Takafumi Minamimoto

Takafumi Minamimoto
  • Ph. D
  • Deputy Director, Section Chief at National Institutes for Quantum Science and Technology

About

137
Publications
17,573
Reads
How we measure 'reads'
A 'read' is counted each time someone views a publication summary (such as the title, abstract, and list of authors), clicks on a figure, or views or downloads the full-text. Learn more
3,299
Citations
Current institution
National Institutes for Quantum Science and Technology
Current position
  • Deputy Director, Section Chief
Additional affiliations
April 2024 - present
National Institutes for Quantum Science and Technology
Position
  • Deputy Director/Leader, Research Group for Systems and Neural Circuits
February 2008 - March 2016
National Institute of Radiological Sciences
Position
  • Section Chief
August 2004 - January 2008
National Institute of Mental Health, National Institutes of Health
Position
  • National Institute of Mental Health (NIMH), NIH

Publications

Publications (137)
Article
Full-text available
The chemogenetic technology designer receptors exclusively activated by designer drugs (DREADDs) afford remotely reversible control of cellular signaling, neuronal activity and behavior. Although the combination of muscarinic-based DREADDs with clozapine-N-oxide (CNO) has been widely used, sluggish kinetics, metabolic liabilities and potential off-...
Article
Full-text available
The primate prefrontal cortex (PFC) is situated at the core of higher brain functions via neural circuits such as those linking the caudate nucleus and mediodorsal thalamus. However, the distinctive roles of these prefronto-subcortical pathways remain elusive. Combining in vivo neuronal projection mapping with chemogenetic synaptic silencing, we re...
Article
Full-text available
Concurrent genetic neuromodulation and functional magnetic resonance imaging (fMRI) in primates has provided a valuable opportunity to assess the modified brain-wide operation in the resting state. However, its application to link the network operation with behavior still remains challenging. Here, we combined chemogenetic silencing of the primary...
Article
Full-text available
Epilepsy is a disorder in which abnormal neuronal hyperexcitation causes several types of seizures. Because pharmacological and surgical treatments occasionally interfere with normal brain function, a more focused and on-demand approach is desirable. Here we examined the efficacy of a chemogenetic tool—designer receptors exclusively activated by de...
Article
Full-text available
Primates must adapt to changing environments by optimizing their behavior to make beneficial choices. At the core of adaptive behavior is the orbitofrontal cortex (OFC) of the brain, which updates choice value through direct experience or knowledge-based inference. Here, we identify distinct neural circuitry underlying these two separate abilities....
Preprint
Full-text available
Perceptually novel objects have profound impacts on our daily decisions. People often pay to try novel meals over familiar ones, or to see novel visual scenes at art exhibits and travel destinations. This suggests that perceptual novelty and the value of physical rewards, such as food, interact at the level of neural circuits to guide decisions, bu...
Article
Full-text available
The ventral striatum (VS) is a key brain region for reward processing and motivation, and its dysfunctions have been implicated in psychiatric disorders such as apathy and obsessive–compulsive disorder. Although functional heterogeneity within the VS has been well established in rodents, its relevance and mechanisms in primates remain unclear. To a...
Preprint
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) offer a powerful means for reversible control of neuronal activity through systemic administration of inert actuators. Because chemogenetic control relies on DREADD expression levels, understanding and quantifying the temporal dynamics of their expression is crucial for planning l...
Preprint
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) offer a powerful means for reversible control of neuronal activity through systemic administration of inert actuators. Because chemogenetic control relies on DREADD expression levels, understanding and quantifying the temporal dynamics of their expression is crucial for planning l...
Preprint
Full-text available
Progressive Supranuclear Palsy (PSP) is a neurodegenerative disorder characterized by movement impairments and frontal cognitive dysfunctions. While motor symptoms are linked with subcortical tau deposits, mechanisms underlying the frontal cognitive symptoms remain unclear due to limited tau accumulation in the frontal cortex and heterogeneous tau...
Article
Full-text available
Neural dynamics are thought to reflect computations that relay and transform information in the brain. Previous studies have identified the neural population dynamics in many individual brain regions as a trajectory geometry, preserving a common computational motif. However, whether these populations share particular geometric patterns across brain...
Preprint
Full-text available
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) offer a powerful means for reversible control of neuronal activity through systemic administration of inert actuators. Because chemogenetic control relies on DREADD expression levels, understanding and quantifying the temporal dynamics of their expression is crucial for planning l...
Article
Full-text available
Area TE is required for normal learning of visual categories based on perceptual similarity. To evaluate whether category learning changes neural activity in area TE, we trained two monkeys (both male) implanted with multi-electrode arrays to categorize natural images of cats and dogs. Neural activity during a passive viewing task was compared pre-...
Article
Full-text available
Nonhuman primates, particularly macaque and marmoset monkeys, serve as invaluable models for studying complex brain functions and behavior. However, the lack of suitable genetic neuromodulation tools has constrained research at the network level. This review examines the application of a chemogenetic technology, specifically, designer receptors exc...
Article
Designer receptors exclusively activated by designer drugs (DREADDs) are engineered G-protein-coupled receptors that afford reversible manipulation of neuronal activity in vivo. Here, we introduce size-reduced DREADD derivatives miniDq and miniDi, which inherit the basic receptor properties from the Gq-coupled excitatory receptor hM3Dq and the Gi-c...
Article
Full-text available
Nonhuman primates (NHPs) exhibit complex and diverse behavior that typifies advanced cognitive function and social communication, but quantitative and systematical measure of this natural nonverbal processing has been a technical challenge. Specifically, a method is required to automatically segment time series of behavior into elemental motion mot...
Article
Full-text available
Temporal discounting, in which the recipient of a reward perceives the value of that reward to decrease with delay in its receipt, is associated with impulsivity and psychiatric disorders such as depression. Here, we investigate the role of the serotonin 5-HT4 receptor (5-HT4R) in modulating temporal discounting in the macaque dorsal caudate nucleu...
Preprint
Full-text available
Neural dynamics reflect canonical computations that relay and transform information in the brain. Previous studies have identified the neural population dynamics in many individual brain regions as a trajectory geometry in a low-dimensional neural space. However, whether these populations share particular geometric patterns across brain-wide neural...
Article
Full-text available
Visual object memory is a fundamental element of various cognitive abilities, and the underlying neural mechanisms have been extensively examined especially in the anterior temporal cortex of primates. However, both macroscopic large-scale functional network in which this region is embedded and microscopic neuron-level dynamics of top-down regulati...
Preprint
Full-text available
Temporal discounting, in which the recipient of a reward perceives the value of that reward to decrease with delay in its receipt, is associated with impulsivity and psychiatric disorders such as depression. Here, we investigate the role of serotonin 5-HT 4 receptors (5-HT 4 R) in modulating temporal discounting in the macaque dorsal caudate nucleu...
Article
Full-text available
Serotonin (5-HT) deficiency is a core biological pathology underlying depression and other psychiatric disorders whose key symptoms include decreased motivation. However, the exact role of 5-HT in motivation remains controversial and elusive. Here, we pharmacologically manipulated the 5-HT system in macaque monkeys and quantified the effects on mot...
Article
In recent years, the development of an on-demand treatment for epilepsy has been promoted using chemogenetics, by which neural activity of a target neuronal population is manipulated by systemic drug delivery. This paper outlines the mechanism of chemogenetic manipulation of neural activity, describes recent studies that have confirmed the efficacy...
Preprint
Full-text available
We trained two monkeys implanted with multi-electrode arrays to categorize natural images of cats and dogs, in order to observe changes in neural activity related to category learning. We recorded neural activity from area TE, which is required for normal learning of visual categories based on perceptual similarity. Neural activity during a passive...
Article
Full-text available
Recent advancements in chemogenetic tools, such as designer receptors exclusively activated by designer drugs (DREADDs), allow the simultaneous manipulation of activity over a specific, broad brain region in nonhuman primates. However, the introduction of DREADDs into large and complexly shaped cortical sulcus regions of macaque monkeys is technica...
Preprint
Full-text available
To be the most successful, primates must adapt to changing environments and optimize their behavior by making the most beneficial choices. At the core of adaptive behavior is the orbitofrontal cortex (OFC) of the brain, which updates choice value through direct experience or knowledge-based inference. Here, we identify distinct neural circuitry und...
Article
Full-text available
Background Receptor interacting protein kinase 1 (RIPK1) is a serine/threonine kinase, which regulates programmed cell death and inflammation. Recently, the involvement of RIPK1 in the pathophysiology of Alzheimer’s disease (AD) has been reported; RIPK1 is involved in microglia’s phenotypic transition to their dysfunctional states, and it is highly...
Article
Full-text available
Chemogenetic tools provide an opportunity to manipulate neuronal activity and behavior selectively and repeatedly in nonhuman primates (NHPs) with minimal invasiveness. Designer Receptors Exclusively Activated by Designer Drugs are one example that is based on mutated muscarinic acetylcholine receptors. Another channel-based chemogenetic system ava...
Article
Full-text available
Recent emphasis has been placed on gene transduction mediated through recombinant adeno-associated virus (AAV) vector to manipulate activity of neurons and their circuitry in the primate brain. In the present study, we created a novel vector of which capsid was composed of capsid proteins derived from both of the AAV serotypes 1 and 2 (AAV1 and AAV...
Preprint
Full-text available
Chemogenetic tools provide an opportunity to manipulate neuronal activity and behavior selectively and repeatedly in nonhuman primates (NHPs) with minimal invasiveness. Designer Receptors Exclusively Activated by Designer Drugs are one example that is based on mutated muscarinic acetylcholine receptors. Another channel-based chemogenetic system ava...
Article
Full-text available
Neural population dynamics provide a key computational framework for understanding information processing in the sensory, cognitive, and motor functions of the brain. They systematically depict complex neural population activity, dominated by strong temporal dynamics as trajectory geometry in a low-dimensional neural space. However, neural populati...
Article
Full-text available
A comparison of neuroanatomical features of the brain between humans and our evolutionary relatives, nonhuman primates, is key to understanding the human brain system and the neural basis of mental and neurological disorders. Although most comparative MRI studies of human and nonhuman primate brains have been based on brains of primates that had be...
Preprint
Full-text available
Nonhuman primates (NHPs) exhibit complex and diverse behavior that typifies advanced cognitive function and social communication, but quantitative and systematical measure of this natural nonverbal processing has been a technical challenge. Specifically, a method is required to automatically segment time series of behavior into elemental motion mot...
Article
Recently, retinoid actions on the central nervous system (CNS) have attracted considerable attention from the perspectives of brain disease diagnosis and drug development. Firstly, we successfully synthesized [11C]peretinoin esters (methyl, ethyl, and benzyl) using a Pd(0)-mediated rapid C-[11C]methylation of the corresponding stannyl precursors wi...
Preprint
Full-text available
Deficiency of the serotonin (5-HT) system is considered one of the core biological pathologies of depression and other psychiatric disorders whose key symptom is decreased motivation. Yet, the exact role of 5-HT in motivation remains controversial and elusive. Here, we pharmacologically manipulated the 5-HT system and quantified effects on motivati...
Preprint
Full-text available
Recent advances in genetic neuromodulation technology have enabled circuit-specific interventions in nonhuman primates (NHPs), thereby revealing the causal functions of specific neural circuits. Going forward, an important step is to use these findings to better understand neuropsychiatric and neurological disorders in humans, in which alterations...
Chapter
The chemogenetic technology, designer receptors exclusively activated by designer drugs (DREADDs), offers reversible and remote control of neuronal activity and behavior in rodents and monkeys. In vivo verification of DREADD receptors and their function is valuable for long-term studies in nonhuman primates and future clinical application. Here we...
Article
Alzheimer’s disease (AD) is the leading cause of dementia which afflicts tens of millions of people worldwide. Despite many scientific progresses to dissect the AD’s molecular basis from studies on various mouse models, it has been suffered from evolutionary species differences. Here, we report generation of a non-human primate (NHP), common marmos...
Article
Full-text available
The orbitofrontal cortex (OFC) and its major downstream target within the basal ganglia-the rostromedial caudate nucleus (rmCD)-are involved in reward-value processing and goal-directed behavior. However, a causal contribution of the pathway linking these two structures to goal-directed behavior has not been established. Using the chemogenetic tech...
Preprint
Full-text available
The orbitofrontal cortex (OFC) and its major downstream target within the basal ganglia—the rostromedial caudate nucleus (rmCD)—are involved in reward-value processing and goal-directed behavior. However, a causal contribution of the pathway linking these two structures to goal-directed behavior has not been established. Using the chemogenetic tech...
Article
Full-text available
Maternal immune activation (MIA) is a risk factor for schizophrenia. MIA of pregnant rodents can be induced by injection of synthetic polyriboinosinic-polyribocytidilic acid (Poly I:C), which causes their offspring to have behavioral dysfunction mediated by the dopaminergic system. Here, we examined whether cortical dopamine D2 receptor (D2Rs) abno...
Article
Full-text available
The chemogenetic technology referred to as designer receptors exclusively activated by designer drugs (DREADDs) offers reversible means to control neuronal activity for investigating its functional correlation with behavioral action. Deschloroclozapine (DCZ), a recently-developed highly potent and selective DREADDs actuator, displays a capacity to...
Preprint
Full-text available
Neural population dynamics, presumably fundamental computational units in the brain, provide a key framework for understanding information processing in the sensory, cognitive, and motor functions. However, neural population dynamics is not explicitly related to the conventional analytic framework for single-neuron activity, i.e., representational...
Article
Full-text available
Monoacylglycerol lipase (MAGL) is a cytosolic serine hydrolase that cleaves monoacylglycerols into fatty acids and is a potential target for the novel treatment of CNS disorders related to the endocannabinoid system and neuroinflammation. We have developed [ ¹⁸ F]T-401 as a selective Positron emission tomography (PET) imaging agent for MAGL. In thi...
Article
Full-text available
Positron emission tomography (PET) allows biomolecular tracking but PET monitoring of brain networks has been hampered by a lack of suitable reporters. Here, we take advantage of bacterial dihydrofolate reductase, ecDHFR, and its unique antagonist, TMP, to facilitate in vivo imaging in the brain. Peripheral administration of radiofluorinated and fl...
Article
Full-text available
Autism spectrum disorder (ASD) is a multifactorial disorder with characteristic synaptic and gene expression changes. Early intervention during childhood is thought to benefit prognosis. Here, we examined the changes in cortical synaptogenesis, synaptic function, and gene expression from birth to the juvenile stage in a marmoset model of ASD induce...
Article
Full-text available
Purpose Phosphodiesterase (PDE) 7 is a potential therapeutic target for neurological and inflammatory diseases, although in vivo visualization of PDE7 has not been successful. In this study, we aimed to develop [¹¹C]MTP38 as a novel positron emission tomography (PET) ligand for PDE7. Methods [¹¹C]MTP38 was radiosynthesized by ¹¹C-cyanation of a br...
Preprint
Full-text available
The chemogenetic technology referred to as designer receptors exclusively activated by designer drugs (DREADDs) offers reversible means to control neuronal activity for investigating its functional correlation with behavioral action. Deschloroclozapine (DCZ), a recently-developed highly potent and selective DREADDs actuator, displays a capacity to...
Article
Full-text available
To interrogate particular neuronal pathways in nonhuman primates under natural and stress-free conditions, we applied designer receptors exclusively activated by designer drugs (DREADDs) technology to common marmosets. We injected adeno-associated virus vectors expressing the excitatory DREADD hM3Dq into the unilateral substantia nigra in four marm...
Preprint
Full-text available
Recent emphasis has been placed on gene transduction mediated through recombinant adeno-associated virus (AAV) vector to manipulate activity of neurons and their circuitry in the primate brain. In the present study, we created a novel AAV vector of which capsid was composed of capsid proteins derived from the serotypes 1 and 2 (AAV1 and AAV2). Foll...
Article
Full-text available
It has been widely accepted that dopamine (DA) plays a major role in motivation, yet the specific contribution of DA signaling at D1-like receptor (D1R) and D2-like receptor (D2R) to cost–benefit trade-off remains unclear. Here, by combining pharmacological manipulation of DA receptors (DARs) and positron emission tomography (PET) imaging, we asses...
Article
Full-text available
The term ‘temporal discounting’ describes both choice preferences and motivation for delayed rewards. Here we show that neuronal activity in the dorsal part of the primate caudate head (dCDh) signals the temporally discounted value needed to compute the motivation for delayed rewards. Macaque monkeys performed an instrumental task, in which visual...
Article
Full-text available
Previous work found that [11C]deschloroclozapine ([11C]DCZ) is superior to [11C]clozapine ([11C]CLZ) for imaging Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). This study used PET to quantitatively and separately measure the signal from transfected receptors, endogenous receptors/targets, and non-displaceable binding in other...
Article
Full-text available
Colony-stimulating factor 1 receptor (CSF1R) is a specific biomarker for microglia. In this study, we developed a novel PET radioligand for CSF1R, 11C-GW2580, and compared it to a reported CSF1R tracer, 11C-CPPC, in mouse models of acute and chronic neuroinflammation and a rhesus monkey. Dynamic 11C-GW2580- and 11C-CPPC-PET images were quantified b...
Preprint
Full-text available
The primate prefrontal cortex (PFC) is situated at the core of higher brain functions by linking and cooperating with the caudate nucleus (CD) and mediodorsal thalamus (MD) via neural circuits. However, the distinctive roles of these prefronto-subcortical pathways remain elusive. Combining in vivo neuronal projection mapping with chemogenetic synap...
Preprint
Full-text available
To interrogate particular neuronal pathways in non-human primates under natural and stress-free conditions, we applied designer receptors exclusively activated by designer drugs (DREADDs) technology to common marmosets. We injected adeno-associated virus vectors expressing the excitatory DREADD hM3Dq into the unilateral substantia nigra in three ma...
Preprint
Full-text available
It has been widely accepted that dopamine (DA) plays a major role in motivation, yet the specific contribution of DA signaling at D 1 -like receptor (D 1 R) and D 2 -like receptor (D 2 R) to cost-benefit trade-off remains unclear. Here, by combining pharmacological manipulation of DA receptors (DARs) and positron emission tomography imaging, we ass...
Preprint
Purpose Phosphodiesterase (PDE) 7 is a potential therapeutic target for neurological and inflammatory diseases, although in-vivo visualization of PDE7 has not been successful. In this study, we aimed to develop [ ¹¹ C]MTP38 as a novel positron emission tomography (PET) ligand for PDE7. Methods [ ¹¹ C]MTP38 was radiosynthesized by ¹¹ C-cyanation of...
Article
Full-text available
We developed a human-scale single-ring OpenPET (SROP) system, which had an open space allowing us access to the subject during measurement. The SROP system consisted of 160 4-layer depth-of-interaction detectors. The open space with the axial width of 430 mm was achieved with the ring axial width of 214 mm and the ring inner diameter of 660 mm. The...
Preprint
Full-text available
Deposition of intracellular α-synuclein fibrils is implicated in neurodegenerative parkinsonian disorders, while high-contrast in vivo detection of α-synuclein depositions has been unsuccessful in animal models and humans. Here, we have developed a bimodal imaging probe, C05-05, for visualizing α-synuclein inclusions in the brains of living animals...
Preprint
Full-text available
A comparison of neuroanatomical features of the brain between humans and our evolutionary relatives, nonhuman primates, is key to understanding the human brain system and the neural basis of mental and neurological disorders. Although most comparative MRI studies of human and nonhuman primate brains have been based on brains of primates that had be...
Preprint
Full-text available
Autism spectrum disorder (ASD) is a synapse-related disorder that is diagnosed at around 3 years of age. Earlier intervention is desirable for better ASD prognosis; however, there is limited biological literature regarding early-age ASD. This study aimed to assess altered cortical synapses and gene expression in the ASD model marmoset. There were d...
Preprint
Full-text available
Molecular tools - such as chemogenetics, optogenetics, and calcium sensors – have been shown in small animals, e.g., mice, zebrafish, and flies, to be powerful tools for studying the mechanisms underlying brain function. The adoption of molecular tools in animals with larger brains has been more difficult than it initially seemed it might be. The p...
Preprint
Full-text available
Temporal discounting captures both choice preferences and motivation for delayed rewards. While temporally discounted value for choice is represented in brain areas including the dorsolateral prefrontal cortex (DLPFC) and the striatum, the neural process of motivation for delayed rewards remains unidentified. Here we show that neuronal activity of...
Preprint
Full-text available
Positron Emission Tomography (PET) allows biomolecular tracking, while PET monitoring of brain networks has been hampered by the lack of a suitable reporter. Here, we describe in-vivo brain reporters utilizing bacterial dihydrofolate reductase, ecDHFR, and its antagonist, TMP. In mice, peripheral administration of radiofluorinated and fluorescent T...
Article
Full-text available
The ability to infer others’ mental states is essential to social interactions. This ability, critically evaluated by testing whether one attributes false beliefs (FBs) to others, has been considered to be uniquely hominid and to accompany the activation of a distributed brain network. We challenge the taxon specificity of this ability and identify...
Article
Full-text available
Although aberrations in the number and function of glutamate AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors are thought to underlie neuropsychiatric disorders, no methods are currently available for visualizing AMPA receptors in the living human brain. Here we developed a positron emission tomography (PET) tracer for AMPA re...
Preprint
Full-text available
The chemogenetic technology, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs), affords reversible and remote control of cellular signaling, neuronal activity and behavior. Although the combination of muscarinic-based DREADDs with clozapine-N-oxide (CNO) has been widely used, the sluggish kinetics, metabolic liabilities, and pote...
Article
Full-text available
Humans and animals show diverse preferences for risks (“trait-like” risk attitude) and shift their preference depending on the state or current needs (“state-dependent” risk attitude). For a better understanding of the neural mechanisms underlying risk-sensitive decisions, useful animal models have been required. Here we examined the risk attitude...
Article
Full-text available
Autism spectrum disorder (ASD) is one of the most widespread neurodevelopmental disorders, characterized by impairment in social interactions, and restricted stereotyped behaviors. Using immunohistochemistry and positron emission tomography (PET), several studies have provided evidence of the existence of activated microglia in ASD patients. Recent...
Article
Full-text available
In autism spectrum disorder (ASD), disrupted functional and structural connectivity in the social brain has been suggested as the core biological mechanism underlying the social recognition deficits of this neurodevelopmental disorder. In this study, we aimed to identify genetic and neurostructural abnormalities at birth in a non-human primate mode...
Article
Full-text available
Processing incentive and drive is essential for control of goal-directed behavior. The limbic part of the basal ganglia has been emphasized in these processes, yet the exact neuronal mechanism has remained elusive. In this study, we examined the neuronal activity of the ventral pallidum (VP) and its upstream area, the rostromedial caudate (rmCD), w...
Preprint
Full-text available
Processing incentive and drive is essential for control of goal-directed behavior. The limbic part of the basal ganglia has been emphasized in these processes, yet the exact neuronal mechanism has remained elusive. In this study, we examined the neuronal activity of the ventral pallidum (VP) and its upstream area, the rostromedial caudate (rmCD), w...
Article
Background: Parkinson's disease is caused by dopamine deficiency in the striatum, which is a result of loss of dopamine neurons from the substantia nigra pars compacta. There is a consensus that a subpopulation of nigral dopamine neurons that expresses the calcium‐binding protein calbindin is selectively invulnerable to parkinsonian insults. The ob...
Article
Material perception is an essential part of our cognitive function that enables us to properly interact with our complex daily environment. One important aspect of material perception is its multimodal nature. When we see an object, we generally recognize its haptic properties as well as its visual properties. Consequently, one must examine behavio...
Article
Full-text available
The thalamus provides a massive input to the striatum, but despite accumulating evidence, the functions of this system remain unclear. It is known, however, that the centromedian (CM) and parafascicular (Pf) nuclei of the thalamus can strongly influence particular striatal neuron subtypes, notably including the cholinergic interneurons of the stria...
Article
Full-text available
The rostromedial caudate (rmCD) of primates is thought to contribute to reward value processing, but a causal relationship has not been established. Here we use an inhibitory DREADD (Designer Receptor Exclusively Activated by Designer Drug) to repeatedly and non-invasively inactivate rmCD of macaque monkeys. We inject an adeno-associated viral vect...
Data
Supplementary Figures 1-4, Supplementary Table 1 and Supplementary Methods
Article
Full-text available
Significance statement: The present work provides the first successful demonstration of in vivo positron emission tomographic (PET) visualization of a chemogenetic designer receptor (designer receptor exclusively activated by designer drugs, DREADD) expressed in living brains. This technology has been applied to longitudinal PET reporter imaging o...
Article
Full-text available
Monoacylglycerol lipase (MAGL) is a 33 kDa member of the serine hydrolase superfamily that preferentially degrades 2-arachidonoylglycerol (2-AG) to arachidonic acid in the endocannabinoid system. Inhibition of MAGL is not only of interest for probing the cannabinoid pathway but also as a therapeutic and diagnostic target for neuroinflammation. Limi...
Data
Supplementary tables and figures.
Article
A novel pyridopyrimidin-4-one derivative, N-tert-butyl-2-[2-(3-methoxyphenyl)-6-[3-(morpholin-4-yl)propoxy]-4-oxopyrido[2,3-d]pyrimidin-3(4H)-yl]acetamide (TASP0434299), was characterized as a radioligand candidate for arginine vasopressin receptor 1B (V1B receptor). TASP0434299 exhibited high binding affinities for human and rat V1B receptors with...
Article
Just by looking at an object, we can recognize its non-visual properties, such as hardness. The visual recognition of non-visual object properties is generally accurate [1], and influences actions toward the object [2]. Recent studies suggest that, in the primate brain, this may involve the ventral visual cortex, which represents objects in a way t...
Article
Full-text available
Histamine H 3 receptor (H 3 R) is a potential therapeutic target of sleep- and cognition-related disorders. The purpose of the present study is to develop a novel positron emission tomography (PET) ligand for H 3 Rs from dihydroquinolinone derivatives, which we previously found to have high affinity with these receptors. Six compounds were selected...
Article
Inappropriate vocal expressions, e.g., vocal tics in Tourette syndrome, severely impact quality of life. Neural mechanisms underlying vocal tics remain unexplored because no established animal model representing the condition exists. We report that unilateral disinhibition of the nucleus accumbens (NAc) generates vocal tics in monkeys. Whole-brain...
Article
Full-text available
To study how the interaction between orbitofrontal (OFC) and rhinal (Rh) cortices influences the judgment of reward size, we reversibly disconnected these regions using hM4Di-DREADD (designer receptor exclusively activated by designer drug). Repeated inactivation reduced sensitivity to differences in reward size in two monkeys. These results sugges...
Article
Full-text available
Inhibitory interneurons are fundamental constituents of neural circuits that organize network outputs. The striatum as part of the basal ganglia is involved in reward-directed behavior. However, the role of the inhibitory interneurons in this process remains unclear, especially in behaving monkeys. We recorded striatal single neuron activity while...
Article
We document thedevelopment of PET probes for central AMPA receptors and their application to in vivo imaging of animals. Initial screening of perampanel derivatives was performed to identify probe candidates. Despite the high autoradiographic contrast yielded by several radioligands, rat PET scans did not support their in vivo suitability. Further...

Network

Cited By