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Nano-glass Mechanism of Bulk Metallic Glass Formation
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A theory of local dynamics of liquid is developed in order to explain the glass transition and fragility of multi-component alloys as it
relates to formation of bulk metallic glasses. Unlike the extended hydrodynamic theories in which liquid is regarded as a continuum body, the
present approach focuses on the discreteness of the atomic structure and considers the stability of local topology of the network structure. This
approach has led to the prediction of the glass transition temperature, melting and glass formability. We extend this approach to describe the
effects of local topology on the atomic transport and glass transition and fragility of multi-component glasses. This theory leads to a picture of
a strong liquid as a nano-scale composite of glass and liquid, and suggests compositional requirements for forming bulk metallic glasses.
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1. Introduction

Liquids and glasses are complex systems and do not allow
simple and precise descriptions of their structure. For this
reason the progress in understanding the dynamics of liquid
and glasses has been sluggish. Only recently notable progress
has been achieved in describing the dynamics of liquid by hy-
drodynamic theories, such as the mode-coupling theory,1, 2)

in which liquid is regarded as a continuum body with non-
linear responses, totally disregarding the atomic structure. At
high temperatures atomic mobility is high enough to justify
such an approximation, and this has been the reason of suc-
cesses by the hydrodynamic theories. However, as tempera-
ture is lowered atomic processes start to dominate the dynam-
ics and transport, and the continuum approximation breaks
down. This effect actually was first recognized long time ago
by Cohen and Turnbull in their seminal free-volume theory as
backscattering of atoms in the cage of nearest neighbors.3–5)

The free-volume theory has been very successful in describ-
ing the diffusion and flow of glasses, and has been widely
used in explaining various properties of glasses and glass tran-
sition.6, 7)

However, both the mode-coupling theory and the free-
volume theory are basically phenomenological theories, re-
quiring fitting parameters to be determined by comparison
with experiment. We proposed some time ago a more mi-
croscopic approach to the question of glass formability, based
upon the model of atoms interacting with a pair-wise poten-
tial.8) In this approach this problem is addressed from the low
temperature side, starting with a discrete network structure of
a glass, and introducing a topological criterion of local struc-
tural instability. This approach was more recently extended
to explain a wide variety of properties, form melting of crys-
tals, glass transition as well as glass formation.9) In this paper
we first review the theory of local topological instability, and
discuss how this model can be further extended to account for
the atomic mobility in multi-component glasses. We suggest
that the atomic size effect can results in differential atomic
transport properties among the constituent elements, and di-
rectly influence the glass transition and fragility of the glass
as defined by Angel.10)

This work was motivated by the recent development of bulk
metallic glasses11–13) and the need of a theory that could guide
the effort to develop new bulk metallic glasses. The main
purpose of this work is to provide a theoretical basis of alloy
selection for bulk metallic glass formation through the micro-
scopic theory of glass transition and viscosity of liquid, based
principally upon the atomic size-effect. For this reason we
limit our scope to metallic systems that can be described by
simple spherical pair-wise potentials, while the theory could
be extended to covalent glasses. The fragility of glass or liq-
uid is defined by the dependence of the viscosity on the renor-
malized temperature, T/Tg, where Tg is the glass transition
temperature.10) Above Tg a strong liquid has much higher vis-
cosity than the fragile liquid, by many orders of magnitude.
This high viscosity in the liquid state retards crystal nucle-
ation and growth, so that being a strong glass is an important
requirement for the formation of bulk metallic glasses.14) At
this moment it is not clear what factors determine the fragility
of a glass, particularly for metallic systems. Our theory qual-
itatively explains what atomistic conditions lead to a strong
glass, and suggests ways of improving the ease of metallic
glass formation.

2. Atomic Transport and Local Topological Instability

2.1 Topology of the glass structure
While the mechanism of atomic diffusion in crystals is well

understood, that in liquids and glasses is poorly understood.
This is not surprising given the fact that for glasses and liquids
it is not easy even to define the atomic structure. Thus usually
the diffusion in glasses and liquids is discussed in terms of
concepts and terminologies simply borrowed from theories of
diffusion in crystals. But this might have produced unjustifi-
able biases in our thinking. For instance, in crystals diffusion
occurs by vacancy and interstitial defect mechanisms. Thus
various attempts have been made to define defects in a similar
way. The most well-known definition of “vacancy” in glasses
and liquids is the free-volume.3–5) However, in glasses defects
cannot be uniquely defined, since there is no reference struc-
ture to define defects against. This is a part of the reasons
why the free-volume theory has remained a phenomenologi-
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cal theory. A useful and unambiguous definition of structural
defects has eluded us so far.

Another bias in discussing diffusion is to focus on the mo-
tion of a single atom. This may appear as a natural bias that
could make the argument simple. But in fact this view is
closely tied to the periodic nature of the lattice, and in the ab-
sence of a periodic lattice its validity is not obvious. To prove
this point let us consider a simple crystal with the Bravais lat-
tice. In such crystals the structures before and after a single
diffusion jump have to be the same, except that the position of
the defect is displaced by the lattice periodicity, if we neglect
the presence of other defects and boundaries. Therefore the
magnitude of the atomic jump has to be of the order of the in-
teratomic distance. In glasses or liquids, the structures before
and after the atomic motion are not the same in the absence of
lattice periodicity, and therefore there is no limit in the mag-
nitude of atomic displacement. Actually it is more likely that
the motion at a time is a fraction of the atomic distance, since
atomic motions are likely to be strongly correlated. If one
atom moves in one direction, the vacated space is likely to
be filled by another atom moving in the opposite direction,
resulting in local ring-like atomic motion. In crystals such a
ring-like motion does not produce a net atomic transport. In
glasses and liquids, however, the displacements of these two
atoms will not exactly cancel each other, resulting in frac-
tional atomic transport. These examples illustrate the need of
going sufficiently away from the picture of single-atom diffu-
sion in the crystalline structure to describe diffusion in liquids
and glasses. Different mechanisms that are uniquely appro-
priate for liquids and glasses might exist.

In order to find diffusion processes unique to glasses and
liquids, let us discuss how to define the structure of glasses in
a way meaningful in discussing their atomic transport. In the
present work we define the structure topologically as a net-
work in terms of atomic connectivity. Such a definition is a
standard method to describe covalently bonded glasses,15) but
it can be extended to metallic glasses as well, since the neg-
ative curvature of the interatomic potential tends to separate
the nearest and second nearest neighbors clearly, as argued
by Turnbull and Cohen in their discussion on the free-volume
theory.5) Let us consider an atom interacting via a two-body
potential V (r) with a minimum at r = 2a. If r is larger than
the position of the inflection point, r0 (d2V (r0)/dr2 = 0), this
atom will not stay at the mid-point of the two neighbors. This
is because the system lowers its energy when this atom moves
away from the center. This illustrates how the interatomic
potential naturally leads to better definition of the nearest
neighbors.

Once the structure is defined as a topological network any
structural change, including diffusion, can be defined in terms
of the changes in connectivity (bonds) of atoms. This is an
important point of departure from focusing on the motion of
a single atom. Usually when a bond is broken-off, a new
bond is formed elsewhere without changing the total density
of bonds. Thus changes in structure or atomic transport can
be defined in terms of the bond exchange. For instance the
plastic shear process and anelastic strain can be described in
such terms.16, 17)

2.2 Instability of local topology
The next question is at what condition the atomic bond will

be broken. To answer this question it is instructive to con-
sider the equilibrium local coordination number of an impu-
rity atom A in the host B liquid or glass, as a function of
the atomic radius of A, rA, and that of B, rB . In liquids
and glasses the local coordination number depends upon the
atomic size ratio, x = rA/rB , since it is not a fixed number.
When x is small, a relatively small number of host atoms can
be the nearest neighbors of the impurity atom, while when x
is large the number of the neighbors should be large as well.
When viewed from the A atom as shown in Fig. 1, the solid
angle occupied by a neighboring B atoms which is in contact
with the A atom is,

ωA−B(x) = 2π

[
1 −

√
rA(rA + 2rB)

rA + rB

]

= 2π

[
1 −

√
x(x + 2)

x + 1

]
.

(1)

Since atoms are spherical, they cannot fill the space even
at the most efficient packing. The efficiency of packing B
atoms on the surface of the A atom can be expressed by the
2-dimensional packing density,

η2D = N A
C (x)ωA−B(x)

4π
, (2)

where N A
C (x) is the average coordination number of an A

atom. It is reasonable to assume that η2D is independent of
x , if x is not too far from unity. Indeed this was validated
by simulation with a simple alloy model.18) The simulation18)

furthermore has shown that,

η2D = 2π

[
1 −

√
3

2

]
= ωA−B(1). (3)

Therefore, from (1)–(3) we obtain,

  

 A-B 

A

B

Fig. 1 Solid angle ωA−B to view a B atom from an A atom.
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Fig. 2 Energy landscape for the change in the local coordination.

N A
C (x) = 4π

[
1 −

√
3

2

]/[
1 −

√
x(x + 2)

x + 1

]

= 2η2D

/[
1 −

√
x(x + 2)

x + 1

]
.

(4)

Note that for a single component system (x = 1) this gives
N A

C (1) = 4π , and the average solid angle per neighbor to be
unity.

Now let us consider a gedanken experiment in which we
start from the equilibrium state, and increase the radius of
the A atom continuously. The question is how long the en-
vironment can remain topologically unchanged? Since NC

is discreet a small change in the value of x by ∆x will sim-
ply result in the elastic expansion of the environment, and
will not cause a topological change. However, if x + ∆x is
sufficiently large so that the corresponding value of NC is as
large as NC + 1, the environment will collapse through bond
exchange, and the coordination number will be increased by
one. The critical value of ∆x is given by

∂N A
C (x)

∂x
∆x = 1. (5)

At high enough temperatures, however, one does not have to
increase x by this amount, and only one half of this will do.
The reason is that the free energy as a function of x is a cor-
rugated function, as illustrated in Fig. 2. As ∆x is increased
the value of x + ∆x goes over the potential barrier, and the
system will undergo a first-order transition and settle to the
next value of NC. Thus the critical value of ∆x , ∆xC, is,

∆xC = 1

2

/
∂N A

C (x)

∂x
. (6)

For a single component system (x = 1),

∂N A
C (x)

∂x

∣∣∣∣
x=1

= 2π2
√

3

3η2D
. (7)

Thus the topological instability condition is expressed as,

∆xC =
√

3

4π2
η2D. (8)

We now apply this result to explain the development of lo-
cal structural instability due to thermal volume expansion εV.
In a single component system (rA = rB) the nearest neighbor
atomic distance 2rA becomes 2rA(1 + εV/3) because of ther-
mal expansion. If we assign all the expansion to the change
in the radius of the central A atom, or the change in x , the

A − B distance becomes rA + rB = rB(1 + ∆x) + rB =
2rB(1 + ∆x/2). Therefore εV/3 = ∆x/2, or εV = 3∆x/2.
Thus the critical volume expansion for local topological sta-
bility is,

εcrit
V = 3

2
∆xC = 3

√
3

8π2
η2D = 6

√
3 − 9

8π
= 0.0554. (9)

Indeed most of elemental metals melt near this volume ex-
pansion.9, 19) The criterion (9) is related to the well-known
Lindemann’s criterion20) through anharmonicity. This result
was the basis to calculate the minimum solute composition to
form a metallic glass of a binary system, cmin

A .8)

2.3 Local structural quantization and glass transition
The local topological instability caused by local expansion

beyond the critical value εcrit
V results in collapse of the envi-

ronment and the change in the local coordination. A liquid
can be defined as a state in which such a local catastrophe is
taking place all the time everywhere, with the time-scale of the
inverse of the Debye frequency. Thus the time-averaged value
of NC is a non-integral number. As the temperature is low-
ered the volume fluctuation decreases, and the local coordina-
tion falls into one of the valleys of the free-energy landscape
shown in Fig. 2, and the value of NC becomes locally locked
into an integral number for a while. In other words as temper-
ature is lowered NC becomes locally “quantized” into integral
values. This crossover from the fluctuating, time-dependent
local coordination to the discrete local coordination charac-
terizes glass transition.

The condition for the crossover can be determined from the
local dynamics of the liquid state. Firstly we propose to de-
scribe the local structural fluctuation in liquids and glasses in
terms of the local atomic-level stresses.21) This concept orig-
inated from the realization that in liquids and glasses most of
the interatomic distances are non-ideal, being either stretched
or compressed, resulting in the two-body forces between the
atoms. The local sum of the two-body forces,

f α(i) = 1

Ωi

∑
j

f α
i j , (10)

where f α
i j is the α Cartesian component of the force between

the atoms i and j and Ωi is the local atomic volume of atom i ,
is zero in an equilibrium structure, but the local atomic-level
stress tensor,

σα,β(i) = 1

Ωi

∑
j

f α
i j r

β

i j , (11)

where rα
i j is the α-component of the separation vector r i j be-

tween atoms i and j , is not zero except in the Bravais lattice at
T = 0. The stress tensor

=
σ has six independent components

that can be grouped into one pressure (pi , l = 0) and five
shear (τi , l = 2) components. Such a local stress produces a
local strain tensor,

pi = T r(
=
σ), τm

i = 1

Ωi

∑
j

Y m
2

(
r i j

ri j

)
fi j ri j ,

τi =
(

1

5

∑
m

(τm
i )2

)1/2

, (12)
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Fig. 3 Distribution of the atomic level strain and the definition of the
free-volume and anti-free-volume.

where fi j = | f i j |, ri j = |r i j |, Y m
2 is the spherical harmonics,

and the associated elastic energy,

E = Ω

2K

∑
i

p2
i + 5Ω

4G

∑
i

τ 2
i , (13)

where K and G are bulk and shear moduli. Here the fluc-
tuations in the local volume and local moduli have been ne-
glected. Due to the virial theorem a half of the thermal energy,
3kT , goes to the potential energy, while the rest becomes
the kinetic energy. In the liquid state the potential energy,
(3/2)kT , is equally divided into six independent components
of the atomic-level stress energies.22, 23) Thus the average en-
ergy of volume fluctuation is given by

Ω

2K
〈p2〉 = Ω

4G
〈τ 2〉 = kT

4
. (14)

Accordingly the local pressure, thus the local volume strain,
exhibits a gaussian distribution with the standard deviation,

∆p = 〈p2〉1/2 =
(

K kT

2Ω

)1/2

,

∆εV = 〈ε2
V〉1/2 =

(
kT

2KΩ

)1/2

.

(15)

Note that eqs. (13) and (14) are valid only above Tg, while in
the glassy state local stresses and strains remain higher than
these since the system becomes non-ergodic.

Now let us consider the dynamics of a liquid of which lo-
cal volume strain has the gaussian distribution according to
(14) (Fig. 3). If the local volume strain is smaller than the
critical value, εcrit

V , then such an atom is “solid-like”, and its
coordination has a long life-time. On the other hand if it is
larger, the atom is “liquid-like”, and its coordination is un-
stable and changes within the Debye time. Thus the system
is divided into liquid-like and solid-like regions, as envisaged
by Cohen and Grest.24, 25) Actually this is the re-definition of
the free-volume in the present language. Now, as shown in
Fig. 3 the critical strain can be exceeded on both the positive
side (local free-volume) and the negative side (local anti-free-
volume).26) However, the anharmonicity in the potential and
the asymmetry in eq. (1) with respect to deviations make the
anti-free-volume much less effective. It can be readily shown,
for instance, that for a reasonable value of the Grüneisen con-
stant of 2, the amount of anti-free-volume is only 1/3 of the
free-volume. Here for simplicity we will neglect the effects

of anti-free-volume on the dynamics of liquids.
The volume fraction of the atoms with the local volume

larger than the critical value, ξ , is given by,

ξ = 1√
2π∆εV

∫ ∞

∆εcrit
V

exp

(
− ε2

2∆ε2
V

)
dε (16)

Glass transition can now be seen in terms of percolation of
the liquid-like regions. Assuming the percolation concentra-
tion in three-dimensional dense-packed systems to be about
0.15,27) we obtain the percolation condition to be,

Tg = 2ΩK

kB
(εcrit

V )2 = 6.14 × 10−3 ΩK

kB
(17)

which applies well for a large number of metallic glasses.28)

3. Local Dynamics of Multi-Component Glasses

3.1 Local structure of multi-component glasses
In the argument above a single component glass was as-

sumed. We now discuss the case of multi-component glasses.
Let us consider a binary glass of transition metal (T ) and met-
alloid (M), T1−y My , with the size ratio, z = rM/rT < 1. A
well known example is Fe0.8B0.2. Since a T atom is larger
than an M atom, its coordination number, N T

C , will be larger
than that of M , N M

C . We also have to differentiate the neigh-
bors according to chemistry. So the average number of T
atom neighbors that are in contact with the M atom at the
center is denoted as N M−T

C , etc. Thus,

N T
C = N T −T

C + N T−M
C ,

N M
C = N M−T

C + N M−M
C

(18)

Note that,

yN M−T
C = (1 − y)N T −M

C . (19)

In the absence of compositional short-range order,29)

N i j
C = c j N i

C N j
C/〈NC〉, 〈NC〉 = yN M

C + (1 − y)N T
C , (20)

where cM = y and cT = 1 − y. The eq. (2) is now,

η2D = 1

4π
[N T −T

C ωT −T + N T−M
C ωT−M ]

= 1

4π
[N M−T

C ωM−T + N M−M
C ωM−M ],

(21)

where,

ωT −T = ωM−M = 2π

[
1 −

√
3

2

]
= η2D, (22)

ωM−T = 2π

[
1 −

√
z(z + 2)

1 + z

]
, (23)

ωT−M = 2π

[
1 −

√
1 + 2z

1 + z

]
. (24)

3.2 Local feezing
We now consider how much local volume expansion is

needed to change the local coordination. Taking the variation
of (21),
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δη2D = 1

4π
[δN T −T

C ωT −T + N T−T
C δωT −T + δN T−M

C ωT−M + N T−M
C δωT−M ] = 0, (25)

δη2D = 1

4π
[δN M−T

C ωM−T + N M−T
C δωM−T + δN M−M

C ωM−M + N M−M
C δωM−M ] = 0. (26)

Now, just as in the case of a single component system, we expand the volume uniformly by εV, and seek the condition for local
topological instability. Obviously it requires less volume expansion to bring in a smaller M atom than a larger T atom. Thus
the critical volume depends on the combination of elements. For instance in order to determine the local volume expansion
around a T atom necessary to bring in an M atom to its neighbor, εT −M

V , we assume δN T−T
C = 0, etc. From (25) and (26),

δN T −T
C = − N T−T

C δωT−T + N T−M
C δωT −M

ωT−T
= 1

2
(T neighbor of T ) (27)

δN T−M
C = − N T−T

C δωT−T + N T−M
C δωT −M

ωT−M
= 1

2
(M neighbor of T ) (28)

δN M−T
C = − N M−T

C δωM−T + N M−M
C δωM−M

ωM−T
= 1

2
(T neighbor of M) (29)

δN M−M
C = − N M−T

C δωM−T + N M−M
C δωM−M

ωM−M
= 1

2
(M neighbor of M) (30)

When the volume is expanded each atomic volume does not
change, but gaps in-between increase. In order to calculate
the change in the preferred local coordination because of the
gaps, we artificially inflate the atom at the center. For instance
let us assume that an M atom is at the center and we want to
calculate the change in the solid angle to view a T atom due
to volume expansion. The change in the T − M distance is
(εM−T

V /3)(rT + rM). This corresponds to the change in z by
rMdz, so that εM−T

V /3 = dz/(1 + z). Similarly,

εT −T
V

3
= dz

2
,

εT −M
V

3
= − dz

z(1 + z)
,

εM−T
V

3
= dz

1 + z
,

εM−M
V

3
= dz

2z
,

(31)

Thus we obtain,

δωT −T = −π
√

3

9
εT −T

V = −αεT−T
V , (32)

δωM−M = −π
√

3

9
εM−M

V = −αεM−M
V , (33)

δωT −M = − 2π z2

3(1 + z)
√

1 + 2z
εT −M

V = −β1ε
T −M
V , (34)

δωM−T = − 2π

3(1 + z)
√

z(z + 2)
εM−T

V = −β2ε
M−T
V . (35)

We now obtain four critical volume strains,

εT −T
V = ωT −T

2
[
N T−T

C α + N T−M
C β1

] , (36)

εT −M
V = ωT −M

2
[
N T−T

C α + N T−M
C β1

] , (37)

εM−T
V = ωM−T

2
[
N M−T

C β2 + N M−M
C α

] , (38)

εM−M
V = ωM−M

2
[
N M−T

C β2 + N M−M
C α

] . (39)

They are related by,

εT −M
V

εT −T
V

= ωT −M

ωT −T
≈ z, (40)

εM−M
V

εM−T
V

= ωM−M

ωM−T
≈ z, (41)

εM−M
V ≈ εT −T

V ≈ εcrit
V . (42)

Thus in terms of the magnitude they are, εT −M
V < εM−M

V ≈
εT −T

V < εM−T
V . In the approximation (40)–(42) we assumed

no compositional short-range order (CSRO). As we discuss
later this is changed by introducing CSRO. Using these crit-
ical strains we can define the compositionally resolved glass
transition temperature,

T T−T
g = 2ΩT KT

kB
(εT −T

V )2, (43)

T T −M
g = 2ΩT KT

kB
(εT −M

V )2, (44)

T M−T
g = 2ΩM KM

kB
(εM−T

V )2, (45)

T M−M
g = 2ΩM KM

kB
(εM−M

V )2, (46)

where ΩT and KT are the local volume and bulk modulus
of an element T , etc. The local bulk modulus, K , depends
upon the interatomic potential.22) Thus the local glass transi-
tion temperature depends upon the local interaction through
K (chemical effect) and the atomic size through Ω and εV

(size effect).

4. Glass Transition and Fragility of a Liquid

4.1 Viscosity of a liquid
We are now ready to discuss the viscosity of a liquid as

it relates to glass transition and fragility. Let us consider
what the compositionally resolved glass transition temper-
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ature physically means. It is the temperature above which
the local volume fluctuation is large enough to allow another
atom to come into the nearest neighbor shell. For the sake of
simplicity let us assume the product ΩK is the same for T
and M . Then we find, T T −M

g < T M−M
g ≈ T T−T

g < T M−T
g .

As the liquid alloy is cooled, at first the T neighbors of M be-
come frozen, i.e. the T − M bond has a life time longer than
a period of phonon (Debye) oscillation. Then the M neigh-
bors of M and T neighbors of T become frozen, and finally
M neighbors of T becomes frozen, and the whole system be-
comes glassy. Thus glass transition in a multi-component sys-
tem does not occur uniformly, but gradually over a range of
temperature reflecting the inhomogeneity at the atomic level.
This dispersion of the glass transition is an important key in
determining the viscosity and fragility of a liquid. If the com-
positionally resolved glass transition temperatures are widely
dispersed the liquid will gradually freeze over a wide range
of temperature, and thus will exhibit a strong liquid behavior.
On the other hand if the dispersion is small it will be a frag-
ile liquid. Thus alloy selection should aim at increasing the
range of glass transition temperatures.

4.2 Local glass transition and the nano-glass state
Let us now examine the four glass transition temperatures a

little more carefully. Inspecting eqs. (36)–(46) it is clear that
the glass transition temperature to bring in M atoms, which
are smaller in size, is always lower than that for T atoms. This
is because the volume expansion to bring in a smaller M atom
is always less than that for a larger T atom. This means that M
atoms have larger mobility than T atoms, which is intuitively
obvious because smaller M atoms diffuse faster via the inter-
stitial mechanism. Then the local glass transition at T M−T

g is
irrelevant, because the local environment of M atoms will not
freeze until the temperature is lowered to T M−M

g . Thus the lo-
cal glass transition around a M atom occurs at T M

g = T M−M
g .

The local glass transition temperature of a T atom depends
upon the composition. When the chemical composition of M
atoms is small, the mobility of a M atoms will not affect the
dynamics of the majority element T , so that T T

g ≈ T T −T
g .

Thus,

T M
g

T T
g

= T M−M
g

T T −T
g

= ΩM KM

ΩT KT

(
εM−M

V

εT −T
V

)2

≈ ΩM KM

ΩT KT
. (47)

If ΩK of T and M are similar, T M
g ≈ T T

g , and the system
will have a single glass transition given by,

Tg ≈ T M−M
g ≈ T T −T

g ≈ 2ΩK

kB
(εcrit

V )2 = 6.14 × 10−3 ΩK

kB
,

(48)

just as in a single component glass, and the liquid will show
a fragile behavior, with the viscosity changing rapidly with
temperature. Now note that ΩK provides the temperature
scale for structural fluctuation as in (17), therefore should
scale with the melting temperature TM as long as the anhar-
monicity is similar. Thus choosing components with greatly
different melting temperature should create the gap between
T M

g and T T
g , and results in the strong liquid behavior. Since

the glass transition of the whole system will nearly coincide
with that of the majority component, T , choosing a metalloid

with a high melting temperature, such as boron and silicon, is
an important recipe.

Changing the ΩK product, which depends upon the atomic
interaction, is a chemical approach. It is also possible to uti-
lize the atomic size effect by manipulating the CSRO. For in-
stance if we introduce repulsion between M atoms and elim-
inate M − M pairs (N M−M

C = 0), the environment of M will
freeze at T M

g = T M−T
g rather than T M−M

g . This creates a gap
between the freezing temperatures of T and M atoms even
when ΩK is similar. From eqs. (40)–(46),

T M
g

T T
g

= T M−T
g

T T −T
g

= ΩM KM

ΩT KT

(
εM−T

V

εT −T
V

)2

≈ ΩM KM

ΩT KT

1

z2
. (49)

This ratio is plotted in Fig. 4 for T0.8M0.2 alloy as a func-
tion of z, along with the approximations, 1/z2 as well as
1/z1.7. Also N T−T

C , N T−M
C and N M−T

C are shown in Fig. 5,
and εT −T

V and εM−T
V in Fig. 6. In this calculation we assumed

that ΩT KT = ΩM KM , and N M−M
C = 0. Note that in (49)

the chemical effect due to the ratio of ΩK is compounded
with the size effect described by the ratio of εV. In this pic-
ture the environment of M freezes above T T

g , so that each
M atom forms a local cluster of MTn , with M at the cen-
ter. This cluster is not a chemical molecule that results from
chemical bonds. It is simply a product of local freezing, a
nano-glass. The liquid between T T

g and T M
g is a composite of

nano-glasses and liquid, and should exhibit a high viscosity
if the concentration of the nano-glass is above the percolation
concentration. This would result in a strong liquid behavior,
and the system should be easily cast into a bulk metallic glass.
Thus the key in producing a strong liquid is to have a large ra-
tio of the local glass transition temperatures, eq. (49).

In summary, the gap between the two local glass transition
temperatures can be widened by the following:

1. Decrease the magnitude of z.
2. Increase the local bulk modulus of M in the environment

of T by increasing the strength of interaction between T
and M .

3. Introduce repulsive interaction between small atoms.

Fig. 4 Ratio of the local glass transition temperatures, Tg(M)/Tg(T ), eq.
(47), calculated for T0.8M0.2 alloy by assuming strong M − M repulsion.
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Fig. 5 Compositionally resolved local coordination numbers for the same
system.

Fig. 6 Critical volume strain for T and M atoms. Note that εT −T
V is nearly

independent of z, as suggested by eq. (42), but εM−T
V increases with de-

creasing z, as predicted by (41).

Actually alloys of transition-metal and metalloid, such as
boron and phosphorus, satisfy these conditions. There is a
strong interaction between T and M involving charge trans-
fer, or the hybridization of the T d-orbitals and the M s − p
orbitals, resulting in the shortened bond between T and M
and repulsion between M .28, 30) Glass formability is further
improved by adding more elements with larger size differ-
ences, such as Zr and Nb into Fe–B.31)

The idea of local glass transition is strongly supported
by recent results on the NMR measurement of diffusiv-
ity in complex liquid by Tang et al.32) They found that in
(Zr, Ti)(Cu, Ni)Be bulk metallic glasses the jump frequency
of Be atom did not show any anomaly in temperature depen-
dence through Tg, even though the diffusivity shows a sharp
change at Tg. As far as local jumps of Be is concerned the

liquid above Tg appears still glassy. This is a direct proof that
the environment of Be is frozen even above Tg, so that a Be
atom moves only collectively, accompanied by the motion of
a nearest neighbor cluster.

4.3 Glass formability
The problem of the ease of glass formation has two facets,

the kinetic aspect and the energetic aspect. The concept of the
distributed local glass transitions addresses the kinetic aspect,
while the energetic aspect is addressed by the concept of lo-
cal atomic level strains proposed earlier.8) The driving force
for crystallization is reduced by increasing the atomic level
elastic strain energy of a crystal. This can be achieved by the
following:

1. Decrease the magnitude of z.
2. Increase the number of elements involved.

These prescriptions are supported by the fact that as many as 5
or 6 elements with a large variation in sizes are involved in the
bulk metallic glass composition. They also overlap with the
requirements for improving the kinetics as discussed above.

5. Conclusions

The theory of glass transition based upon the concept of
local topological instability of the atomic structure was ex-
tended to deal with multi-component glasses. It was shown
that a multi-component liquid freezes gradually over a range
of temperature, reflecting the atomic level compositional in-
homogeneity. A wide distribution of the local glass transition
temperatures results in more gradual freezing and formation
of a nano-glass state, and thus the strong-glass behavior as
defined by Angel. In particular, a repulsive potential between
small M atoms and the attraction between a small M and large
T atoms result in the local glass transition temperature of M
atoms much higher than the global glass transition tempera-
ture. This creates atomic clusters around M atoms in the liq-
uid (nano-glasses), and increases the viscosity of the liquid.
By considering both the kinetic and energetic aspects of glass
formation, four conditions were identified as the principles to
facilitate bulk metallic glass formation:

1. Increase the atomic size ratio of the constituent elements.
2. Increase the number of elements involved.
3. Increase the interaction between the small and large

atoms.
4. Introduce repulsive interaction between small atoms.

Not surprisingly, these principles are already in use in the ef-
fort to identify the metallic glass alloy compositions, except
that the importance of the M − M repulsion may not have
been recognized so far. The present theory validates these
principles and places them on a firmer ground.
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