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Abstract: In urban monitoring systems, mobile sensing is imperative to acquire data from sensors
and relay them to a cloud server. Mobile devices can be used anytime and anywhere, enabling
communication with pervasive sensing in various conditions to obtain the data. Reliable data
acquisition has been required in urban monitoring systems from the macroscale to the microscale.
However, a broadcast method for the data acquisition process may lead to the increased battery
power consumption of mobile devices. Managing the battery power consumption of mobile devices
is essential for reliable data acquisition. In this paper, we propose an urban monitoring system with
an optimization algorithm in which a cloud server broadcasts a communication request that includes
battery power consumption and the data acquisition quantity of mobile devices. Game theoretic
optimization is formulated with a decision process. We derive a best response and Nash equilibrium
for mobile communication with sensors and a cloud server. Evaluation results demonstrate that the
proposed system can guarantee a low battery power consumption, as well as acquire the desired
data quantity.

Keywords: mobile sensing; energy efficiency; game theoretic optimization

1. Introduction

In urban systems for a smart city using Wireless Sensor Network (WSN) technologies,
real-time environment monitoring is essential to provide helpful information that can
be used for urban management [1]. To acquire data from multiple sensors deployed on
urban monitoring systems, sensing technologies such as Bluetooth and radio-frequency
identification are essential [2]. In addition, WSN-based sensing communication has been
developed rapidly and applied in many areas [3]. Users with mobile devices (e.g., smart
phones, smart watches, and smart tablets) are connected to a WSN, and many static sensors
are sparsely deployed in the urban systems [4]. Mobile devices are used to relay the data
from sensors to a cloud server and should satisfy event reliability such that the quantity of
sensing data is large enough to be utilized [5]. Furthermore, reliable data acquisition at
numerous urban monitoring places from the macroscale to the microscale has been required.
In urban monitoring systems with a WSN, a large number of scattered sensors conduct
sensing tasks and multihop networking over a temporarily configured ad hoc network.
To communicate with sensors and relay the data to the cloud server, it is important to
maintain the battery power of mobile devices [6]. Although the battery power efficiency
of mobile devices has increased, people spend more time and use more data via their
mobile devices than ever before [7]. As mobile device users have increased along with
data-heavy mobile applications, the overall battery power consumption of mobile devices
has also increased [8]. Therefore, mobile devices must maintain their battery power above
a certain level to communicate with sensors and the cloud server in urban systems. Here, it
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is challenging for mobile devices to determine the communication with sensors and the
cloud server.

Currently, air quality is one of the essential real-time monitored indexes in urban
systems (e.g., particulate matter, oxide gases, carbon monoxide, etc.), and many countries
have deployed urban sensing and monitoring infrastructure to provide useful information
to their citizen [9]. In the urban-scale monitoring infrastructure, each sensor measures the
air quality, weather, and noise parameters sent to a cloud server using mobile devices [10].
However, few sensors are deployed in urban systems so that their data show rough
information. Furthermore, mobile devices cannot acquire data in some environments (e.g.,
not enough battery power for mobile devices, users in vehicles).

In this paper, we propose a data acquisition system with the optimization of the
battery power consumption of each mobile device. After receiving the cloud server request,
each mobile device accepts the request and conducts the data acquisition considering its
battery power consumption. The game theory model is formulated to minimize battery
power consumption while acquiring more data than the desired level. Furthermore, a Nash
equilibrium is derived via the best response strategy algorithm. To evaluate our system, we
implement Particulate Matter (PM) sensors to monitor air quality. PM sensors are deployed
in various environments, sending the data to mobile devices. The contributions of this
paper can be summarized as follows: (1) we model the minimization of the battery power
consumption in mobile devices and optimize the model; (2) based on a game theoretic
method, we derive the optimal strategy, which implies that the strategy can be adopted by
the real urban system; and (3) we present and analyze the evaluation results under various
environments. Experimental results show that the proposed system acquires more data
than the data acquisition threshold and consumes less battery power than the target battery
power status.

The remainder of this paper is organized as follows. In Section 2, we summarize the
related work. In Section 3, we elaborate on the system model. In Section 4, we formulate
the system model as a game theoretic process. The optimization for the game theoretic
process is described in Section 5. Evaluation results are discussed in Section 6, and our
concluding remarks are provided in Section 7.

2. Related Work

Studies on urban sensing to acquire microscale data have been reported in the lit-
erature [11–13]. The authors in [11] utilized geotagged tweets, sensing data for urban
temperature analysis, and investigated the relationships between monitored temperatures
and heat-tweets using a statistical model based on copula modeling methods. In [12], an
integrated geovisualization framework was proposed. This framework was used to analyze
the complex patterns of an urban microclimate for real-time wireless sensor network data.
In the proposed algorithm, a Bayesian method and a hyper ellipsoidal model were used
to analyze the data in the urban microclimate, as well as a smart city environment. The
authors in [13] suggested a decentralized data fusion framework. The proposed framework
was utilized for microscale monitoring systems in urban monitoring environments using a
sensor network. Furthermore, an urban air pollution monitoring scenario demonstrated
the proposed framework.

Data relaying using mobile devices was utilized in [14–16]. In [14], the authors
proposed a hybrid protocol for delivering data from sensors to mobile devices and analyzed
the performance of the protocol to derive the probability model of the data delivery. Then,
the authors derived the performance of the parameters and the effectiveness of the model.
In [15], the authors presented a mobile-cloud middleware for opportunistic mobile sensing
using smart phones. This middleware allows dynamically downloading and installing
sensor-specific transcoding modules using the mobile device as the sensor type. The
authors in [16] modeled data pre-forwarding as an optimization problem to improve the
performance of opportunistic data collection with smartphones. Then, a formal network
model and a mechanism for data pre-forwarding were proposed, and the optimal solution
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was derived. Finally, the authors evaluated a small laboratory testbed with scenarios based
on smartphone users.

Optimization problems for energy consumption have been proposed [6–8]. In [6],
the authors proposed adaptive scheduling algorithms to enhance the energy efficiency of
mobile devices in cellular networks considering user performance. The authors designed
an algorithm to minimize the total energy cost for data transfers subject to mobile user
performance constraints. The hybrid energy optimization was formulated and demon-
strated to validate the energy efficiency of the proposed algorithm. The authors in [7]
examined the trends of the energy power consumption of mobile devices for data transfer
and mobile networks based on a top-down energy intensity estimate and public data.
Energy consumption for mobile data transfer was analyzed from the perspective of the
life cycle, examining both direct and indirect energy use. The authors in [8] proposed
a service-specific and end-to-end energy consumption model to investigate smartphone
applications and conducted a sensitivity analysis on different usage patterns. Furthermore,
the authors suggested energy-efficient solutions to reduce the service energy consumption.

In spite of the above issues, there is no existing work that optimizes the overall
battery power consumption of mobile devices in a mobile-based sensing scheme. In [5],
the authors proposed a reliable event data acquisition system for mobile-assisted urban
monitoring named urban reliable event transport (uRET). uRET was designed for reliable
event transmission from sensors to a cloud server using mobile devices. The authors
in [5] showed that uRET can provide a high delivery success ratio and event reliability
accomplishment ratio in a dynamic environment. However, this work did not consider
the battery power consumption of mobile devices. Our work aims to optimize the battery
power consumption of mobile devices while satisfying the data acquisition threshold. We
propose a novel energy-efficient data collection model for mobile devices based on the
users’ battery status and duration.

3. Model Description

Figure 1 shows the proposed urban monitoring system. There are many people
using mobile devices such as smartphones, smart watches, smart tablets, and so on. Each
mobile device in the system communicates with sensors that consist of a PM sensor with a
Bluetooth chip-set. Mobile devices in the urban monitoring system consume power when
transferring the data to the cloud. Therefore, urban monitoring communication can be
disrupted by the remaining battery status of mobile devices. The system should consider
the battery power consumption of mobile devices to guarantee event reliability. When
the cloud server receives the data and information of mobile devices, it supervises all the
procedures to get the required event reliability. The cloud server utilizes Algorithm 1.
Sensors in the urban monitoring system consist of the sensing and communication modules
and broadcast the Bluetooth signals. Then, all the mobile devices in the event area send
the data of the sensors and their battery power status to the cloud. The cloud analyzes
the information of the mobile devices and performs the algorithm to acquire reliable data
transmission to satisfy the data threshold. After receiving the request to determine which
mobile device sends the data to the cloud, the mobile devices send the data to the sensors
within a time duration to achieve the threshold for data acquisition.
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Figure 1. PM monitoring.

Algorithm 1: Optimization algorithm.
Tacq = TIME_DATA_ACQUISITION
while Tacq 6= 0 do

D = Devices_Set_Around_PMSj
for Di in D do

Ei = getBatteryPowerStatus(Di)
Vi = getMovingVelocity(Di)
Tstay = getStayTime(Vi)
Si = calculateBestResponseStrategy(Ei, Tstay)
List.add(Di, Si)

end
D∗ = NashEquilibrium(List)
for [Di, Si] in D∗ do

sendCommandToDevice(Di, Si)
end

end

4. Game Theoretic Formulation

In this section, we formulate a game model to achieve a decision process for the
reliable data acquisition system. The game model is composed of a set of players, a set
of strategies used by a player, and a payoff for each strategy [17]. Note that, because the
mobile devices are the players in the game model, the terms player i and mobile device Di
are used interchangeably. The important notations for the game model are summarized in
Table 1.



Electronics 2021, 10, 198 5 of 11

Table 1. Summary of notations.

Notation Description

i Player i
D A set of mobile devices
Di Mobile device of player i

D−i Mobile devices of all players except player i
PMSj PM sensor j

Vi Velocity of Di within PMSj
Ti Time duration of Di staying within PMSj
Nj Received data from PMSj
S A set of strategies
Si Strategy of player i
pi Probability of the data loss rate between mobile device Di and PMSi
Ei Initial battery status of mobile device Di
Et Battery power consumption during Ti
Er Total remaining battery power of mobile device Di

4.1. Player

Mobile device Di is a player in the game model, where i = {1, 2, . . . , n}. D is a set of
mobile devices Di denoted as D = {D1, D2, . . . , Di}. In addition, D−i represents all players
except player Di. In the PM monitoring system, Di stays in the event area denoted by Ti
with moving velocity Vi. Mobile device Di receives the number of data denoted by Nj
from PMSj, where PMSj denotes PM sensor j. Let pi denote the probability of the data
loss ratio between mobile device Di and PM sensor PMSj. After receiving the data from
PMSj, mobile device Di sends the data to the cloud server. We assume that mobile device
Di sends all the acquired data to the cloud server. Therefore, the quantity of acquired data
from PM sensor PMSj during Ti is given by:

Dacq(i) = Nj · Ti · (1− Pi), (1)

Furthermore, Ei represents the initial battery power status of mobile device Di, which
the cloud receives at first. When mobile device Di accepts the request from the cloud server
during Ti, it consumes its battery power Et to send the data to the cloud server received
from sensor PMSj. Hence, the total remaining battery power of mobile device Di during Ti
is defined as follows:

Er = Ei − Et · Ti. (2)

4.2. Strategy

Si is a strategy of player i. Si can be represented as Si = {0, 1}, where Si = 0 means
that mobile device Di does not accept the connection of PM sensor PMSj’s request, whereas
Si = 1 indicates that mobile device Di accepts the connection of PM sensor PMSj’s request.
Then, a set of strategies S can be denoted by S = {S1, S2, . . . , Si}.

4.3. Payoff Function

To maintain a battery power consumption below a certain level during the data
acquisition, we define the battery power consumption function as E(Di, Si). If mobile
device Di accepts the request from the cloud server (i.e., Si = 1), it consumes battery power
Et during Ti.

E(Di, Si) =

{
Et · Ti, i f Si = 1

0, i f Si = 0
, (3)

Each mobile device Di chooses its strategy Si to acquire the data threshold. We define
a payoff function as π(Di, Si). This function represents the total acquisition data of mobile
device Di. If mobile device Di receives the request and accepts it (i.e., Si = 1), the sensor-
mobile communication between Di and PMSj is processed with probability 1− pi. After
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receiving data Nj from PMSj in its staying time Ti, mobile device Di transmits the data to
the cloud. Therefore, π(Di, Si) can be represented by Equation (4).

π(Di, Si) =

{
Nj · Ti · (1− pi), i f Si = 1

0, i f Si = 0
. (4)

5. Optimization Formulation
5.1. Optimization Algorithm

The procedure of Algorithm 1 is as follows. First, each mobile device Di initializes
its strategy Si and communicates with PMSj. Mobile devices send the battery power
status Ei and moving velocity Vi to the cloud server. After receiving the information of
all the mobile devices D, the cloud server calculates the best response strategy and Nash
equilibrium including the data acquisition quantity of each mobile device Di during Ti.
Finally, the cloud sends the request to all mobile devices D for strategy Si. After that, the
cloud solves the linear programming to obtain the optimization problem and derive a
solution for minimizing the battery power consumption. This procedure is repeated every
time period until having acquired more data than threshold K. Note that the proposed
algorithm can determine the optimal strategy within a few time periods, which means that
it can be implemented without a high overhead load on the cloud.

5.2. Best Response and Nash Equilibrium

We consider a Nash equilibrium as a solution of the game for the battery power
consumption optimization and the data acquisition problem. The Nash equilibrium exists
for the game, and it is unique. Furthermore, the best response strategy is used to derive
the Nash equilibrium [18]. The strategy s∗ = (s∗n, s∗−n) is the best response strategy if
pi(s∗n, s∗−n) ≥ pi(sn, s−n) for each player i. If the set of strategies is a Nash equilibrium of
the game, then no player changes its strategy. A Nash equilibrium s∗i of player i can be
defined as follows:

pi(s∗n, s−n) ≥ pi(sn, s−n), (5)

5.3. Optimization Model

To minimize the total battery power consumption, we formulate an optimization
problem as a linear programming model. We assume that the optimization is conducted
every time, and thus, we consider the one time model as follows:

min
n

∑
i=1

E(Di, Si), (6)

s.t.
n

∑
i=1

π(Di, Si) > K, (7)

Ei > θ, (8)

The Nash equilibrium is the optimal strategy for which the mobile device communi-
cates with a sensor. When mobile device Di accepts the request, it communicates with a
sensor in the time duration. The objective function in Equation (6) is designed to minimize
the total battery power consumption of the mobile devices. Furthermore, the constraint in
Equation (7) is employed to maintain the acquisition of more data than the target threshold
K. The constraint in Equation (8) represents the remaining battery power status of each
mobile device satisfying more than the target battery power θ.

6. Performance Evaluation
6.1. Preliminary Experiments for the Bluetooth Low Energy Beacon

This section explains the performance evaluation via a proof of concept with Bluetooth
and laser particulate matter (PM2007) sensors on the Arduino Due platform and ten mobile
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devices with iOS Version 12.2 and Android OS Version 7.0. The optimization analytics
relying on game theory was implemented on a Linux Ubuntu 16.04 LTS with Django 2.1.
We examined various environments: a school, the roadside, a market, and a park. We
located the sensors along a street. Then, we collected 8000 values as the data. Furthermore,
we investigated the environmental properties of the Bluetooth Low Energy (BLE)-based
interaction between the mobile devices and the sensors since the BLE advertisement and
the receiving ratio at mobile devices suffer from environmental situations like the height of
the BLE transmitter, the distance between the mobile devices and sensors, and the moving
speed of users.

Figure 2 shows the effect of the signal strength on the transmission distance under the
user’s different moving speeds at 3.6 km/h and 10 km/h, respectively. The distance be-
tween the mobile device and the sensor was measured at 10 m, 20 m, and 30 m, respectively.
With the increase of the distance between the mobile device and sensor, the signal strength
decreased. In our model, we did not consider the distance between mobile devices and
sensors. That is, the communication was not disrupted by the distance (e.g., the distance
between mobile devices and sensors was less than 30 m). In addition, the signal strength
decreased as the moving speed increased. In this result, we assumed that the user’s moving
speed in the urban monitoring system affects the communication between mobile devices
and sensors. If the moving speed of the mobile device is faster than a certain level, the
probability of data loss ratio between mobile devices and sensors is much higher. Figure 3
shows the signal strength according to the height of the sensor at 0 m and 2 m, respectively,
and the distance between the sensor and mobile device was measured at 10 m, 20 m, and
30 m, respectively. This figure shows that the higher the height of the sensor, the stronger
the signal is. It can be observed that the sensor should be deployed on the wall rather
than on the ground. Therefore, we deployed the sensor on the wall for the experiments.
Figure 4 shows the average reception ratio for a transmission distance between 0 m and
40 m. In this graph, with the increase of the distance between the sensor and mobile device,
the average reception ratio decreases. Figure 5 shows the average times of the scan interval
according to the angle of the beacon.
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Figure 2. Signal strength for the moving speed.
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6.2. Battery Power Minimization Model

For the performance evaluation of the proposed system, we compared the optimization
with uRET-Broadcast [5]. The scenario is as follows: The number of mobile devices that
can receive requests was set to 10. Three PMSj were deployed and installed every 25 m.
The data acquisition threshold K and target battery power of each mobile device θ were
60 and 50%, respectively. In Figure 6, we show the quantity of data acquisition for the
time period. There are two data acquisition graphs: one is the proposed game theoretic
optimization approach, and the other is uRET-Broadcast. The game theory-based approach
shows the convergence to the data acquisition threshold after getting the Nash equilibrium
in 7 s. However, uRET-Broadcast shows that the data acquisition increases as the time
period increases, because there is no optimization constraint on this model. However, the
convergence time of uRET-Broadcast is faster than the proposed model. This is because
all mobile devices on uRET-Broadcast send the data to the cloud server while they stay in
the event area of the sensors. Figure 7 shows the average remaining battery power in each
time period. There are ten mobile devices with an average battery capacity of 71%. It can
be seen that the average remaining battery power of the proposed model decreases by 7 s
to acquire the target data quantity, the same as in Figure 7. After converging to the target
data threshold, the battery power consumption of the proposed model decreases slowly.
On the contrary, the average remaining battery power of the uRET-Broadcast model keeps
decreasing. Figure 8 shows the required time for data acquisition in each iteration. It shows
that the proposed model requires more time than the uRET-Broadcast model for every
iteration. This is because the remaining battery power of mobile devices below 50% is not
included in the data acquisition procedure. Although the proposed model requires more
time duration, it acquires the data within a few seconds, as well as minimizes the battery
power consumption of the mobile devices.

Our results show that the game theory-based model converges to the Nash equilibrium
within a few seconds (i.e., average of 7.6 s in Figure 8). This observation demonstrates
that the proposed model can be applied to real urban systems without high overhead for
calculating on the cloud. However, if many mobile devices have their battery status under
the target battery power in urban systems, the proposed model could not satisfy the data
threshold. This means that the proposed model has the advantage of satisfying the data
acquisition and the battery power consumption when there are many mobile devices in
the system.
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7. Conclusions

In this paper, the battery power issue for PM monitoring in an urban system is
addressed. We design a game theoretic optimization problem for the battery power con-
sumption of mobile devices. Mobile devices and PM sensors on the embedded system are
implemented in various environments. In the proposed system, the cloud server performs
the optimization algorithm and sends the request to the mobile devices. Furthermore, the
mobile devices accept the optimal strategy derived from the cloud server via the best re-
sponse dynamics and Nash equilibrium. The performance evaluation results demonstrate
that mobile devices in the proposed system accept the request and thus acquire more data
than the threshold, and a low battery power consumption can be guaranteed. In future
work, we will consider more scenarios such as multiple sensors in urban systems and the
dynamic mobility of users. In sensor-mobile communication, not only broadcast mode, but
also unicast mode will be considered. Furthermore, to achieve a high reliability for the
data acquisition, additional constraints will be adopted in the game theory model.
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