.47

(4097)
70.04± 0.40

(6635)

and further dropped words in documents if they are not
available in the pre-trained word2vec as in (Kusner et al.,
2015). We used baseline kernels in the form of exp(−td)
where d is a document distance and t > 0. We consid-
ered 2 baseline document distances based on Word Mover’s:
(i) OT with Euclidean ground metric (Kusner et al., 2015),
and (ii) 1D-sliced-Wasserstein. With a light abuse of nota-
tions, we denote those baselines as kOT and kSW for their
corresponding kernels respectively. We consider ns random-
ized clustering-based tree metrics, built with a predefined
highest level HT of tree T as a stopping condition, corre-
sponding to tree-sliced-Wasserstein distances with ns tree-
slices for dTW in kTW. We also used a same regularization
(Section 4.1) for kernel kOT matrices due to its indefinite-
ness. We randomly split each dataset into 70%/30% for
training and test with 100 repeats for SVM. We follow the
same setup for multi-class classification with SVM as in
Section 4.1: choose hyper-parameters through cross vali-
dation, choose 1/t from {1, q10, q20, q50}, use one-vs-one
strategy with Libsvm for classification, and choose SVM
regularization from

{
10−2:1:2

}
. We ran experiments with

Intel(R) Xeon(R) CPU E7-8891v3 (2.80GHz) with 256GB
RAM.

Results and discussion. The results of SVM for word
embedding based document classification for TWITTER,
RECIPE, CLASSIC and AMAZON are summarized in Ta-
ble 6. The performances of kTW is consistently comparative
with those of kOT, and better than those of kSW. Moreover,
the computational time of kTW is much less than that of
kOT. Especially, in CLASSIC dataset, the computation of
kTW is less than 3 hours while that of kOT is more than 8
days. Averaging over ns slices (i.e. ns randomly tree met-
rics) for tree-slices-Wasserstein is important since ns = 1
for kTW does not work well for all those datasets. The di-
mension of the local word embedding space is 300. So,
it is very loose to approximate R300 with a line as in 1D-
sliced-Wasserstein for kSW, which may cause kSW to per-
form worse on those datasets. We also illustrate a trade-off
of performances and computational time for (ns, HT , κ) in
tree-sliced-Wasserstein distances for kTW and ns slices for
kSW in Table 5 for TWITTER dataset. Further results with
different parameters (ns, HT , κ) for kTW and ns slices for
kSW on all 4 datasets are placed in the appendix.

Table 6. Results of SVM for word embedding-based document
classification on TWITTER, RECIPE, CLASSIC and AMAZON
datasets. For each dataset, in the parenthesis the three numbers are
corresponding to the number of classes, the number of documents
and the maximum number of unique words for each document
respectively. For each kernel, the averaged accuracy (%) and stan-
dard deviation are shown on its first line while time consumption
(seconds) is shown in a parenthesis on its second line. Results are
reported for kSW with ns = 20 slices, and for kTW with ns = 10
slices, HT = 6, and κ = 4 (parameter of the farthest clustering ).
We highlight our approach and its results in bold.

TWITTER
(3/3108/26)

RECIPE
(15/4370/340)

CLASSIC
(4/7093/197)

AMAZON
(4/8000/884)

kOT
72.72± 0.57

(28522)
52.05± 0.61

(305480)
96.59± 0.32

(705780)
94.43± 0.38

(936320)

kSW
70.10± 0.75

(2746)
46.07± 0.81

(28099)
92.17± 0.42

(33491)
86.28± 0.65

(42456)

kTW
73.09 ± 0.37

(1914)
52.25 ± 1.00

(4765)
96.85 ± 0.27

(9423)
94.24 ± 0.55

(28533)

5. Conclusion
In this work, we proposed tree-sliced-Wasserstein distances
which is an average of randomly ground tree metrics for op-
timal transport (OT). We showed that OT with tree metrics,
can be not only computed in linear time, but is also nega-
tive definite, which supports to use kernel methods on OT
geometry. Moreover, the proposed tree-Wasserstein kernel
compares favorably with other baseline kernels on many
benchmark datasets in topological data analysis and word
embedding-based document classification.
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Table 7. Computational time (seconds) for different parameters (ns, HT ) for tree-sliced-Wasserstein distances in kTW on granular packing
system dataset.

ns = 1 ns = 6 ns = 12 ns = 18 ns = 24 ns = 30
HT = 3 0.06 0.33 0.75 1.07 1.59 1.99
HT = 4 0.08 0.47 0.95 1.52 2.16 2.98
HT = 5 0.12 0.76 1.40 2.13 2.89 3.83
HT = 6 0.17 1.09 2.01 3.03 3.85 4.01

A. Optimal Transport for Persistence Diagrams
Let Dgi = (x1, x2, . . . , xn) and Dgj = (z1, z2, . . . , zm) be two persistence diagrams where xi, zj ∈ R2, and Θ = {(a, a) |
a ∈ R} be the diagonal set. Denote DgiΘ = {ΠΘ(x) | x ∈ Dgi} where ΠΘ(x) is a projection of x on Θ.

In the bottle neck distance between two persistence diagrams Dgi and Dgj , the transportation plan is bijective between
(Dgi ∪ Θ) and (Dgj ∪ Θ) instead of between Dgi and Dgj since two persistence diagrams may have different masses.
Additionally, (Carriere et al., 2017) use a transportation plan between (Dgi∪DgjΘ) and (Dgj∪DgiΘ) for sliced-Wasserstein
distance between Dgi and Dgj . In our implementation for the tree-Wasserstein distance and optimal transport distance
between Dgi and Dgj , we followed (Carriere et al., 2017) to use a transportation plan between (Dgi∪DgjΘ) and (Dgj∪DgiΘ)

for those distances8.

B. Negative Definiteness of L1 Distance
For two real numbers u, v, the function (u, v) 7→ (u − v)2 is obviously negative definite. Following (Berg et al., 1984)
(Corollary 2.10, p.78), the function (u, v) 7→ |u− v| is negative definite. Therefore, L1 distance is a sum of negative definite
functions. Thus, L1 distance is negative definite.

C. More Experimental Results
We provide many more experimental results for our proposed tree-Wasserstein kernel on topological data analysis (TDA)
and word embedding-based document classification.

C.1. Change Point Detection for Material Data Analysis (TDA)

• Table 7 shows computational time for different parameters (ns, HT ) for tree-sliced-Wasserstein distances in kTW on
granular packing system dataset.

• Table 8 shows computational time for different parameters (ns, HT ) for tree-sliced-Wasserstein distances in kTW on
SiO2 dataset.

C.2. Word Embedding-based Document Classification

• Table 9 shows SVM results and computational time for different parameters (ns, HT , κ) for tree-sliced-Wasserstein
distances in kTW, and different ns for kSW on TWITTER dataset.

• Table 10 shows SVM results and computational time for different parameters (ns, HT , κ) for tree-sliced-Wasserstein
distances in kTW, and different ns for kSW on RECIPE dataset.

• Table 11 shows SVM results and computational time for different parameters (ns, HT , κ) for tree-sliced-Wasserstein
distances in kTW, and different ns for kSW on CLASSIC dataset.

• Table 12 shows SVM results and computational time for different parameters (ns, HT , κ) for tree-sliced-Wasserstein
distances in kTW, and different ns for kSW on AMAZON dataset.

8Le & Yamada (2018) also followed this line of work to define Fisher information metric between two persistence diagrams.
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Table 8. Computational time (seconds) for different parameters (ns, HT ) for tree-sliced-Wasserstein distances in kTW on SiO2 dataset.
ns = 1 ns = 6 ns = 12 ns = 18 ns = 24 ns = 30

HT = 3 0.21 1.24 2.64 3.67 4.93 6.09
HT = 4 0.27 1.58 3.46 5.03 7.05 7.91
HT = 5 0.37 2.20 4.50 6.53 8.59 11.64
HT = 6 0.53 3.25 6.32 10.06 13.71 15.28

Table 9. Results of SVM with different parameters (ns, HT , κ) for kTW and different ns for kTW on TWITTER dataset. The averaged
accuracy (%) and standard deviation are shown on its first line while time consumption (seconds) is shown in a parenthesis on its second
line.

ns = 1 ns = 5 ns = 10 ns = 20 ns = 30 ns = 50
kTW

(HT = 8, κ = 2)
69.73± 0.29

(10)
71.65± 0.42

(46)
71.42± 0.48

(98)
72.19± 0.56

(206)
72.47± 1.70

(316)
72.95± 0.49

(473)
kTW

(HT = 9, κ = 2)
70.00± 0.39

(21)
71.66± 0.61

(105)
72.43± 0.72

(208)
72.96± 0.50

(419)
72.82± 0.58

(624)
73.13± 0.49

(1066)
kTW

(HT = 10, κ = 2)
70.61± 0.52

(49)
72.23± 0.52

(255)
72.79± 0.58

(516)
72.95± 1.01

(1173)
72.86± 0.45

(1555)
72.95± 0.44

(2451)
kTW

(HT = 11, κ = 2)
71.24± 0.55

(129)
72.42± 0.62

(537)
72.91± 0.72

(1105)
72.85± 0.91

(2213)
72.86± 0.33

(3511)
73.37± 0.60

(6013)
kTW

(HT = 12, κ = 2)
71.21± 0.49

(324)
72.44± 0.61

(1613)
72.88± 0.63

(3299)
73.27± 0.71

(6469)
73.21± 0.58

(9862)
73.46± 0.67

(16542)
kTW

(HT = 5, κ = 3)
70.75± 0.58

(13)
71.97± 0.66

(52)
71.68± 0.51

(118)
72.46± 0.50

(256)
72.70± 0.57

(362)
72.71± 0.54

(434)
kTW

(HT = 6, κ = 3)
70.49± 0.48

(33)
72.15± 0.48

(169)
72.47± 0.58

(335)
72.90± 0.55

(674)
73.35± 0.35

(1016)
73.15± 0.58

(1687)
kTW

(HT = 7, κ = 3)
71.68± 0.65

(133)
72.45± 0.57

(633)
73.08± 0.55

(1294)
73.62± 0.43

(2509)
73.25± 0.34

(3785)
73.50± 0.69

(6134)
kTW

(HT = 8, κ = 3)
72.01± 0.55

(437)
72.89± 0.80

(2188)
72.35± 0.57

(4364)
73.21± 0.60

(8896)
73.33± 0.71

(13277)
73.33± 0.52

(21787)
kTW

(HT = 4, κ = 4)
69.74± 0.41

(12)
71.68± 0.26

(56)
71.66± 0.50

(113)
72.28± 0.76

(239)
72.94± 0.80

(364)
72.79± 0.62

(605)
kTW

(HT = 5, κ = 4)
71.57± 0.71

(46)
72.67± 0.42

(231)
72.86± 0.78

(472)
73.24± 0.43

(939)
73.37± 0.35

(1469)
73.42± 0.42

(2400)
kTW

(HT = 6, κ = 4)
72.81± 0.65

(180)
72.82± 0.51

(929)
73.09± 0.37

(1914)
73.67± 0.63

(3703)
73.37± 0.39

(5569)
73.54± 0.81

(9166)
kTW

(HT = 3, κ = 5)
69.09± 0.14

(5)
71.40± 0.48

(21)
72.16± 0.52

(43)
72.19± 0.64

(80)
72.50± 0.65

(116)
72.99± 0.49

(203)
kTW

(HT = 4, κ = 5)
71.19± 0.52

(29)
72.26± 0.68

(155)
72.42± 0.61

(307)
73.14± 0.72

(608)
73.34± 0.41

(927)
73.30± 0.38

(1527)
kTW

(HT = 5, κ = 5)
71.87± 0.57

(187)
72.82± 0.51

(966)
73.13± 0.33

(1785)
73.43± 0.55

(3248)
73.31± 0.38

(4842)
73.74± 0.70

(8089)

kSW
68.86± 0.13

(152)
68.85± 0.11

(669)
68.89± 0.14

(1316)
70.10± 0.75

(2746)
69.61± 0.47

(4097)
70.04± 0.40

(6635)
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Table 10. Results of SVM with different parameters (ns, HT , κ) for kTW and different ns for kTW on RECIPE dataset. The averaged
accuracy (%) and standard deviation are shown on its first line while time consumption (seconds) is shown in a parenthesis on its second
line.

ns = 1 ns = 5 ns = 10 ns = 20 ns = 30 ns = 50
kTW

(HT = 8, κ = 2)
43.98± 0.66

(34)
49.03± 0.70

(178)
50.23± 0.45

(327)
50.63± 0.81

(388)
50.90± 0.60

(963)
51.43± 0.67

(1662)
kTW

(HT = 9, κ = 2)
45.12± 0.45

(63)
50.27± 0.52

(339)
50.96± 0.81

(624)
51.13± 0.71

(1254)
51.80± 0.84

(1991)
52.58± 0.80

(3273)
kTW

(HT = 10, κ = 2)
44.48± 0.50

(136)
49.07± 1.00

(696)
50.37± 0.42

(1431)
51.98± 1.05

(2878)
51.81± 0.62

(4230)
52.44± 0.35

(6957)
kTW

(HT = 11, κ = 2)
46.19± 0.73

(320)
51.07± 0.39

(1554)
51.98± 0.80

(3065)
51.50± 0.37

(5905)
52.45± 0.40

(8843)
52.14± 0.59

(14578)
kTW

(HT = 12, κ = 2)
48.70± 0.70

(719)
51.63± 0.56

(3569)
51.34± 0.64

(7193)
52.08± 0.70

(14091)
52.46± 0.61

(21462)
52.79± 0.49

(35654)
kTW

(HT = 5, κ = 3)
42.94± 0.94

(38)
47.97± 0.51

(218)
50.82± 0.64

(436)
50.70± 0.86

(733)
51.78± 0.75

(1363)
52.25± 0.62

(2050)
kTW

(HT = 6, κ = 3)
44.63± 0.90

(108)
51.00± 0.47

(503)
52.10± 0.64

(981)
51.91± 0.88

(1663)
51.95± 0.58

(2895)
52.05± 0.68

(5221)
kTW

(HT = 7, κ = 3)
46.45± 0.94

(281)
49.80± 0.67

(1530)
51.92± 0.87

(2952)
51.92± 0.60

(5922)
52.71± 0.81

(8764)
52.78± 0.83

(13835)
kTW

(HT = 8, κ = 3)
48.21± 0.90

(694)
52.32± 0.73

(3685)
52.88± 0.55

(7289)
53.19± 1.03

(14552)
52.53± 0.68

(21797)
53.20± 0.43

(37071)
kTW

(HT = 4, κ = 4)
41.88± 0.87

(25)
50.57± 0.73

(126)
51.31± 0.64

(249)
51.59± 0.79

(517)
51.54± 0.66

(764)
52.37± 0.63

(1252)
kTW

(HT = 5, κ = 4)
46.54± 0.87

(109)
51.54± 0.63

(551)
52.04± 0.56

(1100)
52.30± 0.94

(2204)
52.05± 0.65

(3277)
52.11± 0.66

(5511)
kTW

(HT = 6, κ = 4)
49.47± 0.67

(476)
52.32± 0.48

(2370)
52.25± 1.00

(4765)
52.36± 0.70

(9171)
52.91± 0.85

(14284)
53.12± 0.70

(23847)
kTW

(HT = 3, κ = 5)
43.03± 0.50

(17)
48.54± 0.90

(81)
50.24± 0.91

(193)
51.46± 0.16

(384)
52.03± 0.55

(536)
51.26± 0.62

(886)
kTW

(HT = 4, κ = 5)
45.61± 0.82

(71)
50.72± 0.57

(335)
51.98± 0.48

(705)
51.97± 0.85

(1414)
52.22± 0.69

(2123)
52.24± 0.63

(3453)
kTW

(HT = 5, κ = 5)
48.25± 0.88

(291)
52.56± 0.61

(1488)
52.55± 0.56

(3079)
52.60± 0.71

(5966)
53.20± 0.80

(8503)
53.40± 0.74

(15179)

kSW
31.45± 0.53

(1470)
39.42± 1.22

(7381)
42.67± 0.99

(14028)
46.07± 0.81

(28099)
46.38± 0.53

(41241)
47.85± 0.51

(73889)
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Table 11. Results of SVM with different parameters (ns, HT , κ) for kTW and different ns for kTW on CLASSIC dataset. The averaged
accuracy (%) and standard deviation are shown on its first line while time consumption (seconds) is shown in a parenthesis on its second
line.

ns = 1 ns = 5 ns = 10 ns = 20 ns = 30 ns = 50
kTW

(HT = 8, κ = 2)
90.05± 0.35

(115)
95.26± 0.36

(481)
96.00± 0.32

(1016)
96.42± 0.36

(2046)
96.75± 0.30

(2882)
96.67± 0.29

(4893)
kTW

(HT = 9, κ = 2)
92.27± 0.34

(169)
95.91± 0.57

(882)
96.38± 0.22

(1755)
96.59± 0.24

(3454)
96.53± 0.31

(5157)
96.67± 0.28

(8594)
kTW

(HT = 10, κ = 2)
93.84± 0.52

(371)
96.16± 0.48

(1859)
96.26± 0.39

(3886)
96.79± 0.24

(7944)
96.71± 0.43

(11916)
96.81± 0.20

(19456)
kTW

(HT = 11, κ = 2)
94.44± 0.35

(818)
95.15± 0.30

(4033)
96.33± 0.42

(8483)
96.77± 0.33

(18037)
96.53± 0.32

(27099)
96.77± 0.30

(45963)
kTW

(HT = 12, κ = 2)
94.61± 0.52

(2919)
96.42± 0.35

(14963)
96.63± 0.29

(30308)
96.68± 0.38

(62199)
96.85± 0.38

(93383)
96.65± 0.31

(156010)
kTW

(HT = 5, κ = 3)
93.06± 0.32

(73)
96.06± 0.39

(389)
96.27± 0.39

(787)
96.22± 0.30

(1568)
96.54± 0.33

(2420)
96.79± 0.30

(3859)
kTW

(HT = 6, κ = 3)
94.12± 0.49

(223)
96.12± 0.30

(949)
96.49± 0.43

(1678)
96.83± 0.24

(3494)
96.71± 0.31

(4960)
96.76± 0.37

(8189)
kTW

(HT = 7, κ = 3)
94.72± 0.43

(484)
96.35± 0.45

(2378)
96.90± 0.36

(4744)
96.79± 0.23

(9523)
96.68± 0.28

(14250)
96.81± 0.25

(23751)
kTW

(HT = 8, κ = 3)
95.25± 0.51

(1364)
96.64± 0.45

(6973)
96.63± 0.30

(13235)
96.88± 0.24

(26449)
96.71± 0.43

(42520)
96.84± 0.25

(75548)
kTW

(HT = 4, κ = 4)
92.47± 0.54

(85)
95.62± 0.37

(397)
96.36± 0.33

(818)
96.46± 0.20

(1502)
96.77± 0.34

(2333)
96.84± 0.35

(3543)
kTW

(HT = 5, κ = 4)
93.29± 0.57

(273)
96.46± 0.32

(1363)
96.83± 0.38

(2631)
96.82± 0.23

(5399)
96.99± 0.30

(7970)
96.92± 0.36

(13320)
kTW

(HT = 6, κ = 4)
95.69± 0.31

(945)
96.49± 0.42

(4715)
96.85± 0.27

(9423)
96.91± 0.33

(18163)
96.74± 0.37

(26560)
96.84± 0.20

(43352)
kTW

(HT = 3, κ = 5)
92.47± 0.54

(29)
95.62± 0.37

(115)
96.36± 0.33

(236)
96.46± 0.20

(459)
96.77± 0.34

(740)
96.84± 0.35

(1183)
kTW

(HT = 4, κ = 5)
93.29± 0.57

(138)
96.46± 0.32

(744)
96.83± 0.38

(1456)
96.82± 0.23

(2744)
96.99± 0.30

(4391)
96.92± 0.36

(7370)
kTW

(HT = 5, κ = 5)
95.69± 0.39

(749)
96.49± 0.42

(3767)
96.85± 0.27

(7456)
96.91± 0.33

(14746)
96.74± 0.37

(22735)
96.84± 0.20

(37339)

kSW
76.58± 0.29

(1715)
86.19± 0.46

(8347)
89.51± 0.50

(16311)
92.17± 0.42

(33491)
92.74± 0.46

(47855)
94.13± 0.35

(79558)



Tree-Sliced Approximation of Wasserstein Distances

Table 12. Results of SVM with different parameters (ns, HT , κ) for kTW and different ns for kTW on AMAZON dataset. The averaged
accuracy (%) and standard deviation are shown on its first line while time consumption (seconds) is shown in a parenthesis on its second
line.

ns = 1 ns = 5 ns = 10 ns = 20 ns = 30 ns = 50
kTW

(HT = 8, κ = 2)
81.91± 0.61

(201)
91.40± 0.56

(1001)
92.18± 0.29

(1927)
93.17± 0.40

(3050)
94.25± 0.40

(5733)
94.38± 0.31

(9308)
kTW

(HT = 9, κ = 2)
85.28± 0.61

(314)
91.52± 0.56

(1632)
93.28± 0.46

(3161)
94.04± 0.36

(6453)
94.24± 0.66

(96.28)
94.14± 0.26

(16355)
kTW

(HT = 10, κ = 2)
87.10± 0.41

(799)
92.90± 0.70

(4048)
93.49± 0.43

(8133)
94.02± 0.50

(16038)
94.54± 0.58

(24408)
94.32± 0.23

(41278)
kTW

(HT = 11, κ = 2)
87.97± 0.58

(2023)
93.04± 0.49

(9514)
93.63± 0.39

(18649)
94.24± 0.45

(37102)
94.29± 0.41

(56200)
94.30± 0.44

(94515)
kTW

(HT = 12, κ = 2)
89.48± 0.75

(4192)
93.24± 0.44

(20792)
93.68± 0.48

(40610)
94.19± 0.44

(80897)
94.35± 0.43

(122150)
94.61± 0.36

(206360)
kTW

(HT = 5, κ = 3)
83.17± 0.76

(316)
91.78± 0.48

(1573)
93.00± 0.37

(3011)
93.83± 0.39

(6208)
94.09± 0.53

(9580)
94.34± 0.50

(15060)
kTW

(HT = 6, κ = 3)
86.90± 0.46

(464)
92.46± 0.58

(2156)
93.63± 0.45

(4585)
94.20± 0.42

(8862)
94.20± 0.37

(12750)
94.34± 0.33

(20935)
kTW

(HT = 7, κ = 3)
89.56± 0.79

(1642)
93.06± 0.62

(8042)
93.97± 0.49

(15883)
94.37± 0.35

(31787)
94.46± 0.69

(47578)
94.20± 0.20

(81293)
kTW

(HT = 8, κ = 3)
90.12± 0.51

(5207)
93.67± 0.30

(25386)
94.01± 0.50

(51558)
94.40± 0.48

(101710)
94.58± 0.59

(147800)
94.35± 0.28

(244380)
kTW

(HT = 4, κ = 4)
84.80± 0.71

(226)
91.78± 0.37

(1022)
93.02± 0.48

(2025)
94.02± 0.47

(4192)
93.98± 0.38

(6473)
94.31± 0.65

(10548)
kTW

(HT = 5, κ = 4)
87.90± 0.45

(605)
92.90± 0.57

(2954)
93.99± 0.35

(5786)
94.09± 0.53

(11899)
94.67± 0.39

(18208)
94.39± 0.32

(26594)
kTW

(HT = 6, κ = 4)
89.92± 0.54

(2903)
93.57± 0.51

(14958)
94.24± 0.55

(28533)
94.34± 0.42

(57910)
94.67± 0.69

(89811)
94.48± 0.29

(145380)
kTW

(HT = 3, κ = 5)
84.64± 0.39

(44)
91.01± 0.38

(208)
92.83± 0.30

(427)
93.92± 0.27

(930)
94.12± 0.48

(1403)
94.41± 0.68

(2219)
kTW

(HT = 4, κ = 5)
87.11± 0.60

(154)
92.73± 0.41

(864)
93.66± 0.34

(1843)
94.19± 0.49

(3632)
94.45± 0.42

(5545)
94.35± 0.46

(9813)
kTW

(HT = 5, κ = 5)
90.83± 0.54

(958)
93.32± 0.53

(4773)
94.37± 0.35

(9651)
94.42± 0.31

(18052)
94.68± 0.71

(27974)
94.40± 0.33

(48468)

kSW
68.29± 0.77

(2390)
77.62± 1.03

(10825)
82.27± 0.69

(21048)
86.28± 0.65

(42456)
87.78± 0.45

(58084)
89.40± 0.48

(103640)


