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The authors have demonstrated the thin-film properties and the ambipolar transport of a delocalized
singlet biradical hydrocarbon with two phenalenyl radical moieties �Ph2-IDPL�. The organic
field-effect transistors �OFETs� based on Ph2-IDPL exhibit ambipolar transport with balanced hole
and electron mobilities in the order of 10−3 cm2/V s. The Ph2-IDPL film is an organic
semiconductor with a low band gap of 0.8 eV and has small injection barriers from gold electrodes
to both the highest occupied molecular orbital and the lowest unoccupied molecular orbital. A
complementary metal-oxide-semiconductor-like inverter using two identical Ph2-IDPL based
ambipolar OFETs shows a sharp inversion of the input voltage with high gain. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2766696�

Ambipolar carrier transporting materials have been at-
tracting interest concerning not only fundamental science for
organic semiconductor but also device application for light-
emitting transistors1 and complementary metal-oxide-
semiconductor �CMOS�-like logic circuits.2–8 So far, ambi-
polar organic field-effect transistors �OFETs� have been
realized by using blend2,3,9 or bilayer4,10–12 structure of two
compounds �p-type and n-type materials�, which transport
holes in the highest occupied molecular orbital �HOMO� of a
p-type material and electrons in the lowest unoccupied mo-
lecular orbital �LUMO� of a n-type material. Recently, am-
bipolar OFETs based on a single component semiconductor
have been also reported.2,5–8,13–17 However, conventional or-
ganic semiconductors tend to exhibit ambipolar transport
with unbalanced field-effect hole and electron mobilities:
since band gaps of the semiconductors are relatively wide
��2 eV�, large injection barrier between a metal electrode
and either HOMO or LUMO level cannot be avoided. For
realization of high-performance ambipolar OFETs with bal-
anced hole and electron mobilities, it is necessary to develop
low band gap semiconductors.2,8,15

Kubo et al. reported synthesis, and crystal and electronic
structures of a delocalized singlet biradical hydrocarbon
�Ph2-IDPL, see Fig. 1�a��,18 which was designed so as to
possess a small HOMO-LUMO gap originating from phe-
nalenyl radical electronic structure. The compound demon-
strates a strong intermolecular interaction between two phe-
nalenyl radical moieties and thus forms an electronic state of
a molecular aggregate in the solid state, resulting in a low
band gap semiconductor. From the result of the band-
structure calculation, a single crystal of Ph2-IDPL has an
electronic structure with large bandwidths in both HOMO
and LUMO �0.54 and 0.51 eV, respectively�.18 Therefore,

Ph2-IDPL would be expected to exhibit high-performance
ambipolar transport with balanced hole and electron mobili-
ties. Here, we report the thin-film properties and the ambi-
polar transport of Ph2-IDPL. CMOS-like inverters based on
ambipolar OFETs are also demonstrated.
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FIG. 1. �a� Resonance structures of Ph2-IDPL. Output characteristics of the
ambipolar OFET based on Ph2-IDPL for �b� negative and �c� positive gate
biases. �d� UV-visible-near IR spectrum of the Ph2-IDPL film. The inset
shows an energy band diagram of Ph2-IDPL and Au. Ph2-IDPL films were
grown at a deposition rate of 0.2 Å/s and a substrate temperature of 25 °C.
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The OFETs were constructed on a highly doped n-type
silicon wafer covered with 300-nm-thick SiO2 �a capacitance
per unit area of 10 nF/cm2�. The SiO2 surface was treated
with hexamethyldisilazane. Each film of Ph2-IDPL was fab-
ricated on the SiO2 by vacuum evaporation under a pressure
of 5�10−4 Pa. The thickness of each film is about 40 nm.
Finally, gold source and drain electrodes were deposited on
the films by using resistive heating evaporation source. A
nickel thin plate, which was patterned with channel length
�L� of 20 �m and channel width �W� of 5 mm, was used as
a metal shadow mask. For the measurement of the OFET
characteristics, Au wires were connected to the device elec-
trodes using silver paste. The OFET characteristics were
measured with Keithley 6430 and 2400 source measurement
units in vacuum ��10−4 Pa�. The field-effect mobility � and
the threshold voltage VT were estimated from the square root
of drain current-gate voltage �ID

1/2-VG� plots, according to the
standard equation in the saturation regime, ID= �W /2L�
�Ci�VG−VT�2, where ID is the drain current, W and L are the
conduction channel width and length, respectively, Ci is the
capacitance per unit area of the gate dielectric, and VG is the
gate voltage. X-ray diffraction �XRD� measurement of the
films was carried out on a Rigaku Denki RU-300 using
Cu K� radiation �40 kV, 200 mA� with a curved graphite
monochromator. The diffractions were measured from 2° to
30° in the 2�-� scan mode with 0.01° step in 2� and
0.6 s/step. An atomic force microscope �AFM� �Molecular
Imaging Inc. MS300� operating in the contact mode was
used to characterize the surface morphologies of the films.

Figures 1�b� and 1�c� show the p-channel and n-channel
output characteristics of OFETs based on Ph2-IDPL, respec-

tively. The Ph2-IDPL film exhibits good ambipolar transport
for both holes and electrons. The field-effect mobilities of
hole ��h� and electron ��e� in saturation regime are calcu-
lated to be 2.6�10−3 and 3.2�10−3cm2/V s, respectively.
The values of �h and �e are high compared with those of
previously reported low band gap semiconductors
�10−5–10−3cm2/V s�.2,8,15 It is also worth noting that the val-
ues of �h and �e are comparable with each other. The maxi-
mum on/off current ratios for both p and n channels reach
103. After exposure to air, on current under p-channel opera-
tion was maintained, while on current under n-channel op-
eration decreased by one order of magnitude compared with
that in a vacuum.

Figure 1�d� shows an UV-visible-near IR absorption
spectrum of the film. Sharp absorption peaks at 338 and
792 nm associated with intramolecular transition were ob-
served. In addition, a broad peak around 1000–1500 nm as-
sociated with intermolecular transition was also observed.
This can be the explained by formation of the aggregate elec-
tronic state in the Ph2-IDPL film. The band gap of Ph2-IDPL
was estimated to be 0.8 eV from the absorption onset. The
energy band diagram of Ph2-IDPL and gold is shown in Fig.
1�d� inset. The HOMO level of the Ph2-IDPL aggregate was
estimated to be 5.2 eV by photoelectron spectroscopy mea-
surement �AC-2, Riken Keiki�. The balanced hole and elec-
tron mobilities of the Ph2-IDPL film seem to be due to the
small injection barriers from the gold electrode �4.9 eV�
�Ref. 19� to both HOMO and LUMO levels.

We investigated the film crystallinity and morphology of
the film deposited at a substrate temperature �Tsub� of 25 °C
by x-ray diffraction measurement and atomic force micro-

FIG. 2. �Color online� XRD patterns
and AFM images �insets� of the
Ph2-IDPL films grown �a� at a deposi-
tion rate of 0.2 Å/s and Tsub of 25 °C,
�b� at a deposition rate of 0.2 Å/s and
Tsub of 60 °C, �c� at a deposition rate
of 0.05 Å/s and Tsub of 60 °C, and �d�
at a deposition rate of 0.09 Å/s and
Tsub of 100 °C. The white scale bar in
each AFM image corresponds to
1 �m.
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scope observation �Fig. 2�a��. The results indicate that the
film takes an amorphouslike structure without large crystal-
line domains. Therefore, we changed the deposition condi-
tion for optimizing the film structure. At Tsub of 60 °C, both
hole and electron mobilities decrease by one order of mag-
nitude ��h=2.8�10−4cm2/V s; �e=3.0�10−4cm2/V s�
compared with those at Tsub=25 °C. Moreover, as films are
grown at a lower deposition rate �0.05–0.09 Å/s� and higher
Tsub �60–100 °C�, the OFETs demonstrate no active perfor-
mance.

Thin-film growth of conventional �-conjugated oligo-
mers tend to be improved as films are grown at a lower
deposition rate and higher Tsub.

20–22 In the case of Ph2-IDPL,
however, amorphous three-dimensional islands were grown
at the condition of lower deposition rate and higher Tsub
�Figs. 2�c� and 2�d��, resulting in no active performance of
the OFETs based on Ph2-IDPL. The results are due to strong
intermolecular interaction of Ph2-IDPL molecules compared
with molecule-substrate interaction. The observed film mor-
phology of Ph2-IDPL is reminiscent of rubrene �C42H28� thin
films.16,23 Rubrene also forms amorphous three-dimensional
islands on a SiO2 substrate, resulting in a low field-effect
mobility ��h=�e�10−6cm2/V s� of the film,16 whereas
single-crystal rubrene OFETs show a high hole mobility up
to 20 cm2/V s.24 Haemori et al. reported that rubrene thin-
film growth is improved by surface modification of a
substrate.23 Therefore, further improvement of film crystal-
linity and mobility of Ph2-IDPL can be expected by control-
ling molecule-substrate interaction. In addition, single-
crystal Ph2-IDPL is also expected to exhibit high hole and
electron mobilities.

We have applied OFETs based on Ph2-IDPL to a CMOS-
like inverter, since the OFETs exhibit balanced ambipolar
transport. Figure 3 shows transfer characteristics of the in-
verter, which was fabricated on a single substrate using two
identical Ph2-IDPL based ambipolar OFETs with a channel
width of 5 mm and a length of 20 �m. Two ambipolar
OFETs were connected to form an inverter with a common
gate as the input voltage, VIN �Fig. 3, inset�. Sharp inversions
of VIN are observed with a high gain of 12 at half of the
supplied voltage, VDD �±25 V�. The symmetric inversions are

due to balanced hole and electron mobilities in the ambipolar
OFETs. The inverter works in the first or the third quadrant:
with the positive bias of VIN and VDD, OFET1 and OFET2
act as p- and n-type transistors, respectively, while OFET1
and OFET2 act as n- and p-type transistors under the nega-
tive bias condition of VIN and VDD. The behavior features
ambipolar logic circuits.

In summary, we have demonstrated thin-film properties
and ambipolar transport of Ph2-IDPL. The OFETs based on
Ph2-IDPL exhibit good ambipolar transport with balanced
hole and electron mobilities ��h=�e�3�10−3cm2/V s�.
The Ph2-IDPL film is an organic semiconductor with a low
band gap of 0.8 eV and has small injection barriers from
gold electrodes to both HOMO and LUMO. We found that
Ph2-IDPL is one of the promising organic semiconductors
with high-performance ambipolar transport.

The authors thank S. Nagamatsu �Kyushu Institute of
Technology� and A. Itakura for their assistance with the in-
verter measurement.
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FIG. 3. Transfer characteristics of the CMOS-like inverter at supply volt-
ages �VDD� of +50 and −50 V. The inset shows the circuit configuration.

043506-3 Chikamatsu et al. Appl. Phys. Lett. 91, 043506 �2007�

Downloaded 24 Jul 2007 to 150.29.239.6. Redistribution subject to AIP license or copyright, see http://apl.aip.org/apl/copyright.jsp


