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Abstract— Entropy is a concept that remote to the 19th century and it was associated with the work realized
by a thermal machine in the context of the Industrial Revolution. The 20th century saw an unprecedented
scientific revolution and one of the most important innovations from this time was Information Theory, which
also has a concept of Entropy. It can be argued that this is one of the most misused scientific therms and
researchers of different areas have been using it wrong. In this paper, a historical background for the evolution of
the concept of“entropy” is presented, as well as mathematical proofs and logical arguments for the interconnection
of the concept in different areas of science, and how it is related with complexity.
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1 Introduction

Entropy is a measure largely used in science and
engineering (Cover and Thomas, 2012). Hav-
ing been first introduced in thermodynamics by
Clausius (Greven et al., 2014) and improved by
Boltzmann and Gibbs still in nineteenth cen-
tury (Wehrl, 1978). The concept was gen-
eralized by Shannon in the twentieth century
(Shannon, 1948). Today, its applications can be
found in biology (Brooks et al., 1988; De Mar-
tino and De Martino, 2018; Caro et al., 2018),
cosmology, in which it is the center of one of
the biggest open problems of science (Maldacena,
2018; Xiao et al., 2018; Bousso, 2018), economics
(Bossomaier et al., 2018; Gu et al., 2015), en-
gineering (Zeeshan et al., 2017; Rostaghi and
Azami, 2016; He et al., 2016) and even linguis-
tics (Degaetano-Ortlieb and Teich, 2017; Reynar
and Ratnaparkhi, 1997; Campbell, 1982).

With such a wide range of applications, it
raises the natural question: what is the difference,
if any, among the “entropies” used in each field?
It can be observed in several papers a misunder-
standing of the meaning of entropy when applied
to different areas other than physics and informa-
tion theory (Tame, 2019; Adami, 2016; Kovalev,
2016; Hayflick, 2007; Morowitz, 1986). How-
ever, sometimes even in these areas the concept
is misused (Martyushev, 2013; Henderson, 2003)
and university students have many misconceptions
about the theme (Sozbilir, 2003).

There have been attempts to conciliate the en-
tropy of thermodynamics with that of information
theory. The most common approach is defining
entropy as “disorder” (Wright, 1970; Schrodinger,
1968), something that is introduced as soon as
the high school for thermodynamics. However, if
it has, at first, a didactic appeal, it is not a good
analogy since “order” is a subjective human con-

cept and “disorder” is not the measurement that
can be obtained always with entropy (Soubane
et al., 2018).

A most sophisticated way of relating these
two concepts can be done using quantum states
representations and associating the Shannon en-
tropy with von Neumann entropy (Weilenmann
et al., 2016). This approach, however, demands
prior knowledge of theoretical quantum mechan-
ics hard to be found in biology or economics re-
searchers.

Another confusion is made by relating com-
plexity to entropy. Computer science and statis-
tics have boarded the problem of complex-
ity by the means of Kolmogorov Complexity
(Kolmogorov, 1963). Again, the abstraction level
of the concept can make researchers from other
areas, such as biologists and chemists (in which
the study of complexity plays an important role)
misunderstand concepts (Adami, 2002).

In this paper, a historical evolution of the con-
cepts of“entropy”, “information”and“complexity”
is presented, as well as some clarifications for the
concepts, showing how entropies in different ar-
eas are fundamentally the same, and how entropy
and complexity differ from each other. Also, it is
present a computational framework in python to
go through these different concepts in the form of
Maxwell’s Demon.

2 Theory

2.1 Thermodynamics approach

Clausius coined the word “entropy” (from the
Greek word for “change”) in the 1850s to asso-
ciate the inevitable generation of heat when work
is done in a system, changing its temperature
(Clausius, 1960). The relationship derived by him
is showed in Eq. 1



dS =
δQ

T
+ δSger (1)

with unit J/K. It is a convention to use δQ to indi-
cate an inexact differential, in which the integra-
tion depends not only on the starting and ending
states but also on the process path in between. On
the other hand, entropy is a thermodynamic prop-
erty and, therefore, dS is an exact differential and
the integration not depends on the process path
between the starting and ending states.

The entropy generation amount, δSgen, is due
to irreversible phenomena occurring inside the sys-
tem and this value is never negative. However,
the entropy change of a system, dS, could be ei-
ther positive or negative, depending on the direc-
tion of heat transfer (to or from the system). For
reversible processes δSgen = 0. It is noted that
for an adiabatic process, δQ = 0, the increase in
entropy is always associated with the irreversible
paths.

Contrary to energy, the total entropy in-
creases and is then not conserved. The reversible
process is an ideal process and it never really oc-
curs. Therefore, an amount of the irreversibility is
always there in the system, i.e., the entropy of the
isolated system still goes on increasing; it never
reduces. This concept is referred to as the prin-
ciple of the increase of entropy: the entropy of a
closed system (a) never decreases and (b) tends to
grow up by the system irreversibilities.

According to (Nag, 2013), an irreversible pro-
cess always tends to take the isolated system to a
state of greater disorder, and this system always
tends to a state of greater entropy. Thus, there is
a relation between entropy and chaos.

In the late 1800s, Boltzmann derived an sta-
tistical mechanical interpretation for entropy: the
entropy S of a ideal gas is a state function of
the number of microstates W possible for the
molecules given the macrostate (defined by tem-
perature, volume and pressure). Thus, his entropy
is defined as

S = k logW (2)

In which k is the Boltzmann’s constant. Gibbs
(Jaynes, 1965) extended the concept of Boltzmann
entropy to the cases in which the microstates are
not equally likely:

S = −k
∑
i

pi log pi (3)

where pi is the probability of the i-nth microstate
(if the W microstates are equally likely, then
pi=(1,2,3,...,n) = 1/W and Eq. 19 is the same as
the Boltzmann entropy).

2.2 Information theory approach

Shannon (Shannon, 1948) developed in 1948 the
Information Theory. One of the main concepts of
this theory is the entropy of a discrete probability
distribution. Let X be a discrete random vari-
able which can assume n different values (states).
Then, the entropy H of X is

H(X) = −
n∑

i=1

pi(x) log pi(x) (4)

Generally, the base of the logarithm is 2, and
the entropy is measured in bits (however, this is
just a way to informing in which base it is, since
entropy is dimensionless).

Shannon obtained the name “entropy” from
von Neumann itself, as he related (Tribus and
McIrvine, 1971):

“My greatest concern was what to call it.
I thought of calling it ‘information’, but the
word was overly used, so I decided to call it
‘uncertainty’. When I discussed it with John von
Neumann, he had a better idea. Von Neumann
told me, ‘You should call it entropy, for two
reasons. In the first place your uncertainty
function has been used in statistical mechanics
under that name, so it already has a name. In the
second place, and more important, no one really
knows what entropy really is, so in a debate you
will always have the advantage.’ ”

The motivation of Shannon was associated
with the generation and transmission of sym-
bols, like letters (encoded in some type of elec-
trical signal). As letters do not appear with the
same probability in any language (in English, the
most common letter is “e” and the most com-
mon word is “the” (Newman, 2005)), it is possible
to compress messages. For example (Cover and
Thomas, 2012), suppose we have to send 8 let-
ters with frequencies 1/2, 1/4, 1/8, 1/16, 1/64,
1/64, 1/64 and 1/64. Using a binary coding, ini-
tially, one could assume it is needed 3 bits (000,
001, 010, 011, 100, 101, 110, 111). However, since
their frequencies differ, it is possible to encode
as 0, 10, 110, 1110, 11101, 111101, 111110 and
111111. The average number of bits would be 2
bits. Therefore, one of interpretations of entropy
in information theory is the measurement of the
ultimate data compression.

This result is exactly what is obtained using
Eq. 4, which give the following interpretation for
entropy (Shannon): in any alphabet of n sym-
bols with frequencies distributed as X, a message
with m symbols encodes nm states. Then, let
− log pi(x) be the information content of the event
i. Then, the entropy is the average information for
the frequencies:



H(X) = E[− log p(X)] (5)

The entropy of a system (or a message, or
an event) in bits can be thought of as the num-
ber of yes/no questions needed to fully describe
it. This fact was also knew in chemistry in 1930
(Ben-Naim, 2008). The Gibbs entropy then mea-
sure the number of these questions needed to fully
specify the microstate, given the macrostate.

A source of confusion between thermodynam-
ical entropy and information entropy is the differ-
ence with the unit: while the later is dimension-
less, the former has units of J/K. Actually, the
Boltzmann (Gibbs) entropy is the same as Shan-
non, except for the Boltzmann constant, which
has units of J/K, giving the entropy unit J/K.
However, it has been shown that this unit is
historically connected with the definition of the
Kelvin temperature system: the Lagrangian of
temperature in statistical mechanics has units of
energy (Leff, 1999), and is common in plasma
physics to express temperature in eV (Bernard
et al., 2018; Bagryansky et al., 2015). In this
more generic approach, thermodynamical entropy
is dimensionless, and the difference between the
Shannon and the Gibbs entropies is merely the
Boltzmann’s constant.

2.3 Maxwell’s Demon and the Landauer’s Prin-
ciple

In 1867, Maxwell developed a mental experiment
that supposedly violates the second law of ther-
modynamics. In his own words (Bennett, 1987):

“... if we conceive of a being whose faculties are
so sharpened that he can follow every molecule
in its course, such a being, whose attributes are
as essentially finite as our own, would be able
to do what is impossible to us. For we have
seen that molecules in a vessel full of air at
uniform temperature are moving with velocities
by no means uniform, though the mean velocity
of any great number of them, arbitrarily selected,
is almost exactly uniform. Now let us suppose
that such a vessel is divided into two portions, A
and B, by a division in which there is a small
hole, and that a being, who can see the individual
molecules, opens and closes this hole, so as to
allow only the swifter molecules to pass from
A to B, and only the slower molecules to pass
from B to A. He will thus, without expenditure
of work, raise the temperature of B and lower
that of A, in contradiction to the second law of
thermodynamics.”

Several approaches to solve this paradox have
been proposed. The most successful one is the
Landauer’s principle (Landauer, 1961). It states

that every irreversible process (defining a logi-
cally irreversible device when its output does not
uniquely define the inputs), such as the erasing of
a logical bit, is accompanied by an increase of at
least kT log 2 J of heat. Therefore, by Eq. 1, there
is an increase of entropy in the system, imposing
fundamental limits to computation. Moreover, it
can be used to solve the Maxwell’s Demon para-
dox: the demon has to, at some point, “forget” the
state of the particles, to update the information.
This process of forgetting generates heat and en-
tropy, since it is an irreversible phenomena.

Figure 1: The Maxwell’s Demon: a being who
knows the velocity of every particle in the box,
and can select their passages using a opening in
the wall that divides it could separate those with
high energy from those with low energy without
realizing work, violating the second law of thermo-
dynamics. Actually, the demon has to forget past
states of the system, and by the Landauer’s Prin-
ciple, this process generates heat (at least kT log 2
J per bit erased) and entropy.

2.4 Kolmogorov Complexity (KC)

Complexity is not the same as entropy (Carroll,
2017). Entropy measures the number of differ-
ent combinations of microstates needed to spec-
ify the macrostate; complexity is the measure of
the description of an object. Mathematically, this
measure is realized by means of the Kolmogorov
Complexity (KC) in a universal Turing Machine
(a finite state machine that has an input of sym-
bols of a finite alphabet an process then, returning
a new set of symbols). The KC K(s) of the string
s is the number of units of information (bits, for
example) of the smallest algorithm in a language
that can reproduce the object. This measure of
complexity has in its core an interrogation about
randomness. If a string is deterministic, then its
KC is low, since the code that generate it is sim-
ple. For example, the string “001001001001001”
and the string “011001101111011” both have 15
bits, but the first one can be coded as “repeat
(001) 5 times”, and the second one seems to be
random, and the code to generate it will have to
contain the entire string. One could use the string
to represent physical objects, and the KC would
be a measure of complexity of a physical system.

One classical example used in KC is the Man-
delbrot’s set. Fig. 2 shows the graph for f(z) =



Figure 2: A Mandelbrot’s set is a recursive
complex-domain sequence, that can bee zoomed
infinitely and still show the same patterns. How-
ever, it is not complex in the sense of Kolmogorov,
since it can be generated by recursion. Therefore
its KC is very low. The python code that gener-
ates this figure has only 507 bytes.

zn+1 = z2n + c. The figure seems to be very com-
plex and of hard description, with several colors
and a intricate pattern for the perimeter. How-
ever, since it can be generated through iterations
in the complex plane, its KC turns out to be small
and the figure itself is very simple.

Shannon’s entropy and KC holds a remarkable
relationship. Using the Kraft inequality, it can be
show that (Cover and Thomas, 2012):

E

[
1

n
K(Xn|n)

]
→ H(X) (6)

and therefore, the compressibility of KC in the
universal computer goes to the entropy limit.

However, in a physical sense, it is important to
notice that, even though the entropy is always in-
creasing, complexity follows another pattern (Fig.
3): it was low in the early ages of the universe,
and will be low again in the far future, when
star production ends (roughly 100 trillion years
from now) and the cosmos goes to heat death
(Frautschi, 1982). It is now, in this intermediary
epoch, in which complexity exists, with structures
like planets, galaxies and living beings. Entropy,
however, has always been increasing, since the Big
Bang (Fig. 3).

These complex structures, that uses energy
to decrease entropy locally, can only exist in a
time when entropy has not reached its maximum
(heat death), and therefore, it is possible to use
the gradient of energy (consequence of the fact
that the universe is not in equilibrium) to generate
spontaneously complex systems.

Figure 3: Complex structures need to exchange
energy with the environment to reduce their en-
tropy and increase the entropy of the environment.
Therefore, they can only form in times in which
entropy can increase. Entropy, however, is always
increasing by the second law of thermodynamics.
The early universe and the far future universe are
both simple, uniform hot and dense state in the
beginning and empty space in the end, but the en-
tropy was low in the past and will be at its max-
imum at the end by heat death. Source of figure:
(Carroll, 2017).

3 Results

3.1 Deriving Boltzmann’s and Gibbs entropy

Lets take the system for the ideal gas and divide
it in two parts. It is know that S = S1 + S2

and W = W1W2. Therefore, the deduction is as
follows:

S(W1) + S(W2) = S(W1W2) (7)

Deriving both sides with respect to W1 and keep-
ing W2 constant results in

S′(W1) = W2S
′(W1W2) (8)

Deriving now in W2 keeping W1 constant, apply-
ing the chain rule:

0 = S′(W1W2) +W1W2S
′′(W1W2) (9)

0 = S′(W ) +WS′′(W ) (10)

Replacing S′(W ) = f(W ):

f(W ) +W
df(W )

dW
= 0 (11)

f(W )dW +Wdf(W ) = 0 (12)

(fW )′ = 0 (13)

Integrating both sides, returns



fW = k (14)

which is the same as

W
dS

dW
= k (15)

∫
dS = k

∫
dW

W
(16)

S = k logW + c (17)

But it is known that a crystal at 0 K has null
entropy (Nernst, 1907), and only one microstate.
Replacing this fact in the equation 17:

0 = k log 1 + c (18)

from which we conclude that c = 0 and S =
k logW is the entropy of an ideal gas, where k
is the Boltzmann constant. Gibbs (Jaynes, 1965)
extended the concept of Boltzmann entropy to
the cases in which the microstates are not equally
likely:

S = −k
∑
i

pi log pi (19)

where pi is the probability of the i-nth microstate
(if the W microstates are equally likely, then
pi=(1,2,3,...,n) = 1/W and Eq. 19 is the same as
the Boltzmann entropy).

3.2 Information theoretic proof that Gibbs en-
tropy is the same as Clausius

With the development of information theory in the
twentieth century and the concept of maximum
entropy for statistical mechanics (Jaynes, 1957),
which states by the second law of thermodynamics
that a system in thermodynamic equilibrium has
reached its maximum entropy (and therefore, it is
in the macrostate that has the most microstates,
corresponding to gas velocities), it is possible to
show that Shannon entropy is the same as Clau-
sius entropy as well.

Using Eq. 19, and the unitarity principle,∑
i pi = 1, in which i is the i-nth state, we can

write the average energy of a system is

〈E〉 =
∑
i

piEi = U (20)

Applying Lagrange multipliers, we have

L =− k
∑
i

pi log pi + λ1

(∑
i

pi − 1

)

+ λ2

(∑
i

piEi − U

) (21)

Differentiating and equaling zero

−k log pi − k + λ1 + λ2Ei = 0 (22)

Isolating pi

pi = exp

(
−k + λ1 + λ2E2

k

)
(23)

Using the canonical partition function Z
(Baxter, 2016), defined as

Z =
∑
i

exp

(
λ2
k
Ei

)
(24)

The partition function combines state func-
tions, such as temperature and energy for the
microstates, and has a central role in statistical
mechanics (Bo-sture et al., 1985). Differentiating
logZ with respect to λ2 returns

∂ logZ

∂λ2
=
〈E〉
k

(25)

Using unitarity again, Eq.23 can be written as

exp

(
−k + λ1

k

)
Z = 1 (26)

Therefore,

log

(
1

Z

)
+ 1 =

λ1
k

(27)

Rewriting Eq. 19 in terms of Z, results in

S = −k
∑
i

pi

(
λ2
k
E2 − logZ

)
(28)

Using 25 in 28, give us

S = −λ2
∑
i

piEi + k logZ
∑
i

pi

= −λ2U + k logZ

(29)

Using the definition of thermodynamics tempera-
ture (Callen, 1998)

1

T
=
∂S

∂U
(30)

Since ∂S
∂U = −λ2, Eq. 19 can be written as

S =
U

T
+ k logZ (31)

Now, lets change the energy of the system by
δQ. Every microstate will increase is energy by
qi. Calculating the change in the entropy results
in

dS =
δU

T
+ kδ logZ (32)

Calculating the second term

δ logZ =
d logZ

dZ
δZ =

δZ

Z
(33)



Noticing that Z =
∑

i exp(−Ei/kT ), the new
partition function can be written as

Z =
∑
i

exp

(
−Ei + qi

kT

)
(34)

Applying Taylor expansion to e−qi/kt, since qi is
infinitesimal, the partition function is

Z =
∑
i

exp

(
Ei

kT

)(
1− qi

kT

)
= Z0 + δZ (35)

Therefore, the variation of the partition function
is given by

δZ = − 1

kT

∑
i

qi exp

(
− Ei

kT

)
(36)

Using the first law of thermodynamics, the
change in U can be expressed as

δU =
∑
i

δEipi +
∑
i

qipi = δQ+ δW (37)

Calculating δ logZ, replacing 36 in 33:

δ logZ = − 1

kT

∑
piqi (38)

This value is exactly δW/kT . Replacing this rela-
tion in Eq. 32, we get

dS =
δQ

T
(39)

which is the Clausius first definition of entropy.

3.3 Simulation of the Maxwell’s Demon

The algorithm that generates the simulation is
available in (David, 2017). It was developed us-
ing Tkinter python library, and simulates the idea
proposed by Maxwell. There is a wall controlled
by a demon (in this case, the software), with the
power to, analysing the velocities and trajectories
of every particle, it can separate the hot ones (the
reds, with high kinetic energy) from the cold ones
(the blues, with low kinetic energy).

Figure 4: Initial state of the simulation, with the
hot and cold molecules evenly distributed (high
entropy state).

The demon must track all velocities and po-
sitions for every particle in the system, in order
to change their positions in the boxes, and in ev-
ery instant, he must have in his memory this in-
formation. Let’s represent the information as in
a computer, using bits. So, in the first instant,
the demon has part of his memory used, and part
erased, say “00000...10110”. For every iteration of
the particles, more memory needs to be allocated,
until the state “11111...11111”. In this moment,
to still having tracking abilities, the demon has
to erasure his memory, exchanging heat with the
world (at least kT log 2 J/bit, but the current tech-
nology generates millions times this value) and in-
creasing his entropy, solving the“paradox”created
by Maxwell.

Figure 5: Final state of the simulation, with
the hot and cold molecules separated by the wall
controlled by the Maxwell’s Demon (low entropy
state).

4 Discussion and conclusion

Entropy, as a concept, is misused in great part due
to misunderstanding its mathematical or physical
meaning. It is expected that, with this paper,
the reader can clearly understand what the “dif-
ferent” types of entropy are, how they are deeply
connected and its relationship with complexity.

Readers working with complex systems can
use the two therms, entropy and complexity, to
relate the objects being studied with the physical
notions here deducted, and therefore merge differ-
ent areas of science, such as biology, economics,
linguistics and computer science. Being a concept
so fundamental to science, due to its own nature,
emerging from counting problems, it is not strange
that so many fields of knowledge are using it.

The interdisciplinarity of the topic has his
challenges, due to the different mathematical level
of each field, but with the theoretical exposition,
together with the mathematical proofs, we expect
to reach different target audience with the same
discussion about the meaning of entropy, and how
to use it in their areas.
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