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Abstract—This paper reports our development of a communication 

robot for use in a shopping mall to provide shopping information, offer 
route guidance, and build rapport. In the development, the major 
difficulties included sensing human behaviors, conversation in a noisy 
daily environment, and the needs of unexpected miscellaneous 
knowledge in the conversation. We chose a network robot system 
approach where a single robot’s poor sensing capability and 
knowledge are supplemented by ubiquitous sensors and a human 
operator. The developed robot system detects a person with floor 
sensors to initiate interaction, identifies individuals with RFID tags, 
gives shopping information while chatting, and provides route 
guidance with deictic gestures. The robot was partially teleoperated to 
avoid the difficulty of speech recognition as well as to furnish a new 
kind of knowledge that only humans can flexibly provide. The 
information supplied by a human operator was later used to increase 
the robot’s autonomy.  For 25 days in a shopping mall, we conducted a 
field trial and gathered 2,642 interactions. A total of 235 participants 
signed up to use RFID tags and later provided questionnaire responses. 
The questionnaire results are promising in terms of the visitors’ 
perceived acceptability as well as the encouragement of their shopping 
activities. The results of the teleoperation analysis revealed that the 
amount of teleoperation gradually decreased, which is also promising. 
 

Index Terms—Social Human-Robot Interaction, Network 
Robot System, Robots for Shopping Mall, Route Guidance, 
Information Providing 
 

I. INTRODUCTION 

s robots move from laboratories and into our daily lives, 
they are expected to interact with people and support daily 
activities. In particular, humanoid robots are already being 

used for helping with physical activities [1]. Moreover, 
researchers have started to consider how humanoid robots 
might be suitable for communication with humans [2-5]. Their 
human-like bodies enable them to perform natural gaze motion 
[6] and deictic gestures [7]. These features of humanoid robots 
will allow them to perform such communicative tasks in human 
society as route guidance and explanations of exhibits. 
    The applications of robotic systems continue to expand. 
Whenever a new application is to be covered by a robotic 
system, the challenge is to identify a possible combination of 
system components, e.g., sensors and actuators, and a way of 
integrating them. In robotics, the success of such development 
has been accumulated as useful scientific knowledge. For 
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instance, previous studies have revealed that robots can be used 
as museum guides [8, 9], in city exploration [10], as 
receptionists who assist visitors [11], as peer-tutors in schools 
[12], in mental-health care for elderly people [13], in autism 
therapy [14, 15], and in childcare [16]. 

This paper1 reports our challenges in applying a robotic 
system to an information-providing task in the daily 
environment of a shopping mall. The difficulties included 
sensing the human behaviors and conversation in a noisy daily 
environment and the unexpected needs of various information 
during conversation. Our approach used a network robot 
system to supplement the robot’s poor sensing capability and a 
human operator to support the robot’s conversational and 
informational capability. 

This paper consists of the following sections. In Section II, 
we report how we designed the role of the robot. In Section III, 
we report its implementation. In Sections IV and V, we report 
its influence on people. 

II. ROLE OF THE ROBOT 

What kind of tasks do people want robots to perform in their 
daily lives? According to a Japanese government report [18], a 
majority of respondents want robots that provide information at 
such public spaces as train stations and shopping malls2, while 
people also want robots to do such physical tasks as toting 
luggage. Therefore, we decided to explore an 
information-providing task for a robot in a public space, 
specifically, a guide robot in a large mall. 

The next question addresses the roles of a guide robot in a 
mall. Many other facilities, such as maps and large screens, 
provide information. In contrast, a robot offers unique features 
based on its physical presence, its interactivity, and its 
capability for personal communication. We defined three roles 
based on these features. 

Role 1: Guiding 
The size of shopping malls continues to increase. Sometimes 

people get lost and ask for directions. Even though a mall has 
maps, many still prefer to ask for help, especially because some 

                                                                                                     
author’s phone: +81-774-95-1424; fax: +81-774-95-1408;  e-mail: 
kanda@atr.jp).  

1This paper is an extended version of a conference paper [17] with additional 
description of technical implementation and discussions. 

2This might be relatively high in Japan compared with other countries: 
76.2% of the respondents think it is good to have robots at transportation 
facilities such as train stations and 87.5% think that at these places guidance is a 
good task for robots; 64.2% think it is good to have robots at commercial places, 
such as a shopping mall, and 87.9% think that at these places guidance is a good 
task for robots.  
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information is not shown on a map; people ask, “where can I 
buy an umbrella?” Here, a route guidance service is needed. 
People even asks strange question, e.g. “where can I print a 
digital camera?” One author was actually asked this in a mall, 
which suggests the need of human support for the robot. Even if 
a robot has great language interpretation capability, people 
might not use correct language.  

In contrast to a map or other facilities, a robot has the 
following unique features. It has a physical existence, it is 
co-located with people, and it is equipped with human-like 
body characteristics. Thus, as shown in Fig. 3, a robot can 
naturally explain a route by pointing like a human, looking in 
the same direction as the person is looking, and using such 
reference terms as “this way.” Since the safe locomotion speeds 
of robots remain very slow, we arranged the route guidance as 
an information-providing service at a certain location instead of 
a service that physically accompanies people to destinations. 

Role 2:  Building Rapport 
From the customer’s viewpoint, since the robot is a 

representative of the mall, it needs to be friendly to customers. 
In addition, since people repeatedly visit malls, a robot needs to 
naturally repeat interaction with the same person; thus a 
function that builds rapport with each customer is useful. The 
importance of building rapport has been studied in HCI in the 
context of affective computing [19]. 

Moreover, one future scenario in this direction is a function 
of customer-relationship management. Previously, this was 
done by humans; for example, in a small shop, the shopkeeper 
remembers the “regulars” and molds communication to each 
individual. Typically, shopkeepers are particularly cordial to 
good customers. Recently, since managing numerous 
customers has become too unwieldy, information systems have 
assumed this role in part, such as the mileage services of airline 
companies and the point systems of credit cards and online 
shopping services, such as Amazon. However, these 
information systems do not provide natural personalized 
communication like humans. In contrast, we believe that in the 
future a robot might provide natural communication and 
personalized service for individual customers and thus develop 
a relationship or a rapport with them. 

Role 3: Advertisements 
From the mall’s point of view, advertising is an important 

function. For instance, posters and signs are placed everywhere 
in malls. Recently, information technologies are also being 
used for such purposes. Fig. 2 shows a large, 2.5 by 5 m screen 
that provides shopping information to customers in the 
shopping mall where we conducted our field trial. The screen 
shows such shop information as locations in the mall and 
features of shops’ products. 

We believe that a robot can also be a powerful tool for this 
purpose. Since a robot’s presence is novel, it can attract 
people’s attention and redirect their interest to the provided 
information [20]. In addition, it can furnish information in the 
same way that people talk to each other; it can describe shops 
and products from its first-person viewpoint (See II c (4)). 

  
Fig. 1 Shopping mall 

 
Fig. 2 Large information screen in shopping mall 

(a) Person asks for a route (b) It points and looks that way

(c) “Please go that way” (d) “After that…” 

Fig. 3 Robot guiding a customer with deictic representation

III. HARDWARE AND SYSTEM DESIGN 

Figure 4 shows an overview of the system architecture. The 
robot identifies a person with an RFID tag reader, continues to 
track his/her position with floor sensors, and tracks the person’s 
face with its camera. As in a WOZ method, speech recognition 
is conducted by a human operator. This information is sent to a 
behavior selector that chooses an interactive behavior based on 
pre-implemented rules called episode rules, which are the 
history of previous dialogues with this person and her/his 
personal information. 

Our architecture is behavior-based, where low-level 
sub-modules can be restricted by modules in higher layers. 
Perhaps uniquely, there is no central module that handles 
coordination at one place -- unlike sense-plan-act type 
architectures where all information is once corrected in such a 
coordination module. The top of the architecture, in terms of 
coordination, is the situated module. Depending on the 
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Fig. 4 System overview 

situation, a situated module can override the default structure of 
the coordination. In terms of information-sharing among 
modules, our model is a very simple black-board model where 
all modules update shared variables which are placed in the 
shared memory. 

This section reports our design considerations behind this 
architecture and the details of each mechanism in the 
architecture. 

A. Design Considerations 

Based on the three roles to be provided, we explored a 
combination of hardware and infrastructure. Some researchers 
are studying a stand-alone robot that has all sensing, decision 
making, knowledge processing, and acting capabilities. In 
contrast, others are focusing on a combination of robots, 
ubiquitous sensors, and humans. Considering the complexity of 
the given task, we chose the latter strategy, known as a network 
robot system [21], in which a robot’s sensing capability and 
knowledge are supplemented by ubiquitous sensors and a 
human operator. 

Moreover, we made two decisions about the 
hardware/software design. First, we decided to use human 
operators for speech recognition and to supplement knowledge 
gaps. Our robot system is designed to operate without an 
operator; however, when providing information, instability and 
awkwardness cause disappointment, and the quality of current 
speech-recognition technology remains far from adequate for 
our needs. For instance, a speech recognition system prepared 
for a noisy environment, which performs at 92.5% word 
accuracy in 75-dBA noise [22], resulted in only 21.3% 
accuracy in a real environment [23]. This reflects the natural 
manner of daily utterances, changes in voice volume among 
people and even within the same person, and the 
unpredictability of noise in a real environment. Therefore, since 
a speech recognition program causes so many recognition 
errors, the robots would have to ask for clarification too often. 

Using human operators is quite common in human-computer 

interaction (HCI) and human-robot interaction for prototyping 
and is known as the Wizard of Oz (WOZ) approach [24]. In 
addition, since our vision is to use a human operator for more 
than making a prototype, we believe that a robot can start 
working in daily environments with human operators with a 
technique that minimizes the task load of operators, such as one 
that allows a single operator to control four robots [25]. 

Second, we restricted the robot from moving around its 
environment. Since the robot is mobile, this decision appears 
disappointing; however, in negotiations with the mall 
management, considering the current robot’s capability in 
terms of its perception of people movements, we made this 
decision to reduce such safety risks as contact with people, or 
such business risks as crowds in the middle of the corridor or in 
front of a shop. 

B. Hardware and Sensing System 

Robovie, a humanoid robot, was used for this study. Among 
its sensing capabilities, we focused on three capabilities: 
position estimation of people, person identification, and face 
tracking. Since the first two are difficult for a robot in a noisy 
real world, we decided to use ubiquitous sensors. Face tracking 
was primarily done with its own sensor by incorporating 
information from ubiquitous sensors. The following section 
describes the details of the hardware and our decisions. 

1) Robovie’s hardware 
Robovie is an interactive humanoid robot characterized by 

its human-like physical expressions and its various sensors [26] 
(Fig. 5). Robovie has a head, two arms, a body, and a 
wheeled-type mobile base. Its height and weight are 120 cm 
and 40 kg. It has the following degrees of freedom (DOFs): two 
for its wheels, three for its neck, and four for each arm. On its 
head it has two CCD cameras and a speaker. An 
omnidirectional camera and a microphone are attached on an 
extended pole connected to its shoulder. We used a 
corpus-based speech synthesis [27] for generating speech. 
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Fig. 5 Robovie-IIF 

The version used for this study is Robovie-IIF, which has 
tactile sensor elements embedded in the soft skin that covers its 
whole body. With the tactile sensor, the robot recognizes such 
types of touching as petting and stroking as well as the place 
being touched [28].  

2) Position estimation 
We used external sensors for detecting and tracking people’s 

positions around the robot, since we need such highly accurate 
detection to robustly operate the robot in crowded environments. 
We chose floor sensors, because they are the most robust device 
in terms of stability for detecting a person’s presence, and their 
area can also be used to indicate the conversational distance of 
the robot where people can interact with it. 

We installed 16 floor sensors units, VS-SS-F (Vstone 
Corporation, Osaka, Japan), around the robot that covered a 2 x 
2 m area (Fig. 6). Each sensor unit is 50 x 50 cm with 25 on-off 
pressure switches. The sensor resolution is 10 x 10 cm2. Each 
sensor provides binary output, regardless whether there is 
pressure on it. These outputs are read through an RS-232C 
interface with a sampling frequency of 5 Hz. 

We used a Markov Chain Monte Carlo method and a bipedal 
model to estimate people’s positions with a model of a person’s 
gait pattern [29]. This method provided robust position 
estimation up to a few persons with 21 cm average position 
error. 

 
3) Person identification with RFID tag 
Various techniques for person identification exist, including 

computer vision to recognize faces, active-type RFIDs, and 
passive-type RFIDs. For person identification, we employed a 
passive-type radio frequency identification (RFID) tag because 
of their 100% accuracy in person identification. Such accuracy 
is crucial since the misidentification of a person causes 
embarrassing interaction in human communication. One 
downside is that a system based on passive-type RFID tags 
requires intentional user contact with an RFID reader; since 

passive-type RFIDs are already widely adopted for train tickets 
in Japan, people are accustomed to using them. We do not 
consider this problematic. 

The left side of Fig. 7 shows a passive-type RFID tag (Texas 
Instruments, RI-TRP-WRHP) embedded in a cellular phone 
strap that uses a frequency of 134.2 kHz. The accessory is 4 cm 
high. The RFID tag’s reader is attached to the robot’s chest. 
Since a passive-type RFID system requires a contact distance 
for reading, users were instructed to place the tag on the tag 
reader for identification and to interact with the robot (Fig. 7, 
right). We provided this RFID tag to mall customers who 
registered for the field trial. 

Once an RFID tag is read by the reader, the system associates 
the person ID with the person detected by the floor sensor. 
When multiple persons are tracked with the floor sensors, it 
associates the ID to the nearest person. Once the ID is 
associated, it keeps tracking the ID until the person with the ID 
leaves the area on the floor sensors. The location of the person 
with the ID is repeatedly used during interaction. The robot 
orients the body direction and maintains eye contact; the 
interaction is concluded when the person leaves. 

                 
Fig. 7 RFID tag and reader 

4) Face tracking system 
We developed a face tracking algorithm for a communication 

robot that integrates information from both foveal and 
omnidirectional visions and actively controls the robot’s head 
orientation [30]. However, in a real environment, false-positive 
faces were frequently detected, which largely hindered the 
performance. 

Thus, in addition to this basic mechanism, we used 
information from person tracking and identification. The search 
area of a person’s face is limited to the area where people are 
detected by floor sensors. When the person is identified by the 
RFID tags, the system retrieves the person’s height information, 
which is pre-stored, to vertically limit the search range. With 
these combinations, the robot was usually able to orient its 
gazing direction to a user’s face. 

C. Mechanism for generating interactive behaviors 

The mechanism for generating interactive behaviors follows 
the architecture reported in [26]. For this study, we added 
databases for repeated interaction and route guidance and 
extended the behavior selection mechanism to be applicable to 
different individuals. In this section, we briefly explain the 
basic mechanism (see [26] for more details) and describe the 
new features of knowledge representation and behavior 
selection. 

1) Knowledge representation 
The robot system has three databases: personal information, 

dialog history, and guidance information (Fig. 4). Table 1 
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Fig. 6 Floor sensors 
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shows the data structure for personal information. Each person 
has a unique ID that is associated with RFID tags. Participants 
also furnished their names (only for administrative purposes), 
nicknames, height, and age. The robot used nicknames in the 
interaction. This design addressed privacy concerns, since we 
found in our preliminary study that some people prefer that 
their real names not be used in a public environment [31]. The 
table shows some variables. For example, the “useDays” 
variable is incremented when the person visited the robot on a 
different day from last visit. 

Table 2 shows the data structure for dialog history, which is 
simply stored as a sequence of the history of the executed 
situated modules, and includes information about how 
participants answered questions from the robot as the result 
values of the situated module. The history is stored in the 
database when the person finished interaction with the robot 
and restored to the memory from the database when the person 
visits the robot again. In combination with the episode rules, 
this dialog history enables the robot to adapt its interaction to 
each person over time. Table 2 indicates a brief example where 
Mr. Yamada answered “I like ice cream” for ASK_FAVORITE 
behavior and Mr. Sato asked about a restroom location. 

Table 3 shows the data structure for the guiding information 
that is used by the route-guidance behaviors. There are unique 
IDs for each shop, name, x-y coordinates, a floor and a relay 
point, which is used when the destination is outside the visible 
distance. For example, when it provides directions to the CAFE, 
it says, “Please go this way (pointing), and take the first 
escalator to go to the third floor. The coffee shop is around 
there.” When the destination is within a visible distance, the 
relay point is not used. For example, the robot gives directions 
to RESTROOM: “Please go this way (pointing); you will see 
the restroom.” 

 
Table 1   Data schema of personal information table  

ID Name Nickname Height Age useDays

1 Yamada Daddy 180 40 2 

2 Inoue Ino 160 24 1 

3 Sato Sattyan 120 12 1 

 
Table 2   Data schema of interaction history table  

ID Time Module ID Result value 

1 136 GUIDE_CAFE 1 (success) 

1 149 ASK_FAVORITE 2 (ice cream) 

1 160 BYE 1 (success) 

2 200 HELLO 1 (success) 

2 220 OFFER_ROUTE 120 (asked restroom)
 
Table 3   Data schema of guiding information table  

Shop Name ID X Y Floor Relay point

CAFE 1 300 1000 3 Escalator_1

DRUG_STORE 2 1000 2000 4 Elevator_3

RESTROOM 3 5000 300 2 null 

 
2) Dialog control 

Behavior (situated module) 
The central idea in our architecture is the concept of situated 

modules (also referred to as “behavior” in this paper) and 
episode rules [26]. The robot only executes one situated 
module at each moment. Each situated module controls the 
robot’s utterances, its gestures, and its non-verbal behaviors in 
reaction to a person’s action. 

In concrete, each situated module consists of precondition 
and situated processing parts. Table 4 shows an example of the 
pseudocode of one situated module. In this example, the 
precondition part is used to determine whether this situated 
module is executable at a current moment. It verifies whether 
presence of a person in front of the robot, as detected by the 
floor sensor. The behavior selector only chooses a situated 
module that is executable at the current moment. Once this 
module is selected for execution, the system starts to execute 
the situated processing part of the module. The robot offers to 
shake hands by saying, “Let’s shake hands,” and waits for input 
from a tactile sensor to react to the handshake. The result of the 
situated recognition result is returned to the behavior selector, 
so that the system can use it for choosing the next behavior. In 
this example, it returns 1, which represents a success when a 
reaction is observed at the tactile sensor, which is considered a 
successful reaction in the handshaking behavior. It returns 0, 
which represents a failure when there is no reaction until the 
timeout time. 

 

Episode rules 
The transitions among behaviors are pre-coded, often with 

sequential transitions like a state transition machine; but, the 
transition is not strictly sequential. Our architecture allow us to 
describe much flexible relationship. There is a large pool of the 
rule set, named episode rules, that describe the transition rules 
among the situated modules. It is written in a similar manner as 
regular expression. With this mechanism, we can specify any 
complex conditions (i.e. high description capability) with 
reasonable effort in developing. In addition, the mechanism 

Table 4 Pseudocode of “SHAKE_HANDS” behavior 
＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿ 
Precondition: IsHumanExist() == true 
Situated processing: 
1:  Initially, returnValue = 0;  
2:  Say (“Let’s shake hands”); 
3:  PlayMotion (“shake_hands”); 
4:  startTime=GetNowTime(); 
5:      while ( GetNowTime() – startTime < 3 seconds )| 
6:   if (IsReactTactileSensor( RIGHT_HAND ) == true ) 
7:    returnValue = 1; 
8:    break; 
9:   end if 
10: end while 
11: if (returnValue ==1) 
12:   Say (“Thank you”); 
13: end if 
14: return returnValue; 
―――――――――――――――――――――――――― 
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Fig. 8 Examples of transitions of behaviors 

with the pool of episode rules allows us to flexibly add new 
behaviors and episode rules. 

In concrete, at each moment when a situated module finishes 
its execution, the behavior selector chooses the next situated 
module by referring to all pre-implemented episode rules and 
the execution result of the current situated module. 

Table 5 shows the basic grammar and examples of the 
episode rules. Each situated module has a unique identifier 
called a Module ID. "<ModuleID = result_value >" refers to the 
execution history and the result value of the situated modules. 
"<ModuleID1 = result_value1> <ModuleID2 = 
result_value2>..." means the referring rule of the previously 
executed sequence of situated modules (Table 5-1). 
“<...>|<...>” denotes a selective-group (OR) of the executed 
situated modules, and “(...)” means a block that consists of a 
situated module, a sequence of situated modules, or a 
selective-group of situated modules (Table 5-2). Similar to 
regular expressions, we can describe the repetition of the block 
as "(... {n,m}", where n gives the minimum number of times 
that match the block and m gives the maximum (Table 5-3). We 
can specify the negation of the whole episode rule with an 
exclamation mark "!". For example, “! 
<...>...<...>NextModuleID” (Table 5-4) means the module of 
NextModuleID will not be executed when the episode rule 
matches the current situation specified by “<...>...<...>”. The 
negation of a Module ID or a result value is written with a caret: 
"^" (Table 5-5). 

 

Using Dialog History 
The robot has a mechanism for adjusting its interactive 

behaviors to each individual based on its dialog history. For 
example, the robot asks whether the person likes ice cream on 
day one; when the person re-visits the robot on day two, the 

robot starts a conversation: “Last time, you said that you liked 
ice cream. Well, I asked about ice cream in this shopping mall 
and I found…” 

We extended our architecture to realize such an interaction. 
Two types of information are stored: abstracted information in 
personal information tables (Table 1) and raw execution logs of 
situated modules in interaction history tables (Table 2). When 
the interacting person is identified by RFID tag, the robot 
updates the personal information stored in the personal 
information table (Table 1), i.e., incremented useDay variable 
if this person did not visit the robot on this day. The system 
starts to store the dialog history in the database after the end of 
each execution of situated modules. 

We extended the episode rule to include the notion of 
condition, which is defined by an equation with a variable (e.g., 
useDays == 0 or useDays > 0), where variables are stored in the 
personal information table (Table 1). If a condition is used, the 
rule will only be applicable if the condition is satisfied. The 
following is the basic grammar of an extended episode rule:  

conditionruleepisoderuleepisodeExtended ,  

Figure 8 shows an example of a situated module transition 
with episode rules. Episode rules 1 and 3, which are typical 
examples of an episode rule with a condition, are applicable for 
the situation after the HELLO situated module returns value 1. 
They use the useDays variable to define their condition; on the 
first day, the behavior selector chooses the SHAKE_HANDS 
situated module after HELLO. Since the useDays variable is at 
0 at the interaction on the first day, episode rule 1 is applicable 
but not episode rule 3. On the other hand, on the second day, 
the behavior selector chooses THANKS_REVISIT after 
HELLO because the useDays variable has been incremented to 
1 now; the behavior selector referred episode rule 3 since it is 
applicable but not episode rule 1. 

Episode rule 4 is an alternative way of using the dialog 
history. In this case, the episode rule has no condition. On day 
two, the behavior selector chooses YOU_LIKE_ICECREAM 
by referring to episode rule 4 after 
END_DAILY_INTERACTION. Episode rule 4 matches 
because ASK_FAVORITE was executed on day 1, which 
resulted in value 2 (ice cream), after 
END_DAILY_INTERACTION was conducted. With these 
mechanisms, in the YOU_LIKE_ICECREAM behavior, the 
robot says, “Last time, you said that you like ice cream. I asked 

Table 5 Grammar of episode rules 
＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿

1.  <ModuleID=result_value>…<…>NextModule 
2.  (<ModuleID1=result_value1>|<ModuleID2=result_value2>)...
3.  (...){n,m}... 
4.  !<…>NextModule 
5.  ^<ModuleID=^result_value>NextModule 
(1: basic structure of describing executed sequence, 
2: “OR”, 3: repetitions, 4: negation of episode rule, 
5: negation of Module ID and result value) 
―――――――――――――――――――――――――― 
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about ice cream in this shopping mall and have a 
recommendation for you. On the fourth floor, …” 
 

3) Non-verbal behaviors 
While situated descriptions are written in the situated 

modules, a separate controller exists for the generally 
applicable low-level control of non-verbal behaviors that 
controls the robot’s body orientation (Fig. 9 (b)) and its gaze 
direction. For these functionalities, information from the 
position and face tracking modules is used. The situated 
modules can restrict the execution of these non-verbal 
behaviors if needed; in other words, unless restricted, the robot 
generally performs these non-verbal behaviors. 

The situated modules sometimes require the non-verbal 
behavior controller to perform gestures, such as pointing and 
gazing at in a guiding behavior. This explicit control of gesture 
overrides the control of actuators usually used for the above 
non-verbal behaviors. 

Reactive behaviors are implemented as well. When a person 
touches the tactile sensors of the robot, the robot directs its gaze 
to the part being touched and overrides the gaze control usually 
used to maintain eye contact. This functionality expresses its 
lifelikeness. 

 

D. Design of Interactive Behaviors 

1) General design 
We set two basic policies for designing the robot’s 

interaction. First, it assumes the communication initiative, 
introduces itself as a guide robot, asks about places, and then 
provides information in response to user requests. In this way, 
customers clearly understand that the robot is engaged in route 
guidance. 

Second, the manner of its utterances and other behaviors are 
prepared in an affective manner [19], not in a reactive manner. 
The robot engages in human-like greetings, reports its 
“experience” with products in shops, and tries to establish a 
relationship (rapport) [32] with individuals. This is very 
different from master-slave type communication where a robot 
prompts a user to provide a command. 

2) Guiding behavior 
Two types of behaviors were prepared for guiding: route 

guidance and recommendation. The former is a behavior in 
which the robot explains a route to a destination with utterances 
and gestures (Fig. 3). The robot points in the first direction and 
says, “Please go that way” with an appropriate reference term 
chosen by an attention-drawing model [33]. It continues the 
explanation: “After that, you will see the shop on your right.” 
Since the robot knows all of the mall’s shops and facilities 
(restrooms, exits, parking lots, etc.), it can provide directions 
for 134 destinations.  

In addition, for situations where a user hasn’t decided where 
to go, we designed recommendation behaviors in which the 
robot suggests restaurants and shops. For example, when a user 
asks, “Where is a good restaurant?” the robot starts a dialogue 
by asking a few questions, such as “What kind of food would 

you like?”, and accordingly chooses a restaurant to 
recommend.  

3) Rapport-building behavior 
For persons wearing RFID tags, the robot starts to build 

rapport through a dialogue that consists of the following three 
policies: 

Self disclosure: The importance of self-disclosure for 
humans to express friendship has long been studied. Bickmore 
and Picard used this strategy in relational agents for building 
relationships with users [32]. Gockley et al. made a receptionist 
robot that tells new stories and successfully attracted people to 
interact with it [11]. In our previous study, which was 
successful, our robot disclosed a secret [34]. In this study, we 
follow the same strategy: letting the robot perform 
self-disclosure. For example, the robot mentions its favorite 
food, “I like takoyaki,” and its experiences, such as, “This is my 
second day working in this mall.” 

Explicit indication of person being identified: Since in our 
previous studies we found that people appreciated having their 
names used by robots [12], we retained this strategy. The robot 
greets a person by the name under which he/she registered, 
such as “Hello, Mr. Yamada.” In addition, it uses the history of 
previous dialogues to show that the robot remembers the person. 
For example, on day one, if the robot asked, “Do you like ice 
cream?” and the person answered “Yes,” the robot says “OK, 
I’ll remember that”; on day two, the robot says, “I remember 
that you said you liked ice cream, so today, I’m going to tell 
you my favorite flavor of ice cream.” 

Change in friendliness of behaviors: For a person who 
repeatedly visits the mall and the robot, the robot gradually 
changes its behavior to show a more friendly attitude. For 
example, on day one it says, “I’m a little nervous talking with 
you for the first time,” but on day three it says, “I think we are 
friends” to show its warm attitude toward the person.  

4) Behavior for advertisement 
The robot is also designed to provide advertisements about 

shops and products in a manner that resembles word of mouth. 
When the robot begins a conversation with a customer, it starts 
with a greeting and then engages in word of mouth behavior as 
a form of casual chat. It affectively reports its pretended 
experiences about products in shops. For example, the robot 
might say, “Yesterday, I ate a crêpe in the food court. It was 
nice and very juicy. I was surprised!” or “The beef stew at 
Bombardier Jr. was good and spicy. The egg was really soft, 
too, which was also very nice.” We implemented five topics per 
day and changed them every day so that daily shoppers didn’t 
get bored with this behavior. 

5) Implementation of behaviors and episode rules 
The above behaviors are all implemented into situated 

modules and connected with the episode rules. They form an 
interaction flow as follows. As shown in Fig. 9, when no person 
is present, the robot remains in a wait mode. When a person 
steps on the floor sensor, the system detects this 
person-arriving event and transits the behavior from waiting 
behavior to greeting behavior. This starts a dialog. When the 
person leaves, it also detects this event and transits from 
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interacting to waiting behavior. 
 

 
 

 

 
Fig. 10 Flow of robot’s dialogue 

 
Fig. 10 shows a simplified description of the overall 

structure of the interaction flow. Note that this figure is the 
summary but not the details of the implementation such as how 
a single sequence is formed. The actual transitions among 
behaviors are more complex and branched for variety, as well 
as for different conditions, as described by the episode rules. 
When the robot greets that person, if the person touches his/her 
RFID tag to the reader, the robot starts the flow in the first 
branch of Fig. 10. It calls the person’s name, provides daily 
shopping information, chats about the person’s preferences, 
and offers route guidance. An example of such a dialog is 
shown in Table 6. If the person does not have an RFID tag, it 
engages in the simpler interaction of providing shopping 
information and route guidance. Each behavior usually lasts 
about five to fifteen seconds. A total of 1,759 behaviors and 
1,015 episode rules were finally implemented.  

E. Operator control 

1) General principle 
Three types of control were enabled for the human operators: 

substitute for speech recognition, supervisor of behavior 
selector, and knowledge provider, all of which were controlled 
by the user interface shown in Fig. 11. In addition, we 
established an important principle for the operator: minimize 
the number of operations. This principle was set for studying 
the potential of robot autonomy. Except for substituting for 
speech recognition, the operator only helped the robot when 
intervention was truly needed. For example, even if a user 
interrupted the flow and asked, “How old are you?” (a frequent 
question), the operator did not operate the robot. If the user 
continued to repeat the question without showing any signs of 
stopping, the operator selected the robot’s behavior or even 
typed an utterance to answer. When the operator needed a few 
seconds to make a decision and type an utterance, he/she 
executes a conversational filler behavior [35] to notify listeners 
that the robot will soon respond. 

2) Substitute for speech recognition 
When a robot performs a behavior in which it asks a question, 

the teleoperation system prompts the operator to choose words 
from the list expected for this situation. As shown in Fig. 11, 
“substitute for speech recognition,” the word list with buttons 

    
(a) Waiting for a human           (b) Finding a human 

    
(c) Having a dialogue              (d) Ending the dialogue

Fig. 9 Typical sequence of robot’s behavior 

Table 6 Example of a dialogue 
＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿＿ 
(Day one)  R denotes robot, and H denotes a human 
R: Hello, Ms. Suzuki. 
R: Nice to meet you. 
H: Nice to meet you. 
R: Let’s shake hands. (They shake hands) 
R: Thank you. 
R: Today, I ate a rice ball in the food court, which was hot and 

good! 
R: By the way, my job is to provide route guidance. 
R: I can guide you anywhere in AEON. (Shopping mall) 
R: Where would you like to go? 
H: I’m looking for an ATM.   
R: Well, let’s see. . .   
R: Please go this (pointing) way, and you will see two ATMs on 

your right. 
R: Do you understand? 
H: Yes. Thank you. 
R: By the way, there is a movie theater in the shopping mall. Have 

you been there before? 
H: Yes. 
R: Ok, I’ll remember that. 
R: Please come see me again. Goodbye! 
H: Goodbye! 
 
(Day two) 
R: Hello, Ms. Suzuki. 
R: Thank you for coming to see me again! 
R: You came here on the way back from work the other day, right?
H: Yes. 
R: Do you like movies? 
H: Yes. 
R: OK I’ll remember that. Next time, I’d like to recommend some 

movies. 
… 
―――――――――――――――――――――――――― 
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will be displayed on the right side of the interface. The 
displayed word list changes depending on the robot’s behavior. 
By clicking the buttons, string information will be sent to the 
robot as a speech recognition result. For example, when the 
robot asks, “I can give you the route. Where would you like to 
go?” the teleoperation system shows a list of places. When the 
robot asks, “Do you like ice cream?” it shows a simple choice 
of “yes,” “no,” and “no response” to the operator. Here, the 
operator behaves as speech recognition software. After the 
operator chooses the words, the robot autonomously continues 
the dialogue. 

3) Supervisor of behavior selector 
Significant degrees of uncertainty exist about user behavior 

toward the robot. Sometimes people asked unexpected things 
even though the robot has a behavior to answer the question; 
here, the problem is the lack of episode rules. The interface 
displays a list of behaviors in its upper left side (Fig. 11), 
denoted with “selection of behavior.” The operator can choose 
a behavior list by selecting each tab, which includes the 
behaviors of identical categories such as guiding, greeting, and 
so on. By clicking the buttons, information about the next 
behavior is sent to the robot; in other words, the operator 
behaves in the same way as a behavior selector function. For 
example, although the robot has behaviors to guide and explain 
all of the shoe stores, it was confused when a user asked about a 
“shop for children’s shoes” because this phrase was not in the 
speech recognition dictionary. In such situations, the operator 
selects the next behavior for the robot. 

In case a person came up with a request out of context (e.g. 
requested to do hand-shaking while the robot gave information 
about the mall), first the operator would ignore and see whether 
the person followed the lead from the robot, and if this did not 
happen, the operator would then control the behavior selection 
to match the robot’s behavior to the person's request. Note that 
in the field trial reported in the paper, we have often observed 
that people accepted such situations, and followed the robot’s 
conversation lead. 

After this type of operation, developers manually updated 
the word dictionaries for speech recognition and the episode 
rules based on the operation histories so that the robot can 
autonomously select its next behavior for such a future request. 

4) Knowledge provider 
With current technology, only humans can provide 

knowledge to the robot. Developers input knowledge in 
advance as a form of behavior. But this in-advance effort is 
limited to situations that the developers can imagine; in reality, 
much knowledge for unexpected activities is needed. To solve 
such problems, the interface provides a Text-To-Speech 
function for the operator who can type the sentence in the 
interface’s middle left (Fig. 11) in a text box called the “direct 
control of utterances.” 

For example, although the robot has behaviors for all 
restaurants, when asked about a Japanese restaurant, the robot 
couldn’t say something like, “There are two Japanese 
restaurants: a sushi restaurant and a soba restaurant. Which do 
you prefer?” For such a case, the operator directly typed the 

sentence so that the robot could respond. Later, developers 
manually added the appropriate behaviors for the situation. 

 
Fig. 11 User interface for robot control 

 
5) Transition between autonomous and teleoperated mode 
For the role of substitute of speech recognition, it is the 

system that transits the mode from autonomous to teleoperated, 
in a similar way as when the robot system itself sends a request 
to the autonomous speech recognizer. For the other two roles, 
supervisor of behavior selector, and knowledge provider, it is 
the operator who transits the mode. 

When these types of operation occur, the currently running 
behavior is interrupted. In case the operator provides new 
knowledge, the system stays in the teleoperated mode, until the 
operator completes the direct control and chooses the next 
behavior to execute. After the operator choses the next 
behavior, the system goes back to autonomous mode and keeps 
choosing the next behavior autonomously. 

Note that such interruption of the currently running behavior 
seemed to not have any negative affect; in this situation, the 
operator usually controlled the robot because the interacting 
person required something different from the currently running 
behavior, thus people simply responded to the newly executed 
behaviors, since they were not interested in the currently 
running behavior. 

IV. FIELD TRIAL 

A field trial was conducted at a large, relatively new 
shopping mall consisting of three floors for shopping, one for 
parking, 150 stores, and a large supermarket. The robot was 
placed in a main corridor of the mall (Figs. 12, 13) weekday 
afternoons from 1 to 5 pm for five weeks (from July 23 to 
August 31, 2007, except for a busy holiday week in the middle 
of August). This schedule was set based on an agreement with 
the mall management to avoid busy times and thus prevent 
situations where too many people might crowd around the 
robot. 

The robot was accessible to all visitors. Those who signed up 
for the field trial (participants) received a passive-type RFID 
embedded in a cell-phone strap (Fig. 7). We recruited these 
participants by two methods: (1) a flyer distributed to residents 
around the mall, and (2) on-site sign-up during the first three 
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weeks while our staff approached visitors who seemed 
interested in the robot. The participants signed consent forms 
when they enrolled and filled out questionnaires after the field 
trial. They were not paid, but they were allowed to keep their 
RFID tags.3 

The purpose of the field trial was to test the hardware and 
system design for the designated three roles in a real context. A 
questionnaire, which was designed to measure the usefulness of 
the robot for these roles, asked for impressions of the robot, the 
usefulness of the route guidance, and the effect of its 
advertisements.  

 

 
Fig. 13 Field trial environment 

V. RESULTS 

A. Observations 

1) Transition of interactions 
Figure 14 shows the number of interactions in which the 

robot engaged. One interaction represents an interaction that 
continued with the visitor until the robot said goodbye. During 
the first three weeks our staff invited visitors for registration 
and interaction with the robot. From the fourth week, our staff 
stood near the robot for safety. There were an average of 105.7 
interactions each day. As the graph shows, the number of 
interacting persons did not differ over the five-week period. 
Multiple persons interacted with the robot (an average of 1.9 
persons per interaction). 

In all, 332 participants signed up for the field trial and 
received RFID tags; 37 of these participants did not interact 
with the robot at all. As shown in Fig. 15, 170 participants 
visited once, 75 visited twice, 38 visited three times, and 26 

 
3The experimental protocol was reviewed and approved by our institutional 

review board. 

visited four times; the remaining 23 participants visited from 
five to 18 times. On average, each participant interacted 2.1 
times with the robot, indicating that they did not repeat their 
interaction very much. One obvious shortcoming was the trial 
duration; since every day many non-participant visitors waited 
in line to interact with the robot, some reported that they 
hesitated to interact with it because of the crowds. Fig. 14 
shows the number of participants who interacted each day: an 
average of 28.0 persons. 

 
Fig. 14 Number of visitors and participants 

 
Fig. 15 Visits of each participant 

 
2) Scenes of interaction 

    Visitors who typically interacted with the robot only once or 
twice often passively interacted with it. They observed how the 
robot behaved and provided minimum response. For example, 
when the robot offered route guidance they asked a simple 
destination such as the restrooms. They answered yes or no to 
the robot’s questions but did not give more than such simple 
answers. They seemed satisfied after they learned the capability 
of the robot, e.g., that it could point in the correct direction to 
the destination they asked about. 
     In contrast, some visitors interacted with the robot more 
than a few times, showing that they were absorbed in 
interacting with the robot. Such groups were mainly composed 
of children and mothers. As a case study, we describe some 
scenes of their interactions. We emphasize these cases because 
interesting phenomena often appear among people who show 

Fig. 12 Map of mall’s main floor 
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such a large involvement. Various reasons might explain why 
people did not repeatedly visit the robot, including a lack of 
opportunity, crowds around the robot, and the lack of the 
robot’s capabilities. In the future, if such a robot were placed in 
a daily environment for a long time, we believe that such cases 
where people show large involvement will be more frequent, 
because we expect greater opportunities for interaction, less 
hesitation based on crowds, and better robot capabilities 
reflecting technological advancements.  
 

  
Fig. 16 Child who behaved socially 

   
Fig. 17 Engagement with familiarization behavior 

Case 1: Engagement and social interaction 
One notable case involved a boy who behaved socially to 

the robot. Fig. 16 shows a scene when the boy first met the 
robot. When the robot greeted him with, “Nice to meet you,” 
the boy bowed. During the conversation, he provided many 
responses after the robot explained something. For instance, 
when the robot recommended visiting a takoyaki shop, the boy 
answered “OK!” 

His engagement did not diminish after repetitions. Fig. 17 
shows a scene when he visited the robot for the fourth time. 
When the robot said, “Let me tell you my secret,” he stepped 
forward to the robot, showing his strong interest in the robot’s 
secret. The boy visited six times during this field trial, and until 
the end he showed such engagement in the interaction. 

Case 2: Interacting together 
    Few people interacted with the robot alone; instead, they 
came with family members. The second case involves a mother 
and a young girl who visited six times. There were a number of 
scenes where we observed their interaction together. For 
example, when the robot said “Hello,” the mother and the girl 
both simultaneously responded with “Hello.” Fig. 18 shows a 
scene during the second visit when the robot said, “Please touch 
me” (left). Both stretched their hands out to the robot’s head 
and patted it (right).  

  
Fig. 18 Interacting with family members 

Case 3: Re-visiting with others 
    Similar to Case 2, another interesting case is a lady who 
visited five times. On the first time, she visited the robot alone 
(Fig. 19, left). But on the second time, she brought two young 
boys who appeared to be her grandsons and showed them how 
to interact with the robot (Fig. 19, right). We also observed 
another similar case where a lady brought her friends the next 
time. 

  
Fig. 19 Re-visiting with others 

B. Visitors’ perception 

1) Perception of participants 
When the field trial was finished, we mailed questionnaires 

to the 332 participants and received 235 answers. All items 
were on a 1-to-7 point scale where 7 is the most positive, 4 is 
neutral, and 1 is the most negative. 

Impressions of robot 
The questionnaire included items about “Intention of use 

(studied in [36]),” “(degree of) Interest,” “Familiarity,” and 
“Intelligence,” all of which resulted in scores around 5.0 (Fig. 
20). Many positive, free-answer comments described the robot 
as cute and friendly. 

Route guidance 
The questionnaire answers about the adequacy of route 

guidance averaged 5.3 points. The following free-answer 
comments were made: 

- The robot correctly answered when I asked about a 
particular shop. 

- I’m surprised that its route guidance was so detailed. 
- Its route guidance was appropriate and very easy to 

understand. 
- The robot was useful for questions that I hesitated to ask 

a person because they seemed too simple. 
Providing information 
The questionnaire answers about the usefulness of and 

interest in the information averaged 4.6 and 4.7 points, 
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respectively. 99 of 235 participants reported that they visited a 
shop mentioned by the robot, and 63 participants bought 
something based on the information provided by the robot. We 
particularly asked about reasons in a free-description question 
and received the following comments: 

- The robot recommended a kind of ice cream that I 
hadn’t eaten before, so I tried it. 

- The movie mentioned by the robot sounded interesting. 
- Since Robovie repeatedly mentioned crêpes, my child 

wanted to eat one. 
These results suggest that the robot’s information-providing 

function affected them, increased their interest in particular 
shops and products, and even encouraged them to actually buy 
products. 

Building rapport 
The questionnaire answers about the degree of perceived 

familiarization averaged 4.6 points. In the free-description 
form, comments included: 

- Since it said my name, I felt the robot was very friendly. 
- The robot was good since it gradually became familiar 

with me. 
- I’m surprised that the robot had such a good memory. 
- My child often said, “Let’s go to the robot’s place,” and 

this made visiting the mall more fun. 
- The robot was very friendly. I went with my 

five-year-old daughter to interact with the robot; on 
the last day, she almost cried because it was so sad to 
say goodbye. She will remember it as an enjoyable 
event: At home, she imitates the robot’s behavior and 
draws pictures of it. 

2) Comparison of repeat and single-time visitors 
To study how effectively the robot functioned in the building 

rapport role, we compared repeat and single-time visitors. We 
classified the 235 participants who returned questionnaires 
based on whether they visited the robot more than once. An 
analysis of variance (ANOVA) was conducted for the ratings of 
their impressions (Fig. 20). There were significant or almost 
significant differences (F(1,233) = 4.32 (p<.05), 4.62 (p<.05), 
9.98 (p<.01),  3.56 (p<.1),  5.44 (p<.05), and 49.39 (p<.01)). 
Repeat visitors had better impressions; a particularly notable 
result is the difference about the perceived familiarization, 
which is largely high for the repeat visitors. 

 
Fig. 20 Comparison of repeat and single-time visitors 

 

3) Comparison with an information display 
We asked participants how often they were influenced by 

information displays in the same mall (Fig. 2). In the 
questionnaires, participants answered the following: 
“Usefulness of information provided by display/robot,” 
“Interest in shops mentioned by display/robot,” “Visiting 
frequency triggered by display/robot,” and “Shopping 
frequency triggered by display/robot.” The order of the 
questions about the display and robot was counterbalanced. 

Figure 21 shows the comparison results. There were 
significant differences (F(1,229) = 40.96, 69.52, 36, 19, and 
7.66, p<.01 for all four items). Thus, for the participants, the 
robot provided more useful information and elicited more 
shopping. 

  
Fig. 21 Comparison of robot and display 

4) Integrated analysis 
Structural equation modeling (SEM) 
Structural equation modeling (SEM) is a relatively new 

statistical analysis method for revealing the relationships 
behind observed data. We analyzed the relationships among 
impression, perceived usefulness, and the affect on shopping 
behavior using SEM because it enables us to analyze 
relationships among multiple variables and analyze 
cause-and-effect relationships as well. Unlike controlled 
experiments in a laboratory where we simplify related variables, 
in a field trial we need to retrieve knowledge from complex 
variables. 

Its process resembles factor analysis to reveal latent 
variables and regression analysis to associate variables to 
produce a graphical model of causal-result relations. The 
analysis consists of the following steps: 

1) Modeling 
Run the following step to find a model that reasonably 
explains the observed variables. 
a) Make a hypothesized model with latent variables 
    Based on the theoretical or hypothetical relationships 

among observed variables, make a model where latent 
variables are placed among the variables 

    b) Calculate path coefficients 
        Based on the given model, path coefficients are 

calculated in a similar manner as factor and regression 
analysis4. 

    c) Confirm the fitness of paths 
        For all paths in the model, test whether they are 

 
4A statistic software package usually runs this process. We used Amos 6. 
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significant. 
    d) Confirm the model’s fitness 
        Indicators of the model’s fitness include the 

goodness-of-fit index (GFI), the adjusted 
goodness-of-fit index (AGFI), the comparative fit index 
(CFI), and the root mean square error of approximation 
(RMSEA). According to a textbook [38], the desired 
range of the indicators should be as follows: GFI, 
AGFI≥.90, CFI≥.95, and RMSEA≤.05. 

2) Analyze the best fit model 
      Perhaps more than one model can explain the observed 

variables. There is an indicator, Akaike Information 
Criterion (AIC), for the best-fitness of this model. The 
model with the minimum AIC value is considered the 
best among the models with identical variables. 

More detailed explanation can be found in many textbooks 
[37, 38]. The following paragraphs report how we applied this 
technique to our data. 

Analysis results 
For the modeling, our hypothesis states that participant 

interaction experiences with the robot (observed as impression 
and day of visit) affected their shopping behavior as an 
advertisement effect. Our model included the latent variables of 
advertisement and interest effects as possible consequences. 
We added the latent variables of the impression of the robot, the 
rapport established with it, and the experience of shopping as 
possible causal factors. 

Figure 22 shows the best-fit model produced by SEM. In the 
figure, for readability we didn’t draw the error variables that are 
associated with only one variable. The variables in the squares 
are the observed variables (such as the questionnaire items), 
and those in the circles are the latent variables retrieved by the 
analysis (named by us). The numbers around the arrows (paths) 
are the values of the path coefficients, similar to coefficients in 
regression analysis. The numbers on the variables show the 
coefficient of determination, R2. Thus, 30% of the 
“advertisement effect” is explained by the factors of 
“relationships with robot” and “experience of shopping,” and 
42% of the “interest effect” is explained by the “impression of 
robot” factor. 

 
Fig. 22 Results of integrated analysis: how participant 

impressions related with shopping behaviors 

Regarding the model’s validity, the analysis results show 
good fitness in the appropriateness indicators of GFI=.957, 
AGFI=.931, CFI=.987, and RMSEA=.028. Each path 
coefficient is significant at a significance level of 1%. It has the 
minimum AIC value of 115.9 among the other possible models. 

Other models do not show appropriate fitness and have 
larger AIC values. For example, a model with one extra path 
from “impression of robot” to “advertisement effect” results in 
an AIC value of 116.9, and this path itself is not significant 
(coefficient = -.10, p=.36). This suggests that “advertisement 
effect” is not directly affected by “impression of robot.” 
Models with different latent variables show less desirable 
fitness. For example, if we only put two latent variables on the 
left side, merging “impression of robot” and “relationships with 
robot,” the analysis produces less appropriate fitness indicators, 
GFI=.937, AGFI=.900, CFI=.941, and RMSEA=.060, and a 
larger AIC value of 143.5. 

Interpretation 
The obtained model leads to an interesting interpretation and 

suggests that the participants who positively evaluated the 
impression of the robot tended to be positive about the interest 
effect (coefficient = .65); however, the advertisement effect is 
not associated with impression of the robot, but with the 
relationships formed with it (coefficient = .36). Therefore, the 
factor of the participant’s relationship with the robot explains 
13% of the deviation of the advertisement effect. Although this 
ratio might not be so high, we believe that it is interestingly 
high for such shopping behavior, since shopping behavior 
largely depends on people’s situations including disposable 
income, interests, time, and the occasion. This implies that the 
development of relationships with the robot would increase the 
advertisement effect. Although for improving relationships, 
impressions could be important. 

C. Operator involvement 

1) Number of operations 
Since this study was conducted with a human operator, it is 

useful to show how often the robot was under his/her control. 
Fig. 23 shows the number of operations. As described in 
Section 3.2, one operator role was to “substitute for speech 
recognition,” which we expect to be automated in the future. 
The operator did this two or three times per dialogue.  

In contrast, the results show that the operator’s loads for the 
remaining two roles, “supervisor of behavior selector” and 
“knowledge provider,” were relatively small, particularly after 
day 10. Up to day 10 (Fig. 23), the number of operations was 
sometimes large due to unimplemented features (explained 
later). After day 10, 254.2 “substitute for speech recognition,” 
1.7 “knowledge provider,” and 13.4 “supervisor of behavior 
selector” operations were conducted per day. The amount of 
operation in terms of provided information from the operator 
[16] averaged 1 byte per 24.8 seconds.  

We believe that these results are promising. We expect that 
the role of “substitute for speech recognition” will disappear in 
the near future with advances in speech recognition technology. 
In contrast, the remaining two roles will be difficult to perform 
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autonomously, but the number of operations related to these 
two roles was relatively small.  

 
Fig. 23 Operations by operator 

2) Transition of operations with additionally implemented 
behaviors/rules 

During the field trial, we continued to implement new 
interactive behaviors to supplement the missing knowledge that 
the operator needed to operate. On average, we added 0.2 
interactive behaviors per day to reduce the “knowledge 
provider” task and 3.4 rules per day for transition among 
behaviors to reduce the “supervisor of behavior selector” task. 

This continued implementation of new interactive behaviors 
gradually decreased the number of operations related to the 
“supervisor of behavior selector” and “knowledge provider” 
roles. Such improvement shows one promising case of robot 
development that occurred in a real field under the supervision 
of a human operator. 

VI. DISCUSSION  

A. Implications on hardware and system design 

To cope with the real world difficulties, we adopted a 
network robot system approach where the lack of a single 
robot’s capabilities was supplemented by ubiquitous sensors 
and a human operator.  

For person identification, we used passive-type RFID tags. 
Based on the person identification function, as intended, the 
robot successfully established rapport. Many people 
commented that they appreciated its function of saying their 
names, and the questionnaire results showed that it provided 
familiarized impressions for repeat visitors. Concerns might 
arise that using RFIDs distracts visitors from human-like 
interactions with the robot; however, the participant 
questionnaire comments revealed no such reactions or 
complaints about touching the RFID or deviation from a 
human-like manner. For further development implications, 
although we believe that this was a reasonable choice for now, 
in the near future other methods will probably be available that 
work in a human-like manner; when available, such a method 
that replaces passive-type RFID tags will increase the robot’s 
perceived intelligence. 

 We used floor sensors for positioning. This was also 
effective. They enabled the robot to correctly identify the 
existence of the interacting person and the robot’s position so 
that it could provide accurate route guidance. Another 

interesting characteristic also surfaced. The floor sensors 
created a visually separated region around the robot that 
resembled the conversation distance of people, so it was clear 
for the visitors where they can interact with the robot. This 
feature benefited our case, since we designed the robot to stay 
in the same place to avoid causing large crowds around it. 
However, for other settings this might be a negative feature. 
For example, it would be natural for the robot to move around 
an environment; floor sensors would simply limit its 
locomotion area. It is not reasonable to cover an entire 
environment with floor sensors. Instead, we need to use an 
alternative positioning device, such as one with laser range 
finders [39]. 

B. Implications on semi-autonomous system design 

Teleoperation is often used when technology remains 
immature. Robots designed for space exploration or search and 
rescue also use teleoperation techniques. We believe that our 
study reveals the possibility of using teleoperation to realize 
useful communication robots for daily life. However, this does 
not diminish the importance of autonomy. Teleoperated robots 
need a highly autonomous system; otherwise, teleoperation will 
become too complex for real-time operation. In fact, we 
prepared autonomous systems for finding people, identifying 
them, and controlling the dialog flow, the verbal and 
non-verbal behaviors, and the actuations. The experimental 
results indicate that the operator only provided 1 byte of 
commands per 24.8 seconds. 

One of the biggest task loads for the operator was the 
substitution for speech recognition, which will be replaced with 
a fully autonomous system in the near future. When robots can 
be equipped with such a robust speech recognition system, they 
will probably operate autonomously in tasks similar to that 
reported in this paper almost all the time. Consequently, the 
achievement of this level of speech recognition would make an 
autonomous robot nearly practical for our purpose. 

Meanwhile, we wonder whether we can create truly 
autonomous robots for such services as information-providing 
and route guidance. In our study, an operator helped us prepare 
additional information for the robot’s use. In particular, in the 
beginning, we experienced difficulty completely predicting 
communication patterns visitors would prefer and information 
visitors would need. The required knowledge will always 
change over time; e.g., new shops will open and new trends will 
emerge that make visitors look for new products. Consequently, 
we believe that value remains in having a monitoring person 
behind the robot system who can control the flow of 
conversation and supplement information when the robot lacks 
up-to-date information. 

Concern might also surface whether an operator needs to 
constantly monitor the robot to check that its knowledge is 
sufficient. As in other shared autonomy studies in robotics, we 
need to shift the mode of teleoperation from full-teleoperation 
to adjustable autonomy [40] or sliding autonomy [41] where 
the system takes a greater initiative in using human support. We 
have started to explore such semi-autonomous control by 
modeling a critical part of the interaction to be supervised [25] 
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and estimating error situations [23]. We probably need to 
develop more sophisticated techniques to actively detect error 
states in conversation, where the robot needs extra knowledge, 
and summon human operator support. 

C. Implications of the role of the robot 

One of this study’s challenges was to assign three different 
roles to the robot: guiding, building rapport, and advertising. 
While guiding is beneficial for visitors, advertising is more 
beneficial for the mall. Do these roles conflict? Did visitors 
accept such a robot? 

 The participant comments we received included no 
complaints about this situation. In the design, we clarified that 
the robot is affiliated with the shopping mall. It physically stays 
in the mall, has professional knowledge about the mall, and 
welcomes participants as a representative of the mall. Its role 
resembles that of the shopping mall’s personnel. 

In the advertisement behavior, the robot gave word of mouth 
recommendations and talked about food and restaurants, even 
though of course the robot actually did not have such 
experiences. Did people believe that the robot ate something? 
Of course not. However, regarding such information 
purportedly based on its “personal experience,” people were 
not distracted by a robot that talked about eating and restaurants. 
No comments were made about any problems about the food 
and restaurant information. People just seemed to accept what 
the robot said. They knew it was a robot. Their reactions to 
animation characters who talk about food and restaurants 
would probably be similar. At the same time, some people 
reported that they were influenced by the information provided 
by the robot to visit shops. 

D. Implications of ethical issue 

First, this study was conducted as an academic trial to 
observe what happens when robots behave under such 
conditions. People, often with children, engaged with a friendly 
robot in order to entertain them and to get information, which in 
turn elicited people to do more shopping. These facts must be 
considered carefully when people design such robots for 
commercial purposes. Since ethical judgments reflect societal 
standards, guidelines must be created before robots start to 
perform such roles. This study itself could be used as evidence 
when people discuss ethical issues. Does this resemble a 
“subliminal” effect? We don’t think so since everything that 
happens in the interactions with the robot is perceivable. Of 
course, current guidelines for similar issues, e.g., TV 
commercials, can probably be applied to robots; e.g., they 
should not lie. 
 We also note that the robot is clearly not owned by the users 

but is affiliated with the mall. Usually, in human-computer 
interaction studies, ethical issues become a problem when 
people’s devices (owned by them) start to behave against them, 
e.g. send their personal information elsewhere unintentionally. 
In case with a robot in a mall, this is not a case. 

E. Novelty effect: Is it worrisome? 

Since robots remain very novel to the general public, perhaps 

the robot’s effects on shopping activities only arose due to the 
novelty effect. We believe that such a novelty effect is reflected 
in the experimental results; however, it is impossible to 
eliminate such effects in today’s world: There is no place where 
robots are just ordinary. Until robots become widely distributed, 
it is difficult to see how people perceive them without having a 
novelty effect. Even if one person is well habituated to a robot, 
many other inexperienced people will also see the robot. 
Instead, we believe that the novelty effect can be calculated 
along with the effect of using robots in advertisements. People 
like something new. 

Moreover, we believe that we should study how robots 
affect people, despite the existence of the novelty effect. Since 
robots are novel to people, they don’t know whether robots can 
assist them. We need to study how robots are perceived as such 
a new entity. One participant made an interesting comment: he 
prefers using the robot for retrieving route guidance, since he 
hesitates to ask such a simple question of a human shopkeeper. 
Such comments might indicate how people perceive robots 
beyond the simple novelty effect. 

F. Perspective for better communication robots in public 
spaces 

Although our developed robot successfully operated the 
route guidance service, two major remaining problems must be 
solved in the future. First, the robot did not fully support 
people’s motivation to repeatedly visit the robot. The study 
failed to show whether the robot could elicit spontaneous 
repeated interactions; a limited number of participants visited 
repeatedly. This might be due to the limited duration of the field 
trial or to the robot’s limited capability. This aspect should be 
further explored in future studies. 

Second, the robot’s task was limited to a simple one. The 
complexity of the required knowledge will increase if the 
robot’s task includes more than just providing route guidance 
and recommendations. For example, a shopkeeper robot in a 
particular store would need much greater information that 
incorporates recent trends in people’s daily lives. 

G. Limitations 

The ability to generalize the field trial findings is limited for 
several reasons. First, as discussed above, the novelty effect 
encourages people to visit the robot. This factor is unavoidable 
and might limit the validity of the findings in the future. Also, 
the findings were obtained with Japanese participants, so they 
might not be directly applicable to other countries. 

Second, since the participants in the field trial were 
self-selected and the questionnaire results were mailed, a 
mental bias might exist in the evaluation of the robot 
performance. Nevertheless, we believe that reporting the 
findings is useful since what we can investigate in field trials is 
restricted. Note that we informed all participants that they were 
required to respond to this questionnaire after the field trial as a 
condition for participation; thus, the responses were more than 
simply positive reactions to the robot. In the future, we should 
verify the effects of each design in a controlled laboratory 
study. 
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The comparison of the display and this robot was conducted 
in a quasi-experimental approach, since this study was 
conducted in a field where we could not fully control all 
relevant factors. Therefore, the following factors varied 
between conditions. 1) Duration of comparison: We asked 
about participant experiences during the field trial for the robot; 
for display, we asked experiences during the four months (from 
the mall’s opening until the field trial’s end). This arrangement 
was to include display’s possible novelty effect (it could be 
novel to participants, since it is very large). 2) Way of providing 
information: The display shows information about a shop by 
highlighting its particular information. The target shop is 
switched about once a minute. 3) Participant interest: The 
participants might be more interested in the robot than other 
mall visitors, since participation in the field trial most likely 
reflected interest in the robot. However, this is a limitation of 
our study as a field trial, which needed spontaneous 
participation; for example, participants were required to 
register for the RFID tags. Nevertheless, we believe the 
comparisons are still useful to understand the phenomena 
elicited by the robot. 

VII. CONCLUSION 

This paper reports on a study of a communication robot for a 
shopping mall. We developed a robot that provides route 
guidance and other shopping information for visitors of a 
shopping mall. A five-week field trial was conducted where the 
robot engaged in total 2,642 interactions, with 235 participants 
signed up to use RFID tags for repeated interaction. 

The study provided findings covering a series of topics from 
design consideration to user feedback: 
 Gave an example of societal roles of a communication robot 

in shopping mall, i.e. guiding and advertisement 
 Demonstrated proof-of-concept of a network robot system, 

i.e. a robot system connected with ubiquitous sensors and a 
human operator, in a real everyday context 

 Showed successful use of behavior-based software 
architecture for a communication robot 

 Reported on successful behavior design for guiding with 
deictic gestures, rapport-building through repeated 
interaction, and word-of-mouth type advertisement 

 Demonstrated one feasible path of deploying a 
communication robot where the results of teleoperation 
inform iterative developments, resulting in the gradual 
decrease of the amount of teleoperation 

 Provided field data about how people interact with such a 
robot 

 Empirically showed that people were influenced by the robot 
for shopping behavior 
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