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1 Introduction

In past years, many authors devoted to optics domain have gained interest in introducing
new classes of paraxial optical beams whose profiles allow wide applications in physics (see
Belafhal et al. (2015), Berry et al. (1979), Cai et al. (2003), Durnin et al. (1987), Karimi et al.
(2008), Ring et al. (2012), Siviliglou et al. (2007) and Zannoti et al. (2017)). Recently, Habibi
et al. (2018) introduced a new paraxial mode named as the Mainardi beam. The authors
derived the expression of the amplitude field for describing the propagating Mainardi beam
through the free-space and fractional fourier transform system. The formulae that they ob-
tained contains infinite series expressions in the integrand functions (see Habibi et al. (2018)).
These latter have been used with numerical method to illustrate the characteristics of the beam
versus its pertinent parameters. However, as it is well-known, the result would be more perti-
nent if such field characteristics are expressed in closed-form, i.e, in terms of well-known special
functions. The mentioned equations in Habibi et al. (2018) can be, for instance, rewritten in
terms of Hermite polynomials if one uses new methods to evaluate the integrals, as it will be
demonstrated in the following. The procedure may permit us to avoid as possible the use of
the infinite expansion series representations. It is worthy noting that a similar work concerning
some integrals used in laser physics, involving the product of Bessel functions has been recently
published (Belafhal & Hennani, 2011).

The present paper is aimed to evaluate some diffraction integrals that are connected to
Hermite polynomials, and which are recurrent in the evaluation of the characteristics for a
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propagating beam. We evaluate some integrals in terms of Hermite functions. Integral repre-
sentations in connection with caustic optics are considered as particular cases of the evaluated
integrals, and their corresponding results are presented. A brief conclusion is given in the end
of the paper.

In caustic optics, we need to evaluate some integrals involving a product of Hermite poly-
nomials and Gaussian weight. In what follows, we will be interested in evaluating the integral
formulae

I1 =

∫ ∞

−∞
xle−px2+2qxdx, (1)

I2 =

∫ ∞

−∞
Hm(αx)xle−px2+2qxdx, (2)

and

I3 =

∫ ∞

−∞
Hm(αx)Hn(αx)x

le−px2+2qxdx, (3)

where p > 0 and α; q are complex numbers.

The Hermite polynomials are defined by Gradshteyn & Ryzhik (1994)

Hl(z) = l!

[l/2]∑
k=0

(−1)k

k!(l − 2k)!
(2z)l−2k, (4)

where [l/2] is the truncated part of l/2.

2 Main results

In this section, we establish three integral formulae I1, I2 and I3 involving Hermite polynomials
which are recurrent in the evaluation of the characteristics for a propagating beam.

2.1 Evaluation of the integral I1

Theorem 1. Let p > 0. Then we have

I1 =

∫ ∞

−∞
xle−px2+2qxdx = e

q2

p

√
π

p

(
1

2i
√
p

)l

Hl

(
iq
√
p

)
. (5)

Proof. This integral is given in many text books, to the best of our knowledge, as series expansion
by (see Gradshteyn & Ryzhik (1994))∫ ∞

−∞
xle−px2+2qxdx = l!e

q2

p

√
π

p

(
q

p

)l [l/2]∑
k=0

(−1)k

k!(l − 2k)!

(
p

4q2

)k

, (6)

where p > 0.
Recalling the expansion formula of the Hermite polynomial of order n given by (4) and

putting the substitution z = iq√
p , one can rewrite the expression Hl as

Hl

(
iq
√
p

)
= l!

(
2iq
√
p

)l [l/2]∑
k=0

(−1)k

k!(l − 2k)!

(
2iq
√
p

)−2k

. (7)

From this last equation, one can deduce the following relation:

[l/2]∑
k=0

(−1)k

k!(l − 2k)!

(
p

4q2

)k

=
1

l!

(√
p

2iq

)l

Hl

(
iq
√
p

)
. (8)

Now by substituting (8) into (6), one obtains the value of I1 in terms of Hermite polynomial.
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2.2 Evaluation of the integral I2

Lemma 1. The following holds for | α |< 1:

[m/2]∑
p=0

(−1)pm!

p!(m− 2p)!
(−iα)m−2pHm−2p(iy) =

(
1− α2

)m
2 Hm

(
αy√
1− α2

)
. (9)

Proof. Firstly, we consider the following integral:

I = e−y2
∫ ∞

−∞
Hm(αx)e−x2+2yxdx. (10)

With the help of (4), this integral becomes

I = e−y2
[m/2]∑
p=0

(−1)pm!

p!(m− 2p)!
(2α)m−2p

∫ ∞

−∞
xm−2pe−x2+2yxdx. (11)

By taking p = 1, q = y and n = m−2p in (5), and using 7.374 (8) (page 797 of Gradshteyn & Ryzhik
(1994)), we get ∫ ∞

−∞
Hm(αx)e−(x−y)2dx =

√
π
(
1− α2

)m
2 Hm

(
αy√
1− α2

)
, (12)

from which, it is easy to find (9).

Corollary 1. By substituting in (9), α = ia√
1−a2

, it is easy to prove the corresponding result of

Bailey (1948)

Hm(iax) = m!

[m/2]∑
p=0

(−1)p

p!(m− 2p)!
(ia)m−2p(1 + a2)pHm−2p(x). (13)

Theorem 2. For p > 0, the following transformation holds:

I2 =

∫ ∞

−∞
xlHm(αx)e−px2+2qxdx

=
e

q2

p

2l

√
π

q

[m/2]∑
k=0

(−1)km!

k!(m− 2k)!

(
α

i
√
p

)m+l−2k

Hm+l−2k

(
iq
√
p

)
,

(14)

Proof. By using the expansion formula in (4) and in view of the expression of I2, we obtain

I2 =

[m/2]∑
k=0

m!
(−1)k

k!(m− 2k)!
(2α)m−2kImk, (15)

where

Imk =

∫ ∞

−∞
xm−2k+le−px2+2qxdx. (16)

Now, with the help of Theorem 1, we deduce the expression

Imk = e
q2

p

√
π

p

(
1

2i
√
p

)m−2k+l

Hm+l−2k

(
iq
√
p

)
. (17)

Finally, by using the Lemma 1 and (17), we obtain (14). This completes the proof.

Corollary 2. For l = 0 and with the help of Lemma 1, (14) becomes∫ ∞

−∞
Hm(αx)e−px2+2qxdx = e

q2

p

√
π

p

(
1− α2

p

)m
2

Hm

 αq

p
√
1− α2

p

 . (18)
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2.3 Evaluation of the integral I3

Theorem 3. For p > 0, the following transformation holds:

I3 =

∫ ∞

−∞
Hm(αx)Hn(αx)x

le−px2+2qxdx

=e
q2

p

√
π

p

αn

2l
×

[n/2]∑
k=0

[m/2]∑
k′=0

(−1)k+k′n!m!

k!k′!(n− 2k)!(m− 2k′)!

Hm+n+l−2k−2k′

(
iq√
p

)
α2k(i

√
p)m+n+l−2k−2k′

.

(19)

Proof. The use of the expansion in (4) yields

I3 = n!

[n/2]∑
k=0

(−1)k

k!(n− 2k)!
(2α)n−2kImkl, (20)

where

Imkk =

∫ ∞

−∞
Hm(αx)xl+n−2ke−px2+2qxdx. (21)

By applying Theorem 2, (20) can be rewritten in the form of (19). This completes the proof.

3 Applications to catastrophe optics

3.1 Generalities

Generally speaking, to describe the propagation characteristics of an optical beam propagating
through a paraxial ABCD system, one may use intuitively the well-known Huygens—Fresnel
diffraction integral. During the evaluation of the integral, one might need to evaluate expressions
that are proportional to I1, I2, or I3. For example, in Habibi et al. (2018), the authors have
obtained (19) and (22), whose integrand functions can be evaluated, according our method, in
terms of Hermite polynomials.

In catastrophe optics theory Hobbs et al. (1987), some caustic patterns such as Pearcey,
Swollowtail, Butterfly and Olver beams possess amplitude fields that are defined by the following
integral representation

Un(t, s, x) =
1

2π

∫ ∞

−∞
ea(iλ)

nt− 1
2
stλ2+iλxdλ. (22)

Taking into account the result of the above section, one can express this last integral in terms
of Hermite polynomials. In fact, in a first step, the integral expression can be rewritten as

Un(t, s, x) =
1

2π

∫ ∞

−∞
e−pλ2+2qλ+a(iλ)ntdλ, (23)

with p = 1
2s.t and q = ix

2 .
Recalling the expansion formula of the exponential function

ea(iλ)
nt =

∞∑
−∞

[a(iλ)nt]j

j!
, (24)

and substituting this last expression into (23), yields

Un(t, s, x) =
1

2π

∞∑
j=0

[aint]j

j!
Ij , (25)
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where

Ij =

∫ ∞

−∞
e−pλ2+2qλ.(λ)njdλ. (26)

Taking (5) into account, the integral in (26) reads

I = e−
x2

2st

√
2π

st

(
1

j
√
2st

)n.j

Hn,j

(
− x√

2st

)
. (27)

On substituting (27) into (25), we derive

Un(t, s, x) =
1

2π

∫ ∞

−∞
e−pλ2+2qλ+a(iλ)ntdλ

=
1√
2πst

e−
x2

2st

∞∑
j=0

1

j!

(
at

(
√
2st)n

)j

Hn,j

(
− x√

2st

)
.

(28)

This last result is valuable because it will permit to evaluate the amplitude field expression of
some catastrophe beams in an alternative way with Hermite polynomials.

From (28), one can prove that the generating functions of Hermite polynomials Hernandez-Del-Valle

(2010) of the form
∑∞

j=0
zj

j!Hj,n(− x√
2st

) are equivalent to Airy-heat functions, defined as

1

2π

∫ ∞

−∞
eaλ

n−λ2t
2

+iλxdλ,

that is
∞∑
j=0

zj

j!
Hj,n

(
− x√

2st

)
=

√
2πst e−

x2

2st

∫ ∞

−∞
eat(iλ)

n− st
2
λ2+iλxdλ,

and we can deduce the following expression for n = 3

e

(
s3t
12

+ sx
2

)
t−

1
3
Ai

{
t−

1
3

(
x+

s2t

4

)}
=

1

4
√
π(st)2

∞∑
j=0

(− t
3)

j

j!
H3,j

(
− x√

2st

)
. (29)

3.2 Alternative amplitude expression for some catastrophe beams

(a) The integral representation of the Olver beams family Belafhal et al. (2015) is defined as

UOl(s, x) =
1

2π

∫ ∞

−∞
ea(iλ)

m+3− 1
2
sλ2+2iλxdλ. (30)

One can note that this last equation can be regarded as a particular case of (22) with m + 3,
a = 1 and t = 1, so its value is straightforwardly obtained from (28) as

UOl(s, x) =
1√
2πs

e−
x2

2s

∞∑
j=0

1

j!

(
1

(
√
2s)m+3

)j

H(m+3),j

(
− x√

2s

)
. (31)

(b) Substituting n = 4, a = 1, t = i and s = −2. yy0 , ν = x
x0

in the expression of (22) will give
the integral representation of the Pearcey beam Ring et al. (2012),

P

(
x

x0
,
y

y0

)
=

∫ ∞

−∞
e
i
(
λ4+ y

y0
λ2+ x

x0
λ
)
dλ. (32)
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Therefore, from the result of (28) this last equation can be expressed as

P

(
x

x0
,
y

y0

)
=U4(1, s, ν)

=

√
iy0
4πy

e
−i

( x
x0

)2

4
y
y0

∞∑
j=0

1

j!

[
− i

16

(
y0
y

)2
]j

H4,j

−
x
x0√
−2i y

y0

 .

(33)

(c) The case of n = 5, a = 1, t = 1, s = −2i. yy0 and ν = x
x0

gives the well-known amplitude
expression of the Swallowtail beam (see Ring et al. (2012), Zannoti et al. (2017)),

SW

(
x

x0
,
y

y0

)
=

∫ ∞

−∞
e
i
(
λ5+ y

y0
λ2+ x

x0
λ
)
dλ. (34)

Therefore, one can write

SW

(
x

x0
,
y

y0

)
=2π U5

(
1,−2i

y

y0
,
x

x0

)

=

√
iy0
4πy

e
−i
( x
x0
)
2

4
y
y0

∞∑
j=0

1

j!

[
− i

16

(
y0
y

)2
]j

H5,j

−
x
x0√
−2i y

y0

 .

(35)

(d) A Butterfly beam is defined by the amplitude expression Ring et al. (2012)

Bu

(
x

x0
,
y

y0

)
=

∫ ∞

−∞
e
i
(
λ6+ y

y0
λ2+ x

x0
λ
)
dλ. (36)

Corresponding to the values n = 6, a = 1, t = −i, s = −2. yy0 , ν = x
x0

into (22), one obtains in
this case

Bu

(
x

x0
,
y

y0

)
=2πU6

(
−i, 2

y

y0
,
x

x0

)

=

√
iy0
4πy

e
−i

( x
x0

)2

4
y
y0

∞∑
j=0

1

j!

[
− i

16

(
y0
y

)2
]j

H6,j

−
x
x0√
−2i y

y0

 .

(37)

4 Conclusion

We have evaluated analytically, some interesting integral expressions that are recurrent in prob-
lems dealing with Huygens-Fresnel diffraction. The integrals are expressed in terms of Hermite
polynomials. Applications to catastrophe optics theory allowed us to obtain alternative formu-
lations of the amplitude for some caustics beams. The obtained formulas are believed to be new
and useful for the laser specialists.
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