
Is Seeding a Good Strategy in Multi-objective Feature Selection When Feature Models
Evolve?

Takfarinas Sabera,∗, David Brevetb, Goetz Botterweckc, Anthony Ventresquea,∗

aLero@UCD, School of Computer Science, University College Dublin, Dublin 4, Ireland
bInstitut Supérieur d’Informatique, de Modélisation et de leurs Applications, Clermont-Ferrand, France

cLero@UL, University of Limerick, Ireland

Abstract

Context: When software architects or engineers are given a list of all the features and their interactions (i.e., a Feature Model
or FM) together with stakeholders’ preferences – their task is to find a set of potential products to suggest the decision makers.
Software Product Lines Engineering (SPLE) consists in optimising those large and highly constrained search spaces according to
multiple objectives reflecting the preference of the different stakeholders. SPLE is known to be extremely skill- and labour-intensive
and it has been a popular topic of research in the past years.
Objective: This paper presents the first thorough description and evaluation of the related problem of evolving software product
lines. While change and evolution of software systems is the common case in the industry, to the best of our knowledge this element
has been overlooked in the literature. In particular, we evaluate whether seeding previous solutions to genetic algorithms (that work
well on the general problem) would help them to find better/faster solutions.
Method: We describe in this paper a benchmark of large scale evolving FMs, consisting of 5 popular FMs and their evolutions
– synthetically generated following an experimental study of FM evolution. We then study the performance of a state-of-the-art
algorithm for multi-objective FM selection (SATIBEA) when seeded with former solutions.
Results: Our experiments show that we can improve both the execution time and the quality of SATIBEA by feeding it with
previous configurations. In particular, SATIBEA with seeds proves to converge an order of magnitude faster than SATIBEA alone.
Conclusion: We show in this paper that evolution of FMs is not a trivial task and that seeding previous solutions can be used as a
first step in the optimisation - unless the difference between former and current FMs is high, where seeding has a limited impact.

Keywords: Software Product Lines, Multi-objective, Genetic Algorithm, Evolution

1. Introduction

Software Product Lines (SPL) is a branch of Software En-
gineering that aims at designing software products based on a
composition of pre-defined software artefacts, increasing the
reusability and personalisation of software products [3, 42].
Software architects, when they design new products or adapt
existing products, navigate a set of features in a Feature Model
(FM). Each of these features represents an element of a software
artefact that is of importance to some stakeholders. Through its
structure and additional constraints, each FM describes all pos-
sible products as combinations of features. One of the issues
with FMs is that they can be very large – for instance in our
study we work with FMs composed of more than 13,000 fea-
tures and of nearly 300,000 constraints. Optimising FM Con-
figurations, i.e., selecting the set of features that could lead to
potential real products, is then a difficult problem [31]. This

∗Corresponding authors
Email addresses: takfarinas.saber@ucdconnect.ie (Takfarinas

Saber), david.brevet@isima.fr (David Brevet),
goetz.botterweck@lero.ie (Goetz Botterweck),
anthony.ventresque@ucd.ie (Anthony Ventresque)

problem is also called SPL configuration as it consists in con-
figuring products from the FMs.

In theory, software architects use SPL engineering to find
one product – the product that matches their needs the most
and does not violate any of the Feature Model’s constraints.
But in practice, the notion of the ‘best’ product is controver-
sial, as there are different perspectives on what is a good prod-
uct. For instance, some stakeholders may consider that energy
consumption of the products is the most important objective to
optimise, while for others it can be the cost of licensing the
features; or some stakeholders see the reliability as the key ele-
ment (for instance if they run critical applications), while other
stakeholders have a strict performance policy and they need as-
surance that the selected features follow some guidelines. Fig-
ure 1 shows an example of SPL configuration according to two
dimensions: number of known defects and cost (the lower the
better for both dimensions). Possible products, found by an
SPL optimisation algorithm, are represented as coloured cir-
cles. The good products, i.e., those that are better than any other
one in a combination of objectives are represented by black cir-
cles. Product f, for instance, is not considered a good one, as
product b is better than f in both dimensions. Similarly, prod-
uct a, while worse than f in terms of cost, is better than all the

Preprint submitted to XXX September 5, 2017

others in terms of known defects - it is then considered a good
product. Those good products form a set, called Pareto set or
Pareto front.

Figure 1: Possible products in 2-dimensions. In black are the non-dominated
solutions (the good ones) and in white the dominated solutions (the bad ones).

Since it is unlikely in practice that only one dimension
would be considered when optimising the feature configura-
tion, the SPL engineering problem can be interpreted as a multi-
objective optimisation problem [33, 48]. In fact, software ar-
chitects tend to favour tools that allow them to manipulate good
products, i.e., possible products that are better than every other
possible product on a particular combination of objectives.

Another related problem that has only been addressed in the
literature recently [13], is feature selection in a multi-objective
context when the FMs evolve. Software requirements and
artefacts evolve constantly; customers and other stakeholders
change their opinions about what an application should do and
how it should achieve that. Such changes can be reflected in
Feature Models [44]: for instance, we have seen in our study
that a large FM (such as the one behind the Linux kernel)
evolves regularly and substantially (every few months a new
version is released with up to 7% difference from the previ-
ous one). In this context, it seems odd to generate random
bootstrapping populations for the state-of-the-art genetic algo-
rithms, such as SATIBEA. It is tempting on the contrary to
use the fact that FMs have evolved and that the SPL configu-
rations generated previously, while not totally applicable, are
close and can be adapted. This is a strategy called seeding and
our intuition is that this could prove helpful in the context of
Feature Model selection - especially since SATIBEA (and the
other evolutionary algorithms) is very dependent on the initial
population.

Seeding for search-based software engineering is not a novel
idea as such (e.g., see papers by Fraser and Arcuri [26] and
Alshahwan and Harman [2]). However, our approach is novel
for various reasons:

– usually seeding is done by taking a few good/previous so-
lutions that are inserted in the initial population - while in
this paper, we take all the previous solutions that we adapt
to create a starting population.

– the data sets we use for our experiments in this paper are
large and very constrained, which is not always the case
in search-based software engineering contexts for which
seeding is known to work. This, of course, calls for a
proper evaluation that we report here.

– we also studied the performance of seeding against a large
variety of data sets, of different size and demographics
(varying in their numbers and ratios of features and con-
straints). This gives us some more assurance that our con-
clusions are correct.

From a more general perspective, our contributions in this
paper are the following:

– We propose a benchmark1 for the analysis of evolving
SPL; this data set has been generated following a study
of the demographics and evolution of a large SPL (Linux
kernel). This data set is important to provide a good eval-
uation of the different algorithms under different evolution
scenarios;

– We propose eSATIBEA which is a modification of the
state-of-the-art SATIBEA [33] for evolving SPL. eSATI-
BEA adapts previous solutions to new FMs to improve and
speed-up the results of SATIBEA;

– We evaluate SATIBEA and eSATIBEA on the evolving
SPL problem and show that eSATIBEA improves both the
execution time and the quality of SATIBEA. In particular,
eSATIBEA converges an order of magnitude faster than
SATIBEA alone.

The rest of this paper is organised as follows: Section 2 de-
fines the problem of multi-objective features selection when
Feature Models evolve. Section 3 presents a large study of the
evolution of a Feature Model: 20 versions of the Linux kernel
(up to 13,000+ features and nearly 300,000 constraints). This
study of the demographics of the Feature Model helps us to
create the synthetic evolutions of 5 large and popular FMs. In
particular, we are able to create evolved data sets using two
parameters representing the evolution in terms of features and
constraints. Section 4 describes SATIBEA, the state-of-the-art
resolution algorithm for multi-objective SPL problems and the
seeding mechanism for SPL configuration. In particular, we
present a modification of SATIBEA that we call eSATIBEA –
for SATIBEA in the context of Evolution. Section 5 describes
the hardware set-up and presents the various metrics we use to
compare algorithms. Those metrics are standard in the commu-
nity and are classified as quality and diversity metrics. Section 6
evaluates SATIBEA and eSATIBEA against the 5 evolved data
sets – and with different degrees of evolution. We show that
eSATIBEA performs better in terms of quality and converges
faster than SATIBEA (an order of magnitude faster). Section 7
presents threats to the validity of the results. Section 8 describes
the related work. Section 9 concludes our study and proposes
some future directions that we would like to explore.

Note that the study that we report in this paper follows a pre-
vious work [13] published at SSBSE 2016, the symposium ded-
icated to Search Based Software Engineering. In the SSBSE
paper, we introduced the problem of optimisation of evolving

1Available here: http://hibernia.ucd.ie/EvolvingFMs/ upon acceptance of
this paper.

2

Feature Models and provided some preliminary results using
one data set and one metric. In the current paper, we extend the
study to 5 data sets and 5 metrics, and we describe the data sets
and the techniques in depth.

2. Problem Definition

In this section, we present the three elements that define the
problem in our paper.

– Software Product Line Engineering, in particular how to
describe variations of software applications as configura-
tions of a Feature Model.

– Multi-objective optimisation; picking features can lead to
many products for which the quality can be seen from dif-
ferent perspectives. MOO gives a framework to address
this sort of problems.

– Evolution of Software Product Lines: Software applica-
tions, requirements, implementation, etc., change con-
stantly and the Feature Models need to be updated to re-
flect these evolutions.

2.1. Software Product Line Engineering
Software engineers often need to adapt software artefacts to

the needs of a particular customer [19]. Software Product Line
Engineering is a software paradigm that aims at managing those
variations in a systematic fashion. For instance, all software
artefacts (and their variations) can be interpreted as a set of
features [57] which can be selected and combined to obtain a
particular product.

Feature Models can be represented as a set of features and
relations (constraints) between them. Figure 2 shows a sim-
ple FM with 10 features linked by several relations. For in-
stance, each ‘Screen’ has to be of exactly one of three types,
i.e., ‘Basic’, ‘Colour’ or ‘High Resolution’. When deriving
a product from the product line, we have to select a subset
of features S ⊆ F that satisfies the FM F – and the re-
quirements of the stakeholder/customer. This configuration can
be described as a satisfiability problem (SAT), i.e., finding an
assignment to variables (here, features) in the {True, False}
space. Let fi ∈ {True, False} be a decision variable set to
‘True’ if the feature Fi ∈ F is selected to be part of S and
‘False’ otherwise. An FM is equivalent to a conjunction of
disjunctive clauses, forming a conjunctive normal form (CNF).
Finding a product in the SPL is then equivalent to assigning a
value in {True, False} to every feature. For instance, in Fig-
ure 2 the FM would have the following clauses, among others:
(Basic ∨ Colour ∨ High resolution) ∧ (¬Basic ∨ ¬Colour) ∧
(¬Basic∨¬High resolution)∧ (¬Colour∨¬High resolution),
which describe the alternative between the three features.

2.2. Multi-objective Optimisation
Now, software designers, when configuring an SPL, do not

only look for possible products (satisfying the FM) but for prod-
ucts optimising multiple criteria. This is why the problem of
SPL configuration has been described as multi-objective.

Figure 2: Sample of a Feature Model.

Multi-objective Optimisation (MOO) involves the simulta-
neous optimisation of more than one objective function. Given
that the value of software artefacts can be seen from different
angles (such as cost of development, importance for customers,
reliability and so on), feature selection in SPL is a good candi-
date for MOO [33, 48].

Let us consider the minimisation case here – solutions of a
MOO problem represent the set of non-dominated solutions de-
fined as follows: Let S be the set of all feasible solutions for a
given FM. Then ∀s ∈ S , O = [O1(s), ...,Ok(s)] represents a
vector containing values of the k objectives for a given solution
s. We say that a solution s1 dominates s2, written as s1 � s2,
if and only if ∀i ∈ {1, ..., k}, Oi(s1) ≤ Oi(s2) and ∃i ∈ {1, ..., k}
such that Oi(s1) < Oi(s2). In other words, in all criteria s1 is
as least as good as s2, while in at least one criterion it is clearly
better (recall we are looking at the minimisation case here, so
better means smaller).

All these non-dominated solutions represent a set called a
Pareto front: in this set, it is impossible to make any solu-
tion better in all objectives without making at least one solution
dominated. The Pareto front given in Figure 1 contains solu-
tions a, b, c, d and e because they are not dominated by any
other, while f is dominated by b, g is dominated by c, and h is
dominated by d. Hence, f, g and h are not in the Pareto front.

Here, following other classical approaches [33, 48] we use 5
objectives:

1. Correctness – minimise of the number of violated con-
straints, proposed by Sayyad et al. [49].

2. Richness of features – maximise the number of selected
features (have products with more functionality).

3. Features used before – minimise the number of selected
features that were not used before.

4. Known defects – minimise the number of known defects in
selected features.

5. Cost – minimise the cost of the selected features.

In a different given application context, these objectives
could be augmented or replaced with other particular criteria,
e.g., consumption of resources or various costs.

2.3. Evolution in SPL
Evolution of SPLs and the corresponding FMs is known to be

an important challenge since product lines represent long-term

3

investments [45]. For instance, in Section 3 we present a study
of a large-scale FM, the Linux kernel, and we show that every
few months a new FM is released with up to 7% modifications
among the features (features added or removed). To the best of
our knowledge, the FM/SPL evolution perspective has not been
addressed in the multi-objective feature selection literature.

In this paper, we show a potential approach for this optimi-
sation problem which utilises the evolution from one FM to
another. The relationship between two versions of a Feature
Model is expressed as a mapping between features. Let us as-
sume an FM FM1 evolved into another FM FM2. Some of the
features f 1

i ∈ FM1 are mapped on to features f 2
i ∈ FM2 – they

are the same or considered the same, while some of the fea-
tures f 1

i ∈ FM1 are not mapped onto any features in FM2 (f 1
i

has been removed) and features f 2
i ∈ FM2 have no correspond-

ing features in FM1 (f 2
i has been added). The same can be

applied to constraints (removed from FM1 or added to FM2).
The problem we address concerns adapting the solutions found
previously for FM1 to FM2.

3. Benchmark for Feature-Model Evolution

Evolution of large software artefacts and applications, typical
of what software product lines engineering usually addresses,
is a known fact [44]. In this paper we want to study the perfor-
mance of a classical algorithm for software product line con-
figuration (SATIBEA [33]) in the context of evolution - and in
particular we want to evaluate whether seeding previous con-
figurations improves the performance of this algorithm.

A simple option for our study would be to use Feature Mod-
els for which we can find various versions. For instance, we
present below a large Feature Model and its evolutions. How-
ever, our objective is to study the behaviour of two algorithms
- and we would like to have a good control of the various evo-
lution parameters: number of features removed/added, number
of constraints added/removed etc.

This is why we have created a benchmark for Feature Model
evolution: in order to be able to take any Feature Model and
synthetically (but realistically) evolve it depending on the pa-
rameters required by specific experiments (e.g., small evolution
of features but large evolution of constraints, etc.).

3.1. Study of the Linux Kernel

We studied the largest open source Feature Model we could
find [1]: the Linux kernel [51] containing a maximum of 13,322
features and 277,521 constraints in its version 2.6.32 (see Ta-
ble 1). We evaluated the demographics (features, constraints)
and evolution of 21 versions of the kernel from version 2.6.12
to version 2.6.32 that are publicly available in the Linux Vari-
ability Analysis Tools (LVAT) repository [52].

Feature Models in the LVAT repository are not directly ready
to use for our approach (i.e., they are not in the form of an in-
stance of the SAT problem) as they are based on Kconfig model
extracts (.exconfig). Therefore, they have to be translated into
SAT instances first [10]. To achieve that, we use a tool called

VM2BOOL2 which converts every Feature Model (originally in
a Kconfig file) into propositional formulas (stored on a .dimacs
file). This transformation allows the optimisation algorithms
(e.g., SATIBEA and eSATIBEA) to process the Feature Mod-
els.

Using the VM2BOOL tool, however, introduces additional
variables into the problem in addition to those representing the
features. This allows VM2BOOL to translate the most com-
plicated relationships in the FM and also to avoid an explosion
in the size of the propositions. We show in Table 1 the char-
acteristics of the different evolutions in terms of the number of
features (the real ones) and also show the size of their respec-
tive SAT problem as number of variables and number of clauses
(constraints).

We observe that on average there was only 4.6% difference
in terms of features between a version and the next. See Table 2
and Table 3 for a complete description of the number of features
in common between any two versions – and the corresponding
percentage values. Out of this 4.6% modified features, 21.22%
were removed features and 78.78% were added features, on av-
erage.

Version Release Date
Difference

with previous
release (days)

#Features #Variables #Clauses

2.6.12 17/06/2005 - 6,756 28,816 117,502
2.6.13 29/08/2005 73 6,952 29,814 120,599
2.6.14 27/10/2005 59 7,162 30,736 123,142
2.6.15 03/01/2006 68 7,324 31,340 125,179
2.6.16 20/03/2006 76 7,480 32,040 129,794
2.6.17 17/06/2006 89 7,616 32,736 132,780
2.6.18 20/09/2006 95 7,974 34,436 140,134
2.6.19 29/11/2006 70 8,326 36,220 152,888
2.6.20 05/02/2007 68 8,452 36,874 156,635
2.6.21 26/04/2007 80 8,664 37,858 162,058
2.6.22 08/07/2007 73 9,012 39,498 185,595
2.6.23 09/10/2007 93 9,304 40,922 181,881
2.6.24 24/01/2008 107 9,882 43,758 197,826
2.6.25 17/04/2008 84 10,260 45,612 206,816
2.6.26 13/07/2008 87 10,594 47,302 217,139
2.6.27 09/10/2008 88 10,908 48,868 218,960
2.6.28 25/12/2008 77 11,400 51,338 229,794
2.6.29 24/03/2009 89 11,948 53,868 248,347
2.6.30 09/06/2009 77 12,352 55,806 256,440
2.6.31 09/09/2009 92 12,804 57,828 266,416
2.6.32 03/12/2009 85 13,322 60,072 277,521

Table 1: Version number (2.6.*), release date, number of days between previous
and current releases and number of features of the different versions of the
Linux kernel considered in our study. We also show the number of Boolean
variables and the number of clauses (constraints) in the SAT representation of
the FM of each version.

To summarise, Table 4 shows the percentages of evolution for
both features and constraints between two consecutive FMs.

We also evaluated the size of the clauses/constraints in the
problem, as we need to know how the constraints we add in the
problem should look like. We found that a large proportion of
the FMs’ constraints have 6 features (39%), 5 features (16%),
18 features (14%) or 19 features (14%). See Figure 3 for a more
detailed report of the constraints sizes. Now we will be able to
create randomly new constraints (or delete existing constraints

2https://bitbucket.org/tberger/vm2bool

4

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

13 6,676
14 6,622 6,896
15 6,570 6,844 7,108
16 6,466 6,734 6,980 7,196
17 6,328 6,594 6,832 7,040 7,316
18 6,296 6,560 6,794 7,000 7,270 7,558
19 6,234 6,496 6,726 6,906 7,168 7,448 7,862
20 6,136 6,398 6,626 6,806 7,070 7,342 7,748 8,210
21 6,078 6,336 6,562 6,742 7,006 7,278 7,682 8,140 8,380
22 5,982 6,234 6,446 6,626 6,886 7,140 7,534 7,982 8,208 8,480
23 5,878 6,126 6,338 6,516 6,774 7,028 7,420 7,862 8,088 8,352 8,878
24 5,842 6,088 6,300 6,474 6,728 6,982 7,370 7,806 8,032 8,294 8,812 9,232
25 5,752 5,996 6,208 6,380 6,632 6,884 7,262 7,700 7,922 8,184 8,694 9,096 9,704
26 5,730 5,976 6,186 6,356 6,606 6,838 7,216 7,648 7,866 8,126 8,628 9,022 9,600 10,120
27 5,600 5,848 6,058 6,196 6,444 6,676 7,050 7,480 7,692 7,952 8,438 8,826 9,394 9,896 10,354
28 5,492 5,740 5,950 6,088 6,332 6,560 6,930 7,350 7,558 7,808 8,288 8,678 9,236 9,730 10,172 10,718
29 5,468 5,716 5,916 6,052 6,296 6,518 6,884 7,302 7,510 7,756 8,232 8,620 9,176 9,670 10,112 10,648 11,312
30 5,426 5,674 5,872 6,008 6,250 6,470 6,834 7,244 7,452 7,698 8,172 8,558 9,112 9,600 10,034 10,560 11,210 11,844
31 5,418 5,664 5,862 5,998 6,240 6,454 6,818 7,228 7,436 7,682 8,148 8,534 9,084 9,568 10,000 10,526 11,170 11,792 12,290
32 5,396 5,640 5,838 5,974 6,216 6,430 6,792 7,202 7,410 7,654 8,120 8,506 9,048 9,520 9,946 10,472 11,108 11,700 12,188 12,688

Table 2: Number of features in common between any two versions of of the Linux kernel 2.6.*

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

13 96.02
14 92.46 96.28
15 89.7 93.44 97.05
16 86.44 90.02 93.31 96.2
17 83.08 86.58 89.7 92.43 96.06
18 78.95 82.26 85.2 87.78 91.17 94.78
19 74.87 78.02 80.78 82.94 86.09 89.45 94.42
20 72.59 75.69 78.39 80.52 83.64 86.86 91.67 97.13
21 70.15 73.13 75.73 77.81 80.86 84 88.66 93.95 96.72
22 66.37 69.17 71.52 73.52 76.4 79.22 83.59 88.57 91.07 94.09
23 63.17 65.84 68.12 70.03 72.8 75.53 79.75 84.5 86.93 89.76 95.42
24 59.11 61.6 63.75 65.51 68.08 70.65 74.58 78.99 81.27 83.93 89.17 93.42
25 56.06 58.44 60.5 62.18 64.63 67.09 70.77 75.04 77.21 79.76 84.73 88.65 94.58
26 54.08 56.4 58.39 59.99 62.35 64.54 68.11 72.19 74.24 76.7 81.44 85.16 90.61 95.52
27 51.33 53.61 55.53 56.8 59.07 61.2 64.63 68.57 70.51 72.9 77.35 80.91 86.12 90.72 94.92
28 48.17 50.35 52.19 53.4 55.54 57.54 60.78 64.47 66.29 68.49 72.7 76.12 81.01 85.35 89.22 94.01
29 45.76 47.84 49.51 50.65 52.69 54.55 57.61 61.11 62.85 64.91 68.89 72.14 76.79 80.93 84.63 89.11 94.67
30 43.92 45.93 47.53 48.63 50.59 52.38 55.32 58.64 60.33 62.32 66.15 69.28 73.76 77.72 81.23 85.49 90.75 95.88
31 42.31 44.23 45.78 46.84 48.73 50.4 53.24 56.45 58.07 59.99 63.63 66.65 70.94 74.72 78.1 82.2 87.23 92.09 95.98
32 40.5 42.33 43.82 44.84 46.65 48.26 50.98 54.06 55.62 57.45 60.95 63.84 67.91 71.46 74.65 78.6 83.38 87.82 91.48 95.24

Table 3: Percentage of features in common between any two versions of of the Linux kernel 2.6.*

Features Constraints
Difference 4.57% 11.73%

among which Removed 21.23% 38.43%
Added 78.77% 61.57%

Table 4: Average evolution of features/constraints between two consecutive
FMs.

if need be) according to the proportions we find on this big data
set.

From this study, we generated a synthetic benchmark of FM
evolution based on the real evolution of the Linux kernel –
hence a realistic benchmark but with more variability than in
a real one, allowing us also to get several synthetic data sets
corresponding to these characteristics. Our FM generator uses
two parameters representing the percentage of feature modifica-
tions (added/removed) and the percentage of constraint modifi-
cations (added/removed). The higher those percentages are, the
more different the new FM will be from the original one. Our

Figure 3: Distribution of the constraints’ sizes (i.e., how many features they
contain).

FM generator uses the proportions we observed in the 20 FMs
to generate new features/remove old ones, and to generate new
constraints of a particular length. We use the following values
to generate new FMs: from 5% of modified features and 1% of
modified constraints (FM 5 1) to 20% of modified features and
10% of modified constraints (FM 20 10). In our evaluations,

5

we generate 10 synthetic FMs for each values of the parame-
ters.

You will see later in this paper (e.g., Figures 6) the results of
different SPLE algorithms on data sets generated synthetically
by our generator (10 different combinations of parameters, and
10 data sets per combination).

In addition to the Linux kernel, we also include four other
major data sets:

– eCos [8] (Embedded Configurable Operating System) is
a real-time operating system designed for embedded sys-
tems and applications with a single process. It is also free
and open-source.

– Fiasco [9] is a microkernel that can be used to construct
flexible systems such as Unix-like operating systems.

– FreeBSD [53] is a free and open-source operating system
similar to Linux.

– µClinux [9] is a microcontroller that is derived from the
Linux kernel.

These data sets are widely used in the literature [1], cover
large real-world Feature Models and are available in the LVAT
repository [52]. For each of these data sets and for each evo-
lution target, we generate 10 different versions. For instance,
given the FM of FreeBSD and an evolution target of 10 5, we
generate 10 evolutions of the FM with 10% of modifications of
the features and 5% of modifications of the constraints.

Table 5 describes the size of the initial versions that are con-
sidered for each of the data sets, with their number of features,
the size of the SAT problem representing their respective FMs
on both variables and clauses. The execution time of 1,200 sec-
onds used on the Linux kernel comes from [33] (the first presen-
tation of SATIBEA). For the other data sets, we use smaller ex-
ecution times based on the convergence time of our algorithms.
Note that anyway our experiments show the impact of time as
we present the evolution and not only the final results – beside,
this paper is more interested in showing the importance of seed-
ing to reach good results in short execution times.

data set Version #Features #Variables #Clauses Time (s)
Linux kernel 2.6.12 6,756 28,816 117,502 1,200

eCos 20100825 1,244 1,244 3,146 50
Fiasco 2011081207 300 1,638 5,228 200

FreeBSD 8.0.0 1,396 1,396 62,183 200
µClinux 3.0 616 1,850 2,468 100

Table 5: Characteristics of the initial version of the different data sets used in
our experiments in terms of number of features and size of the SAT problem
representing their FM (number of variables and number of clauses). This table
also shows the execution time that is allowed on each of them - this parameter
is a realistic running time for the underlying FM of each of those data sets.

4. Algorithms

This section describes the algorithms we study in this pa-
per: the state-of-the-art algorithm for multi-objective features
selection (i.e., SATIBEA) and our extension to SATIBEA for
evolved FMs (i.e., eSATIBEA). It also defines the parameters
that are used by each of these algorithms.

4.1. State-of-the-art, SATIBEA
SATIBEA [33] is an improved version of the Indicator-

Based Evolutionary Algorithm (IBEA) proposed by Zitzler and
Künzli [65] that guides the search by a quality indicator given
by the user. Previous to SATIBEA several techniques have
been tried to solve the Multi-objective Optimisation for SPL.
As most of the random techniques and genetic algorithms tend
to generate invalid solutions (given the large and constrained
search space, any random, mutation or crossover operation is
tricky) setting the number of violated constraints as a minimi-
sation objective has been proposed by Sayyad et al. [49]. It is
obviously not the best possible decision and is acceptable only
because of the size of the problem, which is otherwise tractable
only for small FMs and exact algorithms [43, 38].

SATIBEA has been introduced to help IBEA finding valid
products using a SAT solver. The purpose is to change the mu-
tation process of IBEA’s genetic algorithm: when an individual
is mutated, three different exclusive mutations can be applied:

1. The standard bit-flip mutation proposed by IBEA.
2. Replacing the individual by another one generated by the

SAT solver that does not violate any constraints.
3. Transforming the individual into a valid one using the SAT

solver (repair).

With this new mutation approach, SATIBEA improves the qual-
ity of the solutions found by IBEA: it is capable of finding valid
optimised products, but gives also better values in quality met-
rics (e.g., hypervolume).

4.2. Using Seeds in Evolved FMs, eSATIBEA
When an FM evolves, more or less modifications appear in

features and constraints, depending on how far the new model
is from the original one. We propose to take advantage of previ-
ous FM configurations (when they exist) to feed SATIBEA with
solutions of the original model. Let’s suppose two FMs: F1 and
F2 with F2 being an evolution of F1 (i.e., features/constraints
added and removed). We consider that we already found a set
of solutions S 1 by applying a multi-objectives optimisation al-
gorithm (SATIBEA in our case) on F1. Instead of leaving SAT-
IBEA with an initial random population for F2, we adapt S 1 to
F2 such that for each individual, we remove bits representing
removed features and add bits with random values for each new
feature, then we compute the objective functions and give these
new individuals as an initial population to SATIBEA that will
run normally on F2. Our hope is that these initial individuals
will be of good quality or at least better than random solutions.

4.3. Parameters
We use in our experiment the same values as in [33] for all

the parameters in both SATIBEA and eSATIBEA:

– Population size: 300 individuals

– Offspring population size: 300 individuals

– Crossover rate: 0.8. This represents the probability for
a couple of individuals in the population to purchase a
crossover, i.e., a mix of their characteristics.

6

– Mutation rate: 0.001. this represents the probability for
each bit (true if a feature is selected, 0 otherwise) of an
individual to be flipped.

– Solver mutation rate: 0.02. This represents the probability
of using the SAT solver to correct a solution during the
mutation process.

5. Experimental Set-up

This section presents the hardware configuration, the met-
rics we use to evaluate the performance of our algorithms and
the two tests we use to validate the significance of our results.
All our algorithms are implemented in Java and the tests are
performed on a machine running Ubuntu 12.4 LTS 64bits with
62GB of RAM and 12 core Intel(R) Xeon(R) 2.20GHz CPU
(our algorithms use only one core). We evaluate the perfor-
mance of our techniques based on two types of metrics, fol-
lowing Wang et al. [61] practical guide for selecting quality
indicators: (i) quality metrics: how good is the obtained Pareto
front? and (ii) diversity metrics: how large/representative are
its solutions?

5.1. Quality Metrics

We use three quality metrics to assess the quality of Pareto
front solutions produced by the different algorithms.

5.1.1. Hypervolume (HV)
The intuition behind the hypervolume [66, 67] is that it gives

the volume (defined in the k dimensions of the search space)
dominated by the Pareto front. The hypervolume is the area be-
tween the solutions and the reference point. The reference point
represents the worst possible value for each objective. The ob-
tained measure represents the area covered by our approximate
Pareto front: the higher the better.

In a more formal way, the hypervolume is defined in [33, 14]
as follows:

Let A be the set of points on the Pareto front, then the hyper-
volume of A is represented by:

HV(A) = λ(
⋃
s∈A

[O1(s), r1] × ... × [Ok(s), rk]) (1)

where: λ is the Lebesgue measure [32], k is the number of
objectives, [r1, ..., rk] is a reference point taken far from it and
[O1(s), r1] × ... × [Ok(s), rk] is the k-dimensional hyper cuboid
consisting of all points that are weakly dominated by the point
s but not weakly dominated by the reference point.

5.1.2. Epsilon (ε)
This metric measures the shortest distance that is required to

transform every solution in a Pareto front A to dominate the ref-
erence front R [68]. Given the hardness of finding the optimal
Pareto front and as it is commonly done in practice [25], we
define the reference front as the set of all non-dominated so-
lutions obtained by the different algorithms throughout all the
iterations. The lower the ε value the better is the Pareto front.

The ε metric finds the smallest multiplier ε such that every solu-
tion R is dominated by at least one solution in A, and is defined
as:

ε(A,R) = min(ε) | ∀s ∈ R, ∃s′ ∈ A, s ≥ ε.s′ (2)

5.1.3. Inverted Generation Distance (IGD)
This metric is the average of distances d(s, A) for every so-

lution s in the reference front R and its closest solution in the
Pareto front A [35]. This metric is complementary of the ε met-
ric in its way to evaluate the distance between the Pareto and
the reference fronts, and the lower the IGD the better the Pareto
front.

IGD(A,R) =

∑
s∈R d(s, A)
|A|

(3)

5.2. Diversity Metrics

We use in our evaluation two metrics that ensure that the set
of solutions we present to the decision maker in order to choose
from is diverse enough.

5.2.1. Pareto Front Size (PFS)
This metric corresponds to the quantity of solutions that are

not dominated in a set of solutions A. In our case, we count the
number of non-dominated solutions in the population of every
generation. The higher this number the better as it means that
we provide more choices to the decision makers to navigate and
to select amongst them.

PFS (A) = |R| (4)

5.2.2. Spread (S)
This metric measures the solutions extent spread in the Pareto

front and evaluates their distribution [22]. The higher the spread
the more diverse if the Pareto front (i.e., the better). For a set of
solutions A, consider that for every two consecutive solutions
(sa, sb) ∈ A2 da is the distance between the solutions sa and sb,
and si ∈ A and s j ∈ A are the two furthest solutions in A:

S (A) =
di + d j +

∑
a∈{1..|A|−1}(da − davg)

di + d j + davg.(|A| − 1)
(5)

with davg =
∑

a∈{1..|A|} di

|A|

5.3. Statistical Analysis and Tests

In order to validate the significance of our comparison, we
perform a statistical test using a non-parametric test: the two-
tailed Mann-Whitney U test (MWU). On every target, MWU
takes in the different performance values obtained by both
eSATiBEA and SATIBEA on a given metric from each run (in
our case 30). MWU returns the p-value that one of the algo-
rithms obtains different values than the other. We consider tests
significant when they are below a significance level of 0.05.
Moreover, given the small number of runs in our experiment,
and in order to lower the risk of having incorrect rejection of
true null hypothesis, we use a conservative but safe adjustment

7

(i.e., the standard Bonferroni adjustment [4]) which reduces the
chances of their erroneous rejection. Furthermore, following
the advice in the practical guide proposed by Arcuri and Briand
[4], we also use the non-parametric Â12 [59] effect size mea-
sure which evaluates the ratio of runs from the first algorithm
that outperform the second one. It is considered in the literature
that when Â12 is above 0.71, differences between the algorithms
are large.

6. Evaluation

We evaluate in this section two algorithms: SATIBEA,
known in the literature as the best algorithm for multi-objective
configuration of SPLs, and our contribution: eSATIBEA.

First, we evaluate their performance on the Linux kernel
benchmark described earlier in this paper, both in terms of qual-
ity and diversity of solutions while varying the evolution tar-
gets. We show the average results of 30 runs for each evolution
target and each algorithm. We perform first this thorough and
detailed study of the Linux kernel in order to give the reader a
good sense of what is happening with the two algorithms. We
also evaluate the significance of the results obtained by eSAT-
IBEA over those of SATIBEA at four key optimisation snap-
shots (i.e., the initial, first, middle and last generations of the
genetic algorithms).

Then, we extend the comparison to the 4 other data sets and
study the gain that eSATIBEA brings over SATIBEA according
to the evolution targets on every single metric. This broader
evaluation will give us a sense of how stable are the algorithms
(as they will be used against data sets of different varieties) and
how robust our conclusions are.

6.1. Quality Performance of SATIBEA and eSATIBEA on the
Linux Kernel

We compare the quality of the solutions in every generation
of eSATIBEA and SATIBEA when run on the different Linux
kernel instances with various evolution targets.

Figure 4 shows the evolution of SATIBEA’s and eSATIBEA’s
performance on the different evolutions of the Linux kernel in
terms of HV, ε and IGD.

First, we see that eSATIBEA starts with a high HV from
its start (389.15% better than SATIBEA’s HV on average) and
maintains this HV quality in the following generations; whereas
SATIBEA starts with a low HV that it keeps improving over
time to eventually reach eSATIBEA’s HV on some targets.
SATIBEA does not always reach eSATIBEA’s HV on all tar-
gets though (eSATIBEA outperforms SATIBEA on HV on al-
most all evolutions except 10 1 and has an average improve-
ment over SATIBEA of 8.37% on average at the end of the ex-
ecution time), particularly on those with large evolution targets
(e.g., on the evolution 20 10 eSATIBEA gets a 37.37% better
HV than SATIBEA on average at the end of their execution).

We also see a similar behaviour for eSATIBEA on the ε met-
ric as it achieves good results since the beginning of its execu-
tion time (eSATIBEA gets ∼ 31.6 times better ε value than SAT-
IBEA at its start), but unlike HV, eSATIBEA improves on its

initial ε metric performance (eSATIBEA achieves ∼ 2.6 times
better ε value at the end of its execution time in comparison
to its beginning on average). SATIBEA also starts with poor
ε values but they improve quickly. However, SATIBEA never
catches up with the ε values of eSATIBEA (eSATIBEA finishes
with ∼ 10.9 times better ε values than SATIBEA on average).

We notice that eSATIBEA also starts with a large advantage
in terms of IGD (eSATIBEA starts with an IGD ∼ 12.7 times
better than SATIBEA on average), but unlike HV and ε it does
not improve it. Even worse, eSATIBEA worsens slightly its
IGD (notice the exponent on the IGD scale). SATIBEA has
the same behaviour with IGD it has with HV. SATIBEA starts
with a poor IGD that it quickly improves to reach similar results
than those of eSATIBEA on most targets, but without ever out-
performing it (eSATIBEA gets 21% better IGD than SATIBEA
on average).

Overall, we see that eSATIBEA starts with an initial popula-
tion with a good quality (far better than SATIBEA’s). We also
see that eSATIBEA maintains the quality of its population in
terms of ε value while at the same time maintaining its HV, and
only worsening its IGD by at most 10−3. In any case and for ev-
ery quality metric, eSATIBEA always achieves a better quality
of population than SATIBEA within the 4+ initial generations.
eSATIBEA also converges to a similar or a better quality of so-
lutions than SATIBEA in all cases and on all metrics. We notice
that eSATIBEA converges to a better quality of population on
instances with the largest evolution distance (e.g., 20 10) which
clearly indicates that SATIBEA’s initial population is not rep-
resentative enough to allow the exploration of the entire search
space, and that using solutions that are not feasible w.r.t. the
evolved FM as an initial population allows eSATIBEA to ex-
plore a larger search space.

6.2. Diversity Performance of SATIBEA and eSATIBEA on the
Linux Kernel

We compare the evolution in terms of diversity for both
eSATIBEA and SATIBEA against our Linux kernel data set and
various evolution targets.

Figures 5 show the evolution of SATIBEA and eSATIBEA’s
performance on the different evolutions of the Linux kernel in
terms of PFS and Spread.

We see that eSATIBEA achieves a good PFS of ∼ 290 from
the start (28% better than SATIBEA’s PFS on average) and os-
cillates within an interval of +/-10 around this value. SATI-
BEA starts with a lesser PFS at ∼ 230 but it improves quickly
(within the first few generations of the genetic improvement)
to reach eSATIBEA’s results and even slightly outperforming
them sometimes. At the end of the execution time, eSATIBEA
outperforms SATIBEA on PFS on almost all evolutions (except
5 1) with an average improvement of 1.58%.

We also see that eSATIBEA starts its optimisation with an
initial population that is of a decent but not the best Spread (de-
spite being ∼ 2.33 times better than the spread of SATIBEA’s
initial population), that it improves over time. SATIBEA’s
initial population has a small Spread. SATIBEA improves it
quickly to outperform eSATIBEA’s Spread, but this improve-
ment is not stable and looks more like an ‘N-shaped’ one. At

8

1 1 5 1 5 3 10 1 10 3

10 5 20 1 20 3 20 5 20 10
HV

1 1 5 1 5 3 10 1 10 3

10 5 20 1 20 3 20 5 20 10
Epsilon

1 1 5 1 5 3 10 1 10 3

10 5 20 1 20 3 20 5 20 10
IGD

Figure 4: Evolution of the quality of SATIBEA’s and eSATIBEA’s solutions for the Linux kernel.

9

1 1 5 1 5 3 10 1 10 3

10 5 20 1 20 3 20 5 20 10
PFS

1 1 5 1 5 3 10 1 10 3

10 5 20 1 20 3 20 5 20 10
Spread

Figure 5: Evolution of the diversity of SATIBEA and eSATIBEA’s solutions for the Linux kernel.

the end of the execution time, SATIBEA usually finishes with
a population that has a slightly better Spread than eSATIBEA
(SATIBEA finishes with a better Spread than eSATIBEA on 7
cases out of 10, with a Spread improvement of 7.87% on aver-
age).

Overall, eSATIBEA starts with a population with a good PFS
but with a not-so-good Spread and successfully improves its
Spread without negatively impacting the PFS. SATIBEA, how-
ever, starts with a population that has both a poor Spread and a
small PFS. SATIBEA quickly improves the quality of its popu-
lation to catch up eSATIBEA in terms of PFS and to outperform
it in terms of Spread.

Globally, we can say that eSATIBEA gets an initial popula-
tion that has an almost optimal quality w.r.t. all the quality met-
rics considered in our experiments and has an almost optimal
PFS. However, eSATIBEA’s Spread is not-so-good, and eSAT-
IBEA continues improving its ε measure and Spread, without

negatively impacting other metrics (i.e., HV, IGD and Spread).
On the other hand, SATIBEA starts with an initial population
that is poor on all the metrics, but SATIBEA improves it quickly
and reaches results that are oftentimes similar to eSATIBEA
and even slightly better on Spread.

However, Spread is not a significant metric on its own as you
can have solutions that are well spread that have a poor quality
(eSATIBEA usually achieves better quality metrics that SAT-
IBEA). Results also suggest that the further the evolution, the
larger the gap between eSATIBEA’s and SATIBEA’s results and
that SATIBEA axes more on performance than on exploration
of the search space and corroborate the poor diversity results
that were observed in Henard et al. [33] paper.

10

6.3. Significance of eSATIBEA’s results over SATIBEA on the
Linux Kernel

We analyse in Table 6 the results obtained by both SATIBEA
and eSATIBEA on the Linux kernel on four particular snap-
shots of their optimisation (i.e., initial, first, middle and last
generations of their genetic algorithm). We also evaluate the
significance of eSATIBEA’s results over those of SATIBEA at
each of these snapshots. We report the non-parametric WMU
significance test that is corrected using the standard Bonferroni
adjustment. We also evaluate the ratio of runs of eSATIBEA
that outperform SATIBEA using the non-parametric Â12 effect
size measure. Notice that these two non-parametric tests (i.e.,
MWU and Â12) show the significance of the first algorithm get-
ting larger results than the second, and that some metrics are to
be maximised while others are to be minimised. Therefore, in
order to show the benefit of using eSATIBEA, we run both tests
with eSATIBEA over SATIBEA for metrics to maximise, and
SATIBEA over eSATIBEA for metrics to minimise.

We see in Table 6 that the initial generation of eSATIBEA
is of a better quality than SATIBEA’s initial generation on all
targets of the Linux kernel. The initial generation of eSATI-
BEA is 346.85%, 95.44% and 93.36% better on average than
SATIBEA’s initial generation respectively on HV, ε and IGD.
The initial generation of eSATIBEA is also of a better diver-
sity than SATIBEA’s initial generation as it is 30.31% better on
PFS and 126.96% better on Spread on average. We also notice
that all comparisons at this snapshot are statistically significant
with at most an MWU p-value in the order of 1E-11. In addi-
tion, we also see that all the Â12 measures are at 1 regardless of
the metric, which clearly indicates that the initial generation of
eSATIBEA is better than the one from SATIBEA in all runs.

We also see in Table 6 that the first generation created by
eSATIBEA is of a better quality than SATIBEA’s first genera-
tion on all targets of the Linux kernel despite a reduction in per-
formance in comparison to what has been seen in the initial gen-
eration. The first generation of eSATIBEA is 89.92%, 79.60%
and 63.84% better on average than SATIBEA’s first generation
respectively on HV, ε and IGD. The first generation of eSATI-
BEA is also of a better diversity than SATIBEA’s first genera-
tion as it is 10.16% better on PFS and 13.41% better on Spread
on average. We also notice that all comparisons at this snapshot
are statistically significant with at most an MWU p-value in the
order of 1E-8. In addition, we also see that all the Â12 measures
are at 1 for quality metrics, which clearly indicates that the first
generation of eSATIBEA is still qualitatively better than the one
from SATIBEA in all runs. But, we see that this is not totally
the case for diversity metrics as Â12 is less than 1 on few tar-
gets. However, despite this drop in Â12, eSATIBEA’s diversity
is still significantly better as Â12 is always larger than 0.9.

We notice from Table 6 that when eSATIBEA and SATIBEA
reach their middle generation the results are not as sharp as in
the two previous snapshot generations (i.e., initial and first).
However, eSATIBEA maintains a small lead over SATIBEA
as eSATIBEA outperforms SATIBEA on all targets and gets
11.46%, 83.62% better results on HV and ε on average. eSAT-
IBEA also outperforms SATIBEA on IGD on most targets (i.e.,

8 out of 10) with an average improvement of 18.29%. Quali-
tative results are also significance in the middle generation and
are at most in the order of 1E-07. The Â12 measure, however,
is always in the advantage of eSATIBEA on HV and ε with
an Â12 at least larger than 0.87, but not always on IGD (es-
pecially with targets of a small modified constraint ratios i.e.,
1.1., 5.1. and 20.1). Regarding diversity metrics we see a small
advantage for eSATIBEA over SATIBEA on average: eSATI-
BEA is 1.40% and 0.46% better than SATIBEA on average on
respectively PFS and Spread. However, eSATIBEA’s is not al-
ways better than SATIBEA. Furthermore, although results are
always significant on both MWU and Â12 on PFS, they are not
on Spread.

We see from Table 6 that the last generations of eSATIBEA
and SATIBEA are close to each other in terms of results. How-
ever, eSATIBEA is still qualitatively better than SATIBEA on
average with almost always significant results (except on tar-
get 20.1). eSATIBEA gets an improvement in HV on 8 targets
out of 10 with an average of 7.48% over SATIBEA. eSATI-
BEA outperforms SATIBEA on all targets in terms of ε with
an average improvement of 83.63%. eSATIBEA also outper-
forms SATIBEA in terms of IGD on 9 targets out of 10 with
an average improvement of 19.87%. When it comes to diver-
sity metrics, we see the opposite as SATIBEA is outperform-
ing eSATIBEA on average on both PFS and Spread. However,
results are mostly not significant with MWU p-values beyond
0.05 and Â12 measures below 0.71 in many targets.

Overall, we see that eSATIBEA outperforms SATIBEA on
all targets during their initial and first generations, but tend to
converge to similar results in their middle and last generations.
However, we see that the more distant is the target, the more
eSATIBEA maintains its performance over SATIBEA (espe-
cially on 20.3, 20.5 and 20.10).

6.4. Gain of eSATIBEA over SATIBEA
The previous subsections described in depth the results ob-

tained by SATIBEA and eSATIBEA on the evolutions of the
Linux kernel. The current subsection is showing aggregate re-
sults for the 5 data sets (Linux kernel, eCos, Fiasco, FreeBSD,
and µLinux). This will give us a sense of the trends observed
on each of those data sets and whether the conclusions made on
the Linux kernel can be generalised.

Figures 6 show the evolution of the gain achieved by eSAT-
IBEA over SATIBEA on each metric and for every evolution
target when run on the five different data sets. Notice that
the gain is obtained from the subtraction of SATIBEA’s re-
sults from eSATIBEA’s at any given time for metrics that are
to be maximised (i.e., HV, PFS and Spread), and by subtracting
eSATIBEA’s results from SATIBEA’s for the metrics that are
to be minimised (i.e., ε and IGD). Therefore, a positive gain is
always better for eSATIBEA than a negative one.

We see that regarding the HV, the gain is positive on all data
sets, for all evolutions and during the whole experiment. This
gives a good advantage to eSATIBEA in comparison to SAT-
IBEA in terms of quality of solutions. We see that this gain
is larger during the first quarter of the execution time and that
it decreases quickly to almost become null. However, we also

11

Table 6: Evaluation of the performance of eSATIBEA vs. SATIBEA on the different targets of the Linux kernel in four optimisation snapshots (i.e., initial, first,
middle and last generations) using five different metrics (i.e., HV, ε, IGD, PFS and Spread). We also report the significance of eSATIBEA’s results in comparison to
those of SATIBEA at each of the four snapshots by means of MWU and Â12.

Target Metric SATIBEA eSATIBEA Sig Init Sig First Sig Middle Sig Last
Init First Middle Last Init First Middle Last MWU Â12 MWU Â12 MWU Â12 MWU Â12

1.1

HV (e-2) 5.809 10.893 21.172 23.538 23.607 23.775 23.914 23.695 1.51E-11 1.00 1.51E-11 1.00 1.42E-08 0.92 3.52E-07 0.87
ε (e2) 323.041 27.290 26.162 23.500 8.427 8.427 4.181 5.260 6.06E-13 1.00 9.74E-12 1.00 1.51E-11 1.00 1.51E-11 1.00

IGD (e-4) 25.782 9.340 3.887 3.501 1.373 3.441 3.471 3.493 1.51E-11 1.00 1.51E-11 1.00 4.97E-01 0.50 2.94E-04 0.76
PFS (e2) 2.270 2.680 2.860 2.890 2.940 2.930 2.870 2.870 6.02E-13 1.00 1.30E-11 1.00 7.86E-08 0.89 1.43E-02 0.66
S (e-1) 5.061 10.518 11.985 14.038 10.826 10.873 11.196 11.626 1.51E-11 1.00 6.27E-08 0.90 9.25E-09 0.08 1.51E-11 0.00

5.1

HV (e-2) 5.899 9.351 21.676 23.397 23.640 23.996 22.924 22.995 1.51E-11 1.00 1.51E-11 1.00 4.42E-07 0.87 3.49E-03 0.70
ε (e2) 330.902 48.830 25.035 24.817 15.470 12.100 9.020 8.230 6.06E-13 1.00 1.43E-11 1.00 1.51E-11 1.00 1.51E-11 1.00

IGD (e-4) 25.940 9.695 2.916 3.043 1.441 2.809 3.124 3.282 1.51E-11 1.00 1.51E-11 1.00 1.39E-01 0.42 8.18E-06 0.82
PFS (e2) 2.160 2.690 2.880 2.910 2.890 2.940 2.900 2.850 5.99E-13 1.00 2.93E-11 0.99 7.59E-04 0.74 1.41E-01 0.58
S (e-1) 5.128 10.483 11.101 14.142 11.450 11.512 13.161 12.908 1.51E-11 1.00 1.51E-11 1.00 1.26E-01 0.59 1.68E-08 0.08

5.3

HV (e-2) 5.581 14.754 21.862 22.499 23.565 23.858 23.484 23.903 1.51E-11 1.00 1.51E-11 1.00 1.51E-11 1.00 1.44E-10 0.97
ε (e2) 327.501 70.491 69.071 68.469 9.310 7.680 4.870 8.220 6.06E-13 1.00 1.06E-11 1.00 1.51E-11 1.00 1.51E-11 1.00

IGD (e-4) 23.829 6.870 3.854 3.964 1.451 3.114 3.264 3.165 1.51E-11 1.00 1.51E-11 1.00 4.88E-10 0.96 2.75E-11 0.99
PFS (e2) 2.220 2.590 2.880 2.870 2.900 2.940 2.940 2.930 1.56E-12 1.00 1.23E-11 1.00 1.97E-05 0.81 6.27E-04 0.74
S (e-1) 5.000 9.311 12.931 14.328 10.654 11.106 11.767 11.981 1.51E-11 1.00 9.78E-11 0.98 6.11E-03 0.31 9.28E-10 0.05

10.1

HV (e-2) 5.980 15.002 22.720 23.812 23.712 23.901 23.465 23.354 1.51E-11 1.00 1.51E-11 1.00 2.34E-08 0.91 6.51E-04 0.74
ε (e2) 327.668 27.461 21.806 21.806 8.790 8.570 7.490 6.080 6.06E-13 1.00 1.48E-11 1.00 1.48E-11 1.00 1.51E-11 1.00

IGD (e-4) 25.188 6.304 3.892 3.902 1.637 3.073 3.081 3.124 1.51E-11 1.00 1.51E-11 1.00 1.51E-11 1.00 1.51E-11 1.00
PFS (e2) 2.250 2.640 2.860 2.860 2.910 2.930 2.950 2.910 2.02E-12 1.00 1.23E-11 1.00 1.37E-05 0.81 2.91E-02 0.64
S (e-1) 4.758 10.138 12.850 12.614 12.101 12.320 11.636 12.834 1.51E-11 1.00 1.51E-11 1.00 2.28E-01 0.56 2.77E-08 0.09

10.3

HV (e) 5.169 12.337 22.410 22.676 23.680 24.108 23.808 23.872 1.51E-11 1.00 1.51E-11 1.00 3.69E-11 0.99 1.51E-11 1.00
ε (e) 345.886 68.823 61.886 61.679 9.900 8.310 4.570 4.830 6.06E-13 1.00 1.39E-11 1.00 1.51E-11 1.00 1.50E-11 1.00

IGD (e) 25.885 15.077 3.192 3.144 1.419 2.624 2.785 2.784 1.51E-11 1.00 1.51E-11 1.00 3.03E-11 0.99 1.51E-11 1.00
PFS (e) 2.230 2.640 2.890 2.940 2.890 2.950 2.890 2.880 2.00E-12 1.00 1.27E-11 1.00 2.38E-07 0.88 1.40E-03 0.72

S (e) 5.007 9.746 12.849 14.743 10.808 11.130 10.854 12.204 1.51E-11 1.00 1.51E-11 1.00 1.01E-07 0.11 3.69E-11 0.01

10.5

HV (e-2) 5.398 13.911 20.593 21.107 23.506 23.620 23.607 24.092 1.51E-11 1.00 1.51E-11 1.00 1.51E-11 1.00 1.51E-11 1.00
ε (e2) 337.497 108.028 104.636 104.109 12.510 12.510 7.500 6.110 6.06E-13 1.00 1.44E-11 1.00 1.50E-11 1.00 1.51E-11 1.00

IGD (e-4) 25.109 7.606 4.737 4.843 1.561 3.209 3.403 3.157 1.51E-11 1.00 1.51E-11 1.00 1.51E-11 1.00 1.51E-11 1.00
PFS (e) 2.200 2.610 2.870 2.930 2.890 2.940 2.880 2.970 1.17E-12 1.00 1.29E-11 1.00 3.77E-09 0.93 2.31E-01 0.56
S (e2) 4.857 10.204 12.333 12.911 11.342 12.164 12.447 11.792 1.51E-11 1.00 1.51E-11 1.00 7.15E-06 0.83 1.34E-04 0.23

20.1

HV (e-2) 4.808 11.845 22.632 23.460 23.806 23.982 23.445 23.913 1.51E-11 1.00 1.51E-11 1.00 1.60E-09 0.95 3.28E-02 0.64
ε (e2) 354.897 37.528 28.256 28.256 10.720 10.220 5.990 5.610 6.06E-13 1.00 1.51E-11 1.00 1.51E-11 1.00 1.50E-11 1.00

IGD (e-4) 25.997 8.637 3.099 3.095 1.775 3.056 3.229 2.829 1.51E-11 1.00 1.51E-11 1.00 2.10E-01 0.44 6.64E-03 0.31
PFS (e2) 2.320 2.660 2.850 2.900 2.860 2.950 2.840 2.880 2.56E-12 1.00 1.88E-10 0.97 3.49E-05 0.80 5.66E-02 0.62
S (e-1) 5.052 10.610 11.758 13.824 11.232 11.624 12.675 12.576 1.51E-11 1.00 1.67E-11 1.00 1.96E-02 0.66 4.33E-05 0.20

20.3

HV (e-2) 5.278 12.864 21.988 22.346 23.784 23.996 23.117 23.084 1.51E-11 1.00 1.51E-11 1.00 1.58E-10 0.97 1.51E-11 1.00
ε (e3) 36.243 6.554 6.581 6.528 2.247 1.965 1.169 1.169 6.06E-13 1.00 1.42E-11 1.00 1.51E-11 1.00 1.51E-11 1.00

IGD (e-4) 26.632 7.980 3.443 3.668 2.701 2.737 2.933 2.832 1.51E-11 1.00 1.51E-11 1.00 4.08E-11 0.99 1.51E-11 1.00
PFS (e2) 2.120 2.740 2.810 2.860 2.910 2.910 2.910 2.880 3.20E-12 1.00 4.77E-11 0.99 3.89E-04 0.75 3.69E-01 0.47
S (e-1) 5.082 10.286 12.007 14.528 11.461 11.096 13.539 14.417 1.51E-11 1.00 1.51E-11 1.00 3.81E-03 0.70 1.35E-01 0.42

20.5

HV (e-2) 4.249 13.347 21.005 21.676 23.746 24.067 24.113 23.734 1.51E-11 1.00 1.51E-11 1.00 1.51E-11 1.00 1.51E-11 1.00
ε (e2) 368.767 99.553 95.211 94.012 14.440 9.940 8.550 7.602 6.06E-13 1.00 1.34E-11 1.00 1.51E-11 1.00 1.51E-11 1.00

IGD (e-4) 25.953 7.789 4.478 4.425 1.731 3.019 3.121 3.193 1.51E-11 1.00 1.51E-11 1.00 1.51E-11 1.00 1.51E-11 1.00
PFS (e2) 2.320 2.700 2.920 2.950 2.910 2.960 2.960 2.950 1.56E-12 1.00 1.28E-11 1.00 1.94E-10 0.97 4.88E-01 0.50
S (e-1) 4.900 10.339 13.109 13.091 11.032 11.063 12.183 12.466 1.51E-11 1.00 1.67E-11 1.00 1.42E-04 0.77 1.23E-01 0.41

20.1

HV (e-2) 5.257 14.065 16.808 17.194 23.368 23.733 23.673 23.629 1.51E-11 1.00 1.51E-11 1.00 1.51E-11 1.00 1.51E-11 1.00
ε (e3) 36.364 18.903 18.200 18.192 4.766 2.905 1.442 1.588 6.06E-13 1.00 1.19E-11 1.00 1.51E-11 1.00 1.51E-11 1.00

IGD (e-4) 23.014 9.230 8.507 8.662 1.754 3.107 3.289 3.402 1.51E-11 1.00 1.51E-11 1.00 1.51E-11 1.00 1.51E-11 1.00
PFS (e2) 2.160 2.720 2.850 2.920 2.870 2.920 2.930 2.880 2.58E-12 1.00 1.35E-11 1.00 1.37E-07 0.89 2.42E-01 0.55
S (e-1) 4.804 9.947 11.868 12.841 11.656 12.165 13.308 14.094 1.51E-11 1.00 1.51E-11 1.00 3.35E-11 0.99 2.09E-09 0.94

see that the gain on large evolution targets does not decrease to
zero, but rather converges to higher values. This is an interest-
ing point to notice as it means that when the evolution is im-
portant (large difference between an FM and the new version)
eSATIBEA shows more robustness and leverages the previous
populations.

We also see the same type of behaviour when looking at the
gain on ε. However, this gain stays positive (good for eSATI-
BEA) for a larger number of evolution targets.

When it comes to the gain on IGD, we notice two different
trends: (i) on Linux kernel and FreeBSD data sets where we
have the same behaviour as with the gain on HV, and (ii) on
eCos, Fiasco and µClinux where we start with a positive gain
which drops sharply to even turning negative (meaning eSATI-
BEA is better for these values) for a short duration, before get-

ting back to the positive side and stabilising around zero for the
rest of the execution. Notice that despite these two trends, the
difference is not significant enough given the small size of the
results.

The gains on the variety metrics look more erratic as they
oscillate a lot between positive and negative values. The gain on
FPS is mostly positive on the Linux kernel as it starts with large
values which decrease over the execution time. However, we
see a totally different trend on other data sets, as gains start with
negative values before narrowing the interval of their oscillation
(usually within [-30, 30]). The gains on the Spread are also
varying a lot between positive and negative values. The gain
starts with positive values on all targets but quickly drops below
zero. This is then followed by an increase to reach null values
and oscillates around it.

12

Linux kernel

eCos

Fiasco

FreeBSD

µClinux

Figure 6: Gain of eSATIBEA on SATIBEA for all data sets on all metrics. Note that while the gain is computed as result(eSATIBEA) - result(SATIBEA) for metrics
that are to be maximised, we inverse that for those that are to be minimised.

Overall, Figure 6 confirms what has been seen in Figure 4:
eSATIBEA does not only find solutions of better quality than
SATIBEA only on the Linux kernel, but also on the other data
sets. Similarly, they also show that the further the evolution
is from the original FM, the more eSATIBEA converges to
qualitatively better results than SATIBEA. However, Figure 6
seems to indicate that eSATIBEA only outperforms SATIBEA
in terms of variety of solutions at the beginning of the experi-
ments, but they usually end up taking on each other for the rest

of the experiment without any of them having a clear lead.

7. Threats to Validity

We have identified some threats to the validity of our evalu-
ation. The first threat to validity in our work is in the choice of
data sets. Our work is based on five data sets (i.e., Linux kernel,
eCos, Fiasco, FreeBSD and µClinux). Therefore, results might
not generalise to other data sets. In order to lower this risk, we

13

have selected data sets of different sizes, which are, moreover,
the same as those used by Henard et al. [33].

The second threat to validity is in the creation of the bench-
mark and the choice of target distances. We generate in our
work 10 different targets with a difference of features between
1 and 20% and a difference of number of constraints between
1 and 10% from the initial version. Next, given that we could
only find the different versions of the Linux kernel data set to
study their evolution patterns, we use the same patterns on all
the data sets which might not be true in reality. Last, we gen-
erate the target instances with some random parameters which
might lead to a lack of coverage of specific cases. In our work,
we generate 10 target instances for each target in order to lower
this risk.

The last threat to valid is in the experiments themselves with
errors in the code, disturbances from the machine used for the
experiments, and the effect of randomness in both within SAT-
IBEA and during the generation of seeds. To lower this risk,
we use the code of SATIBEA made available by Henard et al.
[33] that we extend using the same language and libraries. We
also run the experiments on the same machine in total isola-
tion (no parallel processes with the exception of those proper
to the OS itself). Furthermore, we run our experiments for 30
iterations (each run of eSATIBEA given a different set of seeds
as initial population, that is found by SATIBEA on the origi-
nal instance) and check the significance of the results using two
different tests.

8. Related Work

This section describes the relevant related work that we have
used for our research. In particular, we have studied exten-
sively the optimisation approaches for SPLE, both in the mono-
(only one dimension) and multi-objective contexts. We have
also examined the concept of evolution in SPLE, a relatively
overlooked but important concept in Software Engineering and
SPLE. For more complete reviews of optimisation problems
and techniques for SPLE, see Harman et al. [31] and Lopez-
Herrejon et al. [41].

Obviously, any studies of SPLE, in particular, when opti-
misation algorithms are used to identify and improve potential
products, rely on understanding the effect/impact (e.g., perfor-
mance, cost) of features in products. See the works of Sieg-
mund et al. [56, 55, 54], Valov et al. [58], and Zhang et al. [64]
for a complete description of this topic.

8.1. Mono- and Multi-objective Optimisation in SPLE
As we have described it before, the goal of feature selection

in SPLE is to find and improve products in a large search space
composed of a large number of features and constraints. This
can be formalised as an optimisation problem for which many
techniques have been described in the operations research and
optimisation literature. A lot of research has been done in SPLE
community in this context; in particular, authors have described
the problem as mono-objective or multi-objective, depending
on whether they consider the different dimensions of the opti-
misation as independent or not.

8.1.1. Mono-objective Optimisation
Benavides et al. [5] provide an overview of concepts for an

automated reasoning on feature models, including ‘optimum
products’ based on a single objective function. They later intro-
duce FAMA [7], an extensible framework for automated anal-
ysis of feature models, and provide a literature review on the
topic [6].

White et al. [62] suggest ‘Filtered Cartesian Flattening’
(FCF) an approximation technique that selects highly optimal
feature sets while considering resource constraints.

Guo et al. [29] suggest GAFES, a genetic algorithm for prod-
uct configuration, where they use repair to transform invalid se-
lections, occurring after crossover operations, into valid ones.
They report that their approach outperforms FCF [62] for large
generated feature models.

As we suggest in this paper, feature selection in SPLE is bet-
ter suited for multi-objective optimisation – so while some of
the former works describe well the feature selection and so on,
we focus on a multi-objective definition of the feature selection
problem.

8.1.2. Multi-objective Optimisation in SPLE
Karimpour and Ruhe [36] frame the scoping of a product

line (i.e., the decision on which features to include) as a bi-
criteria optimisation problem with a heuristic considering profit
and stability.

Dos Santos Neto et al. [21] apply multi-objective optimisa-
tion to find product portfolios (that minimise cost and maximise
relevancy) and provide a discussion of work on the related Next
Release Problem.

Colanzi and Vergilio [15, 16, 17, 18] interpret the design of
a product line architecture (PLA) as a multi-objective optimisa-
tion problem. They extend a genetic algorithm (NSGA-II) with
a feature-driven crossover operator that aims to improve feature
modularisation.

Guizzo et al. [27] extend the work by using a mutation oper-
ator that is based on design patterns.

Henard et al. [34] use a multiple-objective genetic algorithm
combined with constraint solving techniques to generate tests
for SPLs.

Other works on test optimisation for product lines are pro-
vided, for instance, by Wang et al. [60] and Lopez-Herrejon et
al. [39, 40]

Sayyad et al. [49] define a five-objective optimisation prob-
lem based on feature configuration, aiming to minimise total
costs, known defects, and rule violations, and maximise the
total number of products offered by products as well as fea-
tures reused from previous products. They report that IBEA
(Indicator-Based Evolutionary Algorithm) has an advantage
over the previously often used NSGA-II due to the way it ex-
ploits user preference. In subsequent work, they investigate the
effect of parameter tuning and the effects of slowing down the
rates of crossover and mutation [46, 47]. Finally, they suggest
a heuristic to ‘seed’ the IBEA used earlier with a pre-computed
solution [48].

Olaechea et al. [43] provide a comparison of exact techniques
(Guided Improvement Algorithm, GIA) and approximate tech-

14

niques (IBEA) for multi-objective optimisation applied to fea-
ture configuration.

Guo et al. [30] aim to speed up exact techniques with parallel
extensions, comparing the speed-up when using collaborative
communication, divide-and-conquer, or a combination of both.
They report that one algorithm called FS-GIA (Feature Split
GIA) outperforms all other proposed algorithms and scales well
up to 64 cores.

Henard et al. [33] introduce SATIBEA where they combine
the genetic algorithm (IBEA) with a SAT solver to repair invalid
configurations. The work presented in this paper is based on an
extension of SATIBEA to evolving Feature Models, which we
call eSATIBEA.

We follow the work of Henard et al. [33] in our problem defi-
nition and modelling, and we were inspired by some of the work
by Sayyad et al. [49]. The important difference with all the pre-
vious work though is the evaluation of FM evolution on the al-
gorithms, in particular, whether seeding previous solutions im-
prove the results.

8.2. Evolution of Software Product Lines

The other important element in our study is the evolution of
SPLE, that has been somewhat studied in the past – mostly the
tooling/engineering aspects of it, not the optimisation as in our
own study.

Botterweck et al. [12, 45] suggest EvoFM, a model-based
approach for planning and tracking product line evolution at a
feature level. Guo et al. [28] suggest approaches for maintain-
ing the consistency in evolving feature models.

Czarnecki et al. [20] provide a fundamental model of fea-
ture model configuration called ‘staged configuration’, where
a feature model is configured in multiple phases, leading to a
step-wise specialisation. White et al. [63] consider the config-
uration of a feature model as a multi-step process. However,
they interpret the process as a constraint satisfaction problem
where, for instance, each configuration step may have costs and
constraints on these costs need to be observed.

Dhungana et al. [24, 23] aim to ease product line evolution
by organising variability models of large product lines as a set
of interrelated fragments. They provide semi-automatic tool
support to merge fragments into complete product line mod-
els and consider the coevolution of variability models and their
corresponding meta-models. Schmid and Verlage [50] discuss
the economic impact of product line adoption and evolution.
Laguno and Crespo [37] provide a systematic mapping study
on product line evolution. Botterweck and Pleuss [11] give an
overview of concepts in software product line evolution.

9. Conclusion

This paper has presented a new problem: the configuration
of Software Product Lines when the Feature Models they are
based on evolve.

To study this problem, we have proposed a benchmark based
on a study of the evolution of a large Feature Model (up to
13,000+ features and nearly 300,000 constraints, 20 different

versions over 4+ years). Our empirical study gave us the char-
acteristics and demographics behind the evolution of that Fea-
ture Model - and we have replicated it to generate synthetic
versions of 5 different data sets (Feature Models).

We have compared SATIBEA, the leading algorithm in the
literature, and our contribution eSATIBEA (which takes an
adaptation of the previous solutions as initial population) in
this evolving context. Our experiments show that eSATIBEA
improves both the execution time and the quality of SATIBEA
by feeding it with previous configurations. In particular, eSATI-
BEA proves to converge an order of magnitude faster than SAT-
IBEA alone.

Acknowledgement

This work was supported with the financial support of the
Science Foundation Ireland grant 13/RC/2094 and co-funded
under the European Regional Development Fund through the
Southern & Eastern Regional Operational Programme to Lero -
the Irish Software Research Centre (www.lero.ie).

References

[1] Abbas, A., Siddiqui, I. F., Lee, S. U.-J., 2016. Multi-objective optimiza-
tion of feature model in software product line: Perspectives and chal-
lenges. IJST.

[2] Alshahwan, N., Harman, M., 2011. Automated web application testing
using search based software engineering. In: ASE. pp. 3–12.

[3] Apel, S., Batory, D. S., Kästner, C., Saake, G., 2013. Feature-Oriented
Software Product Lines - Concepts and Implementation. Springer.

[4] Arcuri, A., Briand, L., 2011. A practical guide for using statistical tests
to assess randomized algorithms in software engineering. In: ICSE. pp.
1–10.

[5] Benavides, D., Martı́n-Arroyo, P. T., Cortés, A. R., 2005. Automated rea-
soning on feature models. In: CAiSE. pp. 491–503.

[6] Benavides, D., Segura, S., Cortés, A. R., 2010. Automated analysis of
feature models 20 years later: A literature review. Inf. Syst. 35 (6), 615–
636.

[7] Benavides, D., Segura, S., Trinidad, P., Cortés, A. R., 2007. FAMA: tool-
ing a framework for the automated analysis of feature models. In: VaMoS.
pp. 129–134.

[8] Berger, T., She, S., Lotufo, R., Wasowski, A., Czarnecki, K., 2010. Vari-
ability modeling in the real: a perspective from the operating systems
domain. In: ASE. pp. 73–82.

[9] Berger, T., She, S., Lotufo, R., Wasowski, A., Czarnecki, K., 2012. Vari-
ability modeling in the systems software domain. Generative Software
Development Laboratory, University of Waterloo, Technical Report.

[10] Berger, T., She, S., Lotufo, R., Wasowski, A., Czarnecki, K., 2013. A
study of variability models and languages in the systems software domain.
IEEE Transactions on Software Engineering, 1611–1640.

[11] Botterweck, G., Pleuss, A., 2014. Evolution of software product lines. In:
Mens, T., Serebrenik, A., Cleve, A. (Eds.), Evolving Software Systems.
Springer, pp. 265–295.

[12] Botterweck, G., Pleuss, A., Dhungana, D., Polzer, A., Kowalewski,
S., 2010. Evofm: feature-driven planning of product-line evolution. In:
PLEASE@ICSE. pp. 24–31.

[13] Brevet, D., Saber, T., Botterweck, G., Ventresque, A., 2016. Preliminary
study of multi-objective features selection for evolving software product
lines. In: SSBSE. pp. 274–280.

[14] Brockhoff, D., Friedrich, T., Neumann, F., 2008. Analyzing hypervolume
indicator based algorithms. In: PPSN. pp. 651–660.

[15] Colanzi, T. E., 2012. Search based design of software product lines archi-
tectures. In: ICSE. pp. 1507–1510.

[16] Colanzi, T. E., Vergilio, S. R., 2012. Applying search based optimization
to software product line architectures: Lessons learned. In: SSBSE. pp.
259–266.

15

[17] Colanzi, T. E., Vergilio, S. R., 2013. Representation of software product
line architectures for search-based design. In: CMSBSE@ICSE. pp. 28–
33.

[18] Colanzi, T. E., Vergilio, S. R., 2016. A feature-driven crossover operator
for multi-objective and evolutionary optimization of product line archi-
tectures. Journal of Systems and Software 121, 126–143.

[19] Coplien, J., Hoffman, D., Weiss, D., 1998. Commonality and variability
in software engineering. IEEE Software 15 (6), 37–45.

[20] Czarnecki, K., Helsen, S., Eisenecker, U. W., 2004. Staged configuration
using feature models. In: SPLC. pp. 266–283.

[21] de Alcântara dos Santos Neto, P., Britto, R., de Andrade Lira Rabelo, R.,
Cruz, J., Ayala, W., 2016. A hybrid approach to suggest software product
line portfolios. Appl. Soft Comput. 49, 1243–1255.

[22] Deb, K., Mohan, M., Mishra, S., 2003. Towards a quick computation of
well-spread pareto-optimal solutions. In: EMO. pp. 222–236.

[23] Dhungana, D., Grünbacher, P., Rabiser, R., Neumayer, T., 2010. Structur-
ing the modeling space and supporting evolution in software product line
engineering. Journal of Systems and Software 83 (7), 1108–1122.

[24] Dhungana, D., Neumayer, T., Grünbacher, P., Rabiser, R., 2008. Sup-
porting evolution in model-based product line engineering. In: SPLC. pp.
319–328.

[25] Fonseca, C. M., Knowles, J. D., Thiele, L., Zitzler, E., 2005. A tutorial on
the performance assessment of stochastic multiobjective optimizers. In:
EMO 2005. p. 240.

[26] Fraser, G., Arcuri, A., 2012. The seed is strong: Seeding strategies in
search-based software testing. In: ICST. pp. 121–130.

[27] Guizzo, G., Colanzi, T. E., Vergilio, S. R., 2014. A pattern-driven mu-
tation operator for search-based product line architecture design. In: SS-
BSE. pp. 77–91.

[28] Guo, J., Wang, Y., Trinidad, P., Benavides, D., 2012. Consistency mainte-
nance for evolving feature models. Expert Syst. Appl. 39 (5), 4987–4998.

[29] Guo, J., White, J., Wang, G., Li, J., Wang, Y., 2011. A genetic algorithm
for optimized feature selection with resource constraints in software prod-
uct lines. Journal of Systems and Software 84 (12), 2208–2221.

[30] Guo, J., Zulkoski, E., Olaechea, R., Rayside, D., Czarnecki, K., Apel, S.,
Atlee, J. M., 2014. Scaling exact multi-objective combinatorial optimiza-
tion by parallelization. In: ASE. pp. 409–420.

[31] Harman, M., Jia, Y., Krinke, J., Langdon, W. B., Petke, J., Zhang, Y.,
2014. Search based software engineering for software product line engi-
neering: A survey and directions for future work. In: SPLC. pp. 5–18.

[32] Hawkins, T., 2001. Lebesgue’s theory of integration: its origins and de-
velopment. Vol. 282. American Mathematical Soc.

[33] Henard, C., Papadakis, M., Harman, M., Le Traon, Y., 2015. Combining
multi-objective search and constraint solving for configuring large soft-
ware product lines. In: ICSE. pp. 517–528.

[34] Henard, C., Papadakis, M., Perrouin, G., Klein, J., Traon, Y. L., 2013.
Multi-objective test generation for software product lines. In: SPLC. pp.
62–71.

[35] Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y., 2015. Modified dis-
tance calculation in generational distance and inverted generational dis-
tance. In: EMO. pp. 110–125.

[36] Karimpour, R., Ruhe, G., 2015. A search based approach towards robust
optimization in software product line scoping. In: GECCO. pp. 1415–
1416.

[37] Laguna, M. A., Crespo, Y., 2013. A systematic mapping study on soft-
ware product line evolution: From legacy system reengineering to product
line refactoring. Sci. Comput. Program. 78 (8), 1010–1034.

[38] Loesch, F., Ploedereder, E., 2007. Optimization of variability in software
product lines. In: SPLC. pp. 151–162.

[39] Lopez-Herrejon, R. E., Chicano, F., Ferrer, J., Egyed, A., Alba, E., 2013.
Multi-objective optimal test suite computation for software product line
pairwise testing. In: ICSM. pp. 404–407.

[40] Lopez-Herrejon, R. E., Ferrer, J., Chicano, F., Egyed, A., Alba, E., 2014.
Comparative analysis of classical multi-objective evolutionary algorithms
and seeding strategies for pairwise testing of software product lines. In:
CEC. pp. 387–396.

[41] Lopez-Herrejon, R. E., Linsbauer, L., Egyed, A., 2015. A systematic
mapping study of search-based software engineering for software prod-
uct lines. Information & Software Technology 61, 33–51.

[42] Metzger, A., Pohl, K., 2014. Software product line engineering and vari-
ability management: achievements and challenges. In: FSE. pp. 70–84.

[43] Olaechea, R., Rayside, D., Guo, J., Czarnecki, K., 2014. Comparison of
exact and approximate multi-objective optimization for software product
lines. In: SPLC. pp. 92–101.

[44] Passos, L., Czarnecki, K., Apel, S., Wasowski, A., Kästner, C., Guo, J.,
2013. Feature-oriented software evolution. In: VaMoS. p. 17.

[45] Pleuss, A., Botterweck, G., Dhungana, D., Polzer, A., Kowalewski, S.,
2012. Model-driven support for product line evolution on feature level.
Journal of Systems and Software 85 (10), 2261–2274.

[46] Sayyad, A. S., Goseva-Popstojanova, K., Menzies, T., Ammar, H., 2013.
On parameter tuning in search based software engineering: A replicated
empirical study. In: RESER. pp. 84–90.

[47] Sayyad, A. S., Ingram, J., Menzies, T., Ammar, H., 2013. Optimum fea-
ture selection in software product lines: Let your model and values guide
your search. In: CMSBSE@ICSE. pp. 22–27.

[48] Sayyad, A. S., Ingram, J., Menzies, T., Ammar, H., 2013. Scalable prod-
uct line configuration: A straw to break the camel’s back. In: ASE. pp.
465–474.

[49] Sayyad, A. S., Menzies, T., Ammar, H., 2013. On the value of user pref-
erences in search-based software engineering: a case study in software
product lines. In: ICSE. pp. 492–501.

[50] Schmid, K., Verlage, M., 2002. The economic impact of product line
adoption and evolution. IEEE Software 19 (4), 50–57.

[51] She, S., 2013. Feature model synthesis. Ph.D. thesis, University of Water-
loo.

[52] She, S., 2013. Lvat: Linux variability analysis tools.
http://code.google.com/p/linux-variability-analysis-tools.

[53] She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K., 2011. Re-
verse engineering feature models. In: ICSE. pp. 461–470.

[54] Siegmund, N., Grebhahn, A., Apel, S., Kästner, C., 2015. Performance-
influence models for highly configurable systems. In: ESEC/FSE. pp.
284–294.

[55] Siegmund, N., Rosenmüller, M., Kästner, C., Giarrusso, P. G., Apel, S.,
Kolesnikov, S. S., 2013. Scalable prediction of non-functional properties
in software product lines: Footprint and memory consumption. Informa-
tion & Software Technology 55 (3), 491–507.

[56] Siegmund, N., Rosenmüller, M., Kuhlemann, M., Kästner, C., Apel, S.,
Saake, G., 2012. SPL conqueror: Toward optimization of non-functional
properties in software product lines. Software Quality Journal 20 (3-4),
487–517.

[57] Thüm, T., Batory, D., Kästner, C., 2009. Reasoning about edits to feature
models. In: ICSE. pp. 254–264.

[58] Valov, P., Guo, J., Czarnecki, K., 2015. Empirical comparison of regres-
sion methods for variability-aware performance prediction. In: SPLC. pp.
186–190.

[59] Vargha, A., Delaney, H. D., 2000. A critique and improvement of the cl
common language effect size statistics of mcgraw and wong. Journal of
Educational and Behavioral Statistics, 101–132.

[60] Wang, S., Ali, S., Gotlieb, A., 2013. Minimizing test suites in software
product lines using weight-based genetic algorithms. In: GECCO. pp.
1493–1500.

[61] Wang, S., Ali, S., Yue, T., Li, Y., Liaaen, M., 2016. A practical guide to
select quality indicators for assessing pareto-based search algorithms in
search-based software engineering. In: ICSE. pp. 631–642.

[62] White, J., Dougherty, B., Schmidt, D. C., 2009. Selecting highly opti-
mal architectural feature sets with filtered cartesian flattening. Journal of
Systems and Software 82 (8), 1268–1284.

[63] White, J., Galindo, J. A., Saxena, T., Dougherty, B., Benavides, D.,
Schmidt, D. C., 2014. Evolving feature model configurations in software
product lines. Journal of Systems and Software 87, 119–136.

[64] Zhang, Y., Guo, J., Blais, E., Czarnecki, K., Yu, H., 2016. A mathematical
model of performance-relevant feature interactions. In: SPLC. pp. 25–34.

[65] Zitzler, E., Künzli, S., 2004. Indicator-based selection in multiobjective
search. In: PPSN. pp. 832–842.

[66] Zitzler, E., Thiele, L., 1998. Multiobjective optimization using evolution-
ary algorithms—a comparative case study. In: PPSN. pp. 292–301.

[67] Zitzler, E., Thiele, L., 1999. Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach. IEEE Transac-
tions on Evolutionary Computation 3 (4), 257–271.

[68] Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., Da Fonseca, V. G.,
2003. Performance assessment of multiobjective optimizers: An analysis
and review. IEEE Transactions on evolutionary computation, 117–132.

16

