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Background and Aim: It is necessary to establish universal

methods for endoscopic diagnosis of Helicobacter pylori (HP)

infection, such as computer-aided diagnosis. In the present

study, we propose a multistage diagnosis algorithm for HP

infection.

Methods: The aims of this study are to: (i) to construct an

interpretable automatic diagnostic system using a support vector

machine for HP infection; and (ii) to compare the diagnosis

capability of our artificial intelligence (AI) system with that of

endoscopists. Presence of an HP infection determined through

linked color imaging (LCI) was learned through machine learning.

Trained classifiers automatically diagnosed HP-positive and -

negative patients examined using LCI. We retrospectively analyzed

the new images from 105 consecutive patients; 42 were HP

positive, 46 were post-eradication, and 17 were uninfected. Five

endoscopic images per case taken from different areas were read

into the AI system, and used in the HP diagnosis.

Results: Accuracy, sensitivity, specificity, positive predictive

value, and negative predictive value of the diagnosis of HP

infection using the AI system were 87.6%, 90.4%, 85.7%, 80.9%,

and 93.1%, respectively. Accuracy of the AI system was higher

than that of an inexperienced doctor, but there was no

significant difference between the diagnosis of experienced

physicians and the AI system.

Conclusions: The AI system can diagnose an HP infection

with significant accuracy. There remains room for improvement,

particularly for the diagnosis of post-eradication patients. By

learning more images and considering a diagnosis algorithm for

post-eradication patients, our new AI system will provide

diagnostic support, particularly to inexperienced physicians.
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INTRODUCTION

CONTINUOUS INFECTION WITH Helicobacter
pylori (HP) has been reported to be one of the biggest

factors in gastric cancer.1,2 To diagnose or classify chronic
gastritis by endoscopy, the Kimura-Takemoto classifica-
tion,3 the updated Sydney system,4 and the Kyoto

classification5,6 are widely used. Lately, a new image-
enhanced endoscopy system, called linked color imaging
(LCI), was developed by Fujifilm Co. (Tokyo, Japan). A
characteristic of LCI is enhancement of the slight difference
in mucosal reddish color.
Some recent studies have reported that LCI is significantly

useful for the diagnosis of active HP infection or gastric
metaplasia.7,8 However, the endoscopic diagnosis of HP infec-
tion does not have objective indicators, and the diagnostic ability
differs between doctors. Therefore, it is necessary to establish
interpretable universal methods for an endoscopic diagnosis of
anHP infection, such as a computer-aided diagnosis (CAD).The
aims of the present study are to: (i) construct an interpretable
automatic diagnostic system using a support vector machine
(SVM) for HP infection; and (ii) to compare the diagnosis
capability of our AI system with that of endoscopists.
In recent years, AI using deep learning (especially for

convolutional neural networks; CNN) has been applied to
gastroenterology.9–15 However, CNN have a disadvantage in
that it is difficult to investigate the rationale for a diagnosis
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(e.g. understanding the discriminative features for the
diagnosis) from the learned models because they construct
and optimize the nonlinear input-output mapping through
end-to-end supervised learning. It is very important not only
to improve the accuracy of diagnosis but also to expand the
knowledge of endoscopists by understanding which features
of the images are discriminative between the HP-positive or
-negative samples. Furthermore, if the expert endoscopists
already have empirical knowledge for the diagnosis, it is
also possible to improve the accuracy by embedding the
prior knowledge into the machine-learning model. In this
case, the conventional machine-learning process is effective.

In the present study, we constructed a machine-learning-
based algorithm for an automatic diagnosis system for HP
infection using LCI images. We used a SVM as a
classification algorithm and evaluated its accuracy by
comparing it with the diagnosis of the endoscopists.

METHODS

Method for creating the training data

FOR THE TRAINING data, we used four endoscopic
images each from 32 cases, which were taken from the

lesser (angle-lower body and middle-upper body) and
greater (angle-lower body and middle-upper body) curva-
ture. All 32 cases were observed by board-certified endo-
scopists and checked for HP infection based on more than
two different examinations: a histological examination, a
serum antibody test (baseline level: 0–10.0 U/mL), a stool
antigen test (positive or negative), and/or a 13C-urea breath
test (baseline level: 0–2.4&). Those images were observed
at Asahi University Hospital from April 2015 to August
2015. Details of the 32 cases are as follows (Table 1).
Nineteen cases were male, 13 cases were female. Regarding
HP infection of the subjects, 14 cases were HP positive, 18
cases were HP uninfected. Regarding the atrophic gland
border (Kimura-Takemoto classification), 24 cases were
closed type and eight cases were open type.

Classification of LCI images using feature
values

In our AI system, LCI images were classified into two types
based on a slight difference in redness in high-hue images (red-
purple: 0 ≦ H ≦ 45) and low-hue images (apricot-red,
315 ≦ H < 360; Fig. 1). We selected high hue images as the
region of interest (ROI). To extract the ROI, some preprocess-
ing was applied. First, a closing operation, which applies
dilation followed by an erosion, was used to eliminate small
holes in the image as noise. Saturation and value (S and V) of
the Hue・Saturation・Value (HSV) color space were used to

determine the noise. For example, saturation (S) of the halation
area was low, and saturation and value (S and V) of the
endoscope fiber cable were also low. Therefore, an area of low
saturation or low value was eliminated as noise (Fig. 2).
Second, a raster scan to detect the connected pixels (compo-
nent) which had a hue value greater than 128 (H ≧ 128) in the
image as the mucosal area was applied (Fig. 3a,b), and then
the connected components within 1400 pixels were eliminated
as the non-ROI area (Fig. 3b,c).

Construction of diagnosis algorithm of HP
infection using machine learning

Based on the ROI, endoscopic images were divided into two
patterns (high- and low-hue images). Those images were
calculated to determine the feature value of the mucosal
color separately, and we constructed the SVM classifier
using a radial basis function kernel. Among the 128 images,
86 were classified into low-hue, and 42 images were
classified into high-hue images. The feature values used in
the SVM were ratio of the ROI to the entire image size,
average and median hue values in high-hue images
(Fig. 4a), and mode of the saturation value and the median
and variance of the hue value in low-hue images (Fig. 4b).
Then, the trained classifiers diagnosed HP infection of

one image each automatically and made a comprehensive
determination of the presence or absence of HP (Fig. 5).

Diagnosis of HP infection based on new
endoscopic images using the AI system

To investigate the versatility of the newly constructed SVM,
we prepared five unlearned endoscopic images per case,

Table 1 Baseline characteristics of patients recruited for the

training data

N = 32

Age (y), median (IQR) 59 (38–89)
Gender, n (%)

Male 19

Female 13

HP infection

Current infection 14

Uninfected 18

Mucosal atrophy

C-I 11

C-II 7

C-III 6

O-I 1

O-II 6

O-III 1

HP, Helicobacter pylori.
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which were taken from the lesser (angle-lower body and
middle-upper body) and greater (angle-lower body and
middle-upper body) curvature and the fornix. These five LCI
images per patient were read into the AI system, and final
judgment regarding HP-positive/negative was made. When
the diagnoses of an image were not the same, the final
diagnosis was made by majority rule. Three doctors also
evaluated the same five LCI images. The three doctors were
as follows: A, an expert involved in the development of
LCI; B, a gastroenterology specialist; and C, a senior
resident. The doctors used the Kyoto classification for
diagnosing HP infection.

Patients

We retrospectively analyzed the images from 105 consec-
utive patients who were checked for HP infection based on
more than two different examinations that used the same
criteria as the training data. The images were taken using
LCI mode at Asahi University Hospital from January 2017
to January 2018. All images were taken by board-certified of
endoscopists. Characteristics of the patients were as follows:
(i) median age, 64 years old (26–88); (ii) gender, 61 male

and 44 female; (iii) HP infection, 42 HP positive, 46 post-
eradication, and 17 uninfected; and (iv) mucosal atrophy, 46
closed type and 59 open type (Kimura-Takemoto classifi-
cation; Table 2). This study included 46 cases of post-HP-
eradicated gastric mucosa. The patients underwent eradica-
tion therapy in 2006–2017. More than 1 year (average of
5.6 years) had passed since HP was successfully eradicated
after undergoing endoscopy. We excluded patients who were
not checked for HP infection using more than two
examinations or who showed mucosal atrophy but did not
have a history of HP eradication and who did not have
images taken from all five perspectives in the LCI mode
(Fig. 6).

Endoscopy system

All examinations were carried out using a LASEREO
system (VP-4450 or -7000, and LL-4450 or -7000) and an
upper gastrointestinal endoscope (EG-L590ZW or EG-
L600ZW) (Fujifilm Co.). These endoscopic systems have
both LCI and WLI modes. Color emphasis and structural
emphasis of the LCI mode were set to C1 and B5,
respectively.

Figure 1 Linked color imaging images were classified into two groups based on a difference in the hue value in Hue・Saturation・
Value color space which reflects a difference in mucosal redness: high-hue (red-purple: 0 ≦ H ≦ 45) and low-hue images

(apricot-red, 315 ≦ H < 360).
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RESULTS

FIVE HUNDRED AND twenty-five images of the 105
cases were divided into two groups automatically. The

first group was the low-hue group with 490/525 images (182
images were of HP-positive cases and 308 images were of
post-HP-eradication cases); the second group was the high-
hue group with 35/525 images (28 images were of HP-

positive cases and seven images were of post-HP-eradica-
tion cases).
Levels of accuracy, sensitivity, specificity, PPV, and NPV

of diagnosis of HP infection using the AI system were
87.6% (92/105), 90.5% (38/42), 85.7% (54/63), 80.9% (38/
47), and 93.1% (54/58), respectively. In contrast, those from
a diagnosis by A were 90.5% (95/105), 92.9% (39/42),
88.9% (56/63), 84.8% (39/46), and 94.9% (56/59),

Figure 2 Schematic illustration of the preprocessing used in the present study to remove noise in endoscopic images. Pixels

with low saturation or low value in Hue・Saturation・Value color space were extracted and eliminated as noise representing the

halation and the endoscope fiber cable. S-V space, saturation-value space.

Figure 3 Labeling process is applied to detect connected pixels (component) which have a hue value >128 (H > 128) in the

images as the mucosal area through a raster scan (a?b). Then the connected components within 1400 pixels are eliminated

(b?c) as the non-region of interest area.
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respectively. Those from a diagnosis by B were 89.5% (94/
105), 85.7% (36/42), 92.1% (58/63), 87.8% (36/41), and
90.6% (58/64), respectively. Finally, those from a diagnosis
by C were 86.7% (91/105), 92.9% (39/42), 82.5% (52/63),
78.0% (39/50), and 94.5% (52/55), respectively.

Accuracy of the AI system was higher than that of the
inexperienced doctor (doctor C), but there was no significant
difference between the diagnosis of the physicians and the
AI system (between AI and doctor A, P = 0.51; between AI
and doctor B, P = 0.67; between AI and doctor C,
P = 0.84, chi-squared test).

Subanalysis of the patients divided with
respect to state of HP infection

First, we conducted a subanalysis of the HP-positive cases
(n = 42). Among the 42 cases, 27 were male and 15 were
female. Mean age was 59.2 (26–88) years. Atrophic border
was as follows: closed type, 14 cases; open type, 28 cases.
Accuracies of the AI system, doctors A, B, and C were
90.5% (38/42), 92.9% (39/42), 85.7% (36/42), and 92.9%
(39/42), respectively.

Second, we conducted a subanalysis of post-HP-eradica-
tion patients (n = 46). Among the 46 patients, 27 were male
and 19 were female. Mean age was 69.5 (50–88) years.
Atrophic border was as follows: closed type, 15 cases; open
type, 31 cases. Accuracies of the AI system, doctors A, B,
and C were 82.6% (38/46), 87.0% (40/46), 89.1% (41/46),
and 76.1% (35/46), respectively.

Subanalysis of AI diagnosis for each image
of stomach area

We conducted a subanalysis of 525 images of 105 cases.
Based on the location, accuracies of the lesser curvature
of the angle-lower body, lesser curvature of the middle-
upper body, fornix, greater curvature of the angle-lower
body, and greater curvature of the middle-upper body
were 76.2% (80/105), 88.6% (93/105), 69.5% (73/105),
77.1% (81/105), and 73.3% (77/105), respectively
(Table 3). Accuracy of the lesser curvature of the
middle-upper body was significantly higher than that of
the fornix and the greater curvature of the middle-upper
body (P < 0.01, chi-squared test).

Subanalysis of AI diagnosis based on hue of
each image

We conducted a subanalysis of the hue of each image.
Among all images, 93.3% (490/525) were classified into
low-hue images, whereas 6.7% (35/525) were classified into
high-hue images.
Accuracies of the low-hue images of HP-uninfected,

HP-positive patients, and post-HP-eradication patients
were 89.4% (76/85), 73.1% (133/182), and 75.8% (169/
223), respectively. Accuracy of the high-hue images of
HP-positive patients was 100.0% (28/28), whereas
that of post-HP-eradication patients was 0.0% (0/7)
(Table 4).

Figure 4 Feature values used in the support vector machine model for each of the high-hue and low-hue images. (a) Distribution

of the pixels in the 3-D space formed by the percentage of the high-hue value (ratio of the region of interest to the entire image

size), median hue value, and average hue value in high-hue images. (b) Distribution of pixels in the 3-D space formed by variance

of hue value, median hue value, and mode of saturation value in low-hue images. Hp, Helicobacter pylori.
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DISCUSSION

IN THE PRESENT study, we combined LCI with a newly
constructed AI system trained by SVM; the system uses

an interpretable algorithm for the diagnosis of HP infection
to support the clinical diagnosis of doctors.

Usefulness of LCI regarding the inflammation of gas-
trointestinal mucosa has been previously reported.
Uchiyama et al.16 showed that the mucosal redness
enhanced by LCI was correlated with mucosal inflammation

in ulcerative colitis. Dohi et al.7 reported the usefulness of
LCI for diagnosing HP-positive and post-HP-eradication
cases by enhancing endoscopic images of diffuse redness.
Takeda et al.17 reported that LCI enhances color variation of
the mucosal change caused by HP infection by checking
against the Kyoto classification. We focused on these color
variations as a feature value of our machine-learning system.
In recent years, the innovation of AI technology has been

accelerating remarkably. In the field of gastroenterology,
Mori et al.18 reported a CAD system for the diagnosis of

Figure 5 Schematic flow of the proposed machine-learning algorithm to diagnose Helicobacter pylori infection. LCI, linked color

imaging; SVM, support vector machine.
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small colorectal polyps. Misawa et al.19 reported a CAD
system for the detection of colorectal polyps. With regard to
upper digestive diseases, some studies have already reported
the usefulness of CNN-based AI systems for diagnosing HP
infection9–13 and early detection of gastric neoplasms.13–15

Shichijo et al.9,10 reported a CNN-based AI system that
diagnoses HP infections. Nakashima et al.12 combined a
CNN-based AI system with blue laser imaging and LCI.
Their AI systems showed high accuracy; however, post-HP-
eradication cases were excluded from their studies. As the
importance of HP eradication is recognized worldwide, the
number of post-HP-eradication cases is increasing. It is also

important to construct an algorithm for post-HP-eradication
cases.
Although the use of CNN is one of the most popular

deep-learning approaches for automatically extracting geo-
metric features and differentiating between HP-positive and
-negative images, CNN have a disadvantage in that it is
difficult to investigate the rationale of their diagnosis. It is
particularly important to explain the ground and process of
the result obtained. To explore and extract the interpretable
features of images that doctors acquire implicitly as
empirical knowledge through their experience in the clinical
field, we expect that the doctor’s expertise can be embodied
as a visible system with scientific evidence. Furthermore,
this investigation would also be returned beneficially to
endoscopists to expand their knowledge. Hence, we chose
classical machine learning using SVM in the current study.
Therefore, our proposed system should not be compared
with deep-learning methodologies such as CNN-based
classifiers which require preliminary determination of a
feature-extraction process. The comparison between them
would go beyond the scope of this study. Our new AI
system classified the input images into high- and low-hue
groups, and then extracted the ROI for classification. The
SVM models were constructed for each group based on the
feature values calculated within the ROI and the images of
each group were separately classified into HP+ or HP�
using the corresponding SVM model.
In the present study, we selected five endoscopic images

that covered the entire gastric mucosa: lesser curvature
(angle-lower and middle-upper body), greater curvature
(angle-lower and middle-upper body), and fornix images.
The accuracy of this AI system is superior to that of an

Figure 6 Flowchart of patients recruited in the present study. AI, artificial intelligence; HP, Helicobacter pylori.

Table 2 Baseline characteristics of patients recruited for the

present study

N = 105

Age (y), median (IQR) 64 (26–88)
Gender, n (%)

Male 61

Female 44

HP infection

Current infection 42

Post-eradication 46

Uninfected 17

Mucosal atrophy

C-I 11

C-II 20

C-III 15

O-I 26

O-II 26

O-III 7

HP, Helicobacter pylori.
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inexperienced doctor but cannot surpass the diagnostic
capability of an experienced doctor. Based on a subanalysis
of each endoscopic image, the lesser curvature of the angle-
lower body showed the greatest accuracy. In the diagnostic
process of HP infection, further consideration regarding the
area of the endoscopic images applied, or the number of
images, is warranted for a complete diagnosis. Based on a
subanalysis of each hue, the group of high-hue images can
diagnose HP-positive patients with 100% accuracy, but
could not detect post-eradication patients. This result
indicates that images that have a high hue owing to map-
like redness are difficult for our AI system to diagnose. The
group of low-hue images can be used to diagnose HP-
uninfected cases with high accuracy, whereas the accuracy
for HP-positive or post-eradication patients is not sufficient
for clinical adaptation. In the first training data set, there
were no post-HP-eradication cases. We believe that the cases
uninfected with HP could represent HP-negative (including
post-eradicated) cases because the reddish color of LCI is

correlated with mucosal inflammation. As a result, our
system misdiagnosed the high-hue images with intestinal
metaplasia and the low-hue images of HP-positive or post-
eradication cases.
The present study has several limitations. First, it was

conducted at a single center and the collected endoscopic
images were few in number. Second, classification of the 105
unlearned cases showed a low ratio of high-hue images. Thus,
we have to modulate the reference value when selecting high-
hue images.
In a future study, we aim to include post-eradication cases

in training data and investigate the feature value of intestinal
metaplasia particularly “map-like redness”, which was
reported to show a lavender color in the LCI mode.20

Currently, using the proposed AI system in double-
checking procedures in clinical practice is premature and
this problem is not limited to our proposed system. In the
future, it would be more suitable for developing countries,
where the diagnosis and eradication of HP infection can be
approved for patients with an endoscopic diagnosis of
chronic gastritis.

CONCLUSION

THE AI SYSTEM was able to diagnose HP infections
with significant accuracy. However, there is still room

for improvement, particularly regarding the diagnostic
capability for post-eradication patients. By learning more
images and considering a diagnosis algorithm for post-
eradication patients, our new AI system will be able to
support doctors, particularly inexperienced physicians.

Table 4 Subanalysis of the accuracy of AI diagnosis for each

image based on hue

Low-hue images High-hue images

Distribution 93.3% (490/525) 6.7% (35/525)

Accuracy of AI diagnosis of each hue image

Total 77.1% (378/490) 80% (28/35)

HP Positive 73.1% (133/182) 100.0% (28/28)

After eradication 75.8% (169/223) 0.0% (0/7)

Uninfected 89.4% (76/85) None

AI, artificial intelligence; HP, Helicobacter pylori.

Table 3 Subanalysis of the accuracy of AI diagnosis for each image based on location

Accuracy of AI diagnosis of each portion of the stomach

Lesser curvature Fornix Greater curvature

Angle-lower body Middle-upper body Angle-lower body Middle-upper body

Total 76.2% (80/105) 88.6% (93/105) 69.5% (73/105) 77.1% (81/105) 73.3% (77/105)

HP Active 76.2% (32/42) 88.1% (37/42) 59.5% (25/42) 78.6% (33/42) 69.0% (29/42)

After

eradication

71.7% (33/46) 89.1% (41/46) 73.9% (34/46) 73.9% (34/46) 67.4% (31/46)

Uninfected 88.2% (15/17) 88.2% (15/17) 82.4% (14/17) 82.4% (14/17) 100% (17/17)

AI, artificial intelligence; HP, Helicobacter pylori. [Correction added on 29 October 2019, after first online publication: Figures included in Table

3 have been adjusted to reflect the correct aspect ratio.]
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